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Logistics

More course staff introductions

* Josh Levine (TA)

e Kshitij Phulare (TA)

e Pedro Cisneros (Post-doc Course Assistant)

All course materials: https://courses.engr.illinois.edu/cs441/sp2023/
- See CampusWire for Office Hours

Survey by email
- Will spend some time going over key concepts Thursday


https://courses.engr.illinois.edu/cs441/sp2023/

Recap of previous lectures

Nearest neighbor is widely used
— Super-powers: can instantly learn new classes and predict from one or many examples

Naive Bayes represents a common assumption as part of density estimation, more typical as
part of an approach rather than the final predictor

— Super-powers: Fast estimation from lots of data; not terrible estimation from limited data

Logistic Regression is widely used
— Super-powers: Effective prediction from high-dimensional features; good confidence estimates

Linear Regression is widely used

— Super-powers: Can extrapolate, explain relationships, and predict continuous values from many
variables

Almost all algorithms involve nearest neighbor, logistic regression, or linear regression
— The main learning challenge is typically feature learning



HW 1 summary
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1. Implement and test KNN, Naive Bayes, Linear
Logistic Regression

2. Plot Error vs Training Size

3. Select best parameter using validation predict Tem for Cleveland on 2018-09-27
24 A AN Cleveland
Temperature Regression | N iy
Predict Cleveland’s next day temperature from — Denver
recent temperatures of US cities G 0] o bouts
1. Implement and test KNN, Naive Bayes (NB), and Em
Linear Regression (LR) g2
2. Identify most important features with L1 linear a *
regression, and re-train/evaluate with most 14
important features
-5 -4 3 -2 -1 0

Stretch Goals
1. Improve MNIST Classification

2. Improve Temperature Regression

3. Generate a train/test classification dataset in
which Naive Bayes outperforms 1-NN and
Logistic Regression



Completing HWs

* Read assignment and tips

* Code by adding to starter code notebook (which mainly has
data loading and visualization functions)

 Complete report, including expected points

* Submit the report, notebook pdf/html, and zip/ipynb code

— Mainly grader will look at report first, notebook pdf for clarification,
and run code rarely

— Notebook does not need to include all outputs



 So far, we’ve seen two main
choices for how to use features
1. Nearest neighbor uses all the

features jointly to find similar
examples

2. Linear models make predictions
out of weighted sums of the
features

* |f you wanted to give someone a

rule to split the ‘0’ from the X/,
what other idea might you try?

X
X X X
v (o)
o X
Oo0 o
O X
X2 X X X
x1

If x2 < 0.6 and x2 > 0.2 and x2 < 0.7, ‘o'
Else ‘x’/

Can we learn how to make these kinds of
rules automatically?



Decision trees

* Training: lteratively choose the attribute and split value that
best separates the classes for the data in the current node

 Combines feature selection/modeling with prediction

Fwidth >6.5cm? ]

Yes 4 No

[height>9.5c:m? ] [height>6.ﬂcm'? ]

@ Vo

height (cm)

® oranges
4 |emons

4 6 8 10
width (cm)

Fig Credit: Zemel, Urtasun, Fidler



https://www.cs.toronto.edu/%7Eurtasun/courses/CSC411_Fall16/06_trees_handout.pdf

Decision Tree Classification

Test example

width > 6.5cm?

height > 9.5cm? height > 6.0cm?

Slide Credit: Zemel, Urtasun, Fidler
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Example with discrete inputs

Example _ Input Attributes _ Goal
Alt | Bar | Fri Hun | Pat | Price | Rain| Res = Type Est WillWait

X1 Yes| No No | Yes| Some $$8 No | Yes French| 0-10 | y, = Yes
X9 Yes  No | No Yes Full $ No | No Thai | 30-60 | 1= No
X3 No | Yes No | No Some § No | No | Burger| 0-10 | y3= Yes
X4 Yes | No | Yes| Yes| Full $ Yes | No Thai | 10-30 | y4= Yes
X5 Yes | No VYes| No | Full @ $$8  No | Yes French| >60 | y;= No
X6 No | Yes No Yes| Some $$ Yes | Yes ltalian | 0-10 | ys = Yes
X7 No | Yes No NMNo| None § Yes | No Burger | 0-10 | y;= No
Xg No| No No Yes| Some $$% | Yes| Yes Thai 0-10 | yg = Yes
Xg No | Yes| Yes| No | Full $ Yes | No  Burger| >60 | yy= No
X10 Yes | Yes Yes Yes| Full @335 | No | Yes ltalian | 10-30 | yio = No
X1 No| No | No No  None 3 No | No Thai 0-10 | 311 = No
X19 Yes | Yes Yes Yes| Full $ No | No | Burger 30-60 | y19 = Yes

1. Alternate: whether there is a suitable alternative restaurant nearby.

2. Bar: whether the restaurant has a comfortable bar area to wait in.

3. Fri/Sat: true on Fridays and Saturdays.

4. Hungry: whether we are hungry.

5. Patrons: how many people are in the restaurant (values are None, Some, and Full).

6. | | Price: the restaurant's price range (%, $%, $%%).

/. Raining: whether it is raining outside.

8. Reservation: whether we made a reservation.

9. Type: the kind of restaurant (French, Italian, Thai or Burger).

Attrl butes: 10. | | WaitEstimate; the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).

Slide Credit: Zemel, Urtasun, Fidler
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Example with discrete inputs

Example Input Attributes
Alt | Bar | Fri | Hun | Pat |Price | Rain| Res | Type Est

X1 Yes No| No | Yes| Some $$5| No| Yes French | 0-10
X Yes | No| No | Yes| Full $ No | No Thai | 30-60
X3 No| Yes| No No | Some $ No | No | Burger | 0-10
X4 Yes | No | Yes | Yes| Full $ Yes | No | Thai | 10-30
X5 Yes| No| Yes No | Full | 35| No | Yes French >60
X6 No| Yes| No | Yes| Some| $% | Yes| Yes Italian | 0-10
X7 No| Yes| No | No| None| $ Yes | No | Burger | 0-10
Xg No| No| No | Yes| Some| 8% | Yes| Yes| Thai | 0-10
Xy No| Yes| Yes No | Full $ Yes | No | Burger | >60
X10 Yes | Yes| Yes VYes| Full | $$$| No | Yes Iltalian | 10-30
X1 No| No| No| No| None| $ | No| No Thai | 0-10
X12 Yes | Yes| Yes | VYes| Full 5 No | No | Burger | 30-60

1. | | Alternate: whether there is a suitable alternative restaurant nearby.

2 Bar: whether the restaurant has a comfortable bar area to wait in.

3. Fri/Sat: true on Fridays and Saturdays.

4. | | Hungry: whether we are hungry.

5. | | Patrans: how many people are in the restaurant (values are None, Some, and Full).

6 Price: the restaurant’s price range ($, $%, $$%)

7 Raining: whether it is raining outside.

8. | | Reservation: whether we made a reservation.

9. | | Type: the kind of restaurant (French, Ttalian, Thai or Burger).

Attri b utes: 10. | | waitEstimate; the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60)

Figure Source: Zemel, Urtasun, Fidler

Goal
WillWait
y1 = Yes
12 = No
y3 = Yes
ys = Yes
y; = No
Ys = Yes
yr = No
ys = Yes
yg = No
Y10 = No
11 = No
yi12 = Yes

@ The tree to decide whether to wait (T) or not (F)

Patrons?

WaitEstimate?

Alternate?
No Yes

Reservation? Fri/Sat?

No Yes No Yes
Bar?
Yes

No

Hungry?

No Yes

Alternate?
No Yes

Raining?
No Yes
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Decision Trees

Eﬁidth >6.5cm? ]

Yes No

[height>9.5cm? ] ‘heighh&{lcm‘? J

“ @ - @

@ Internal nodes test attributes
@ Branching is determined by attribute value

@ Leaf nodes are outputs (class assignments)

Figure Source: Zemel, Urtasun, Fidler
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Decision tree algorithm

Training
Recursively, for each node in tree:
1. If [abels in the node are mixed:

a. Choose attribute and split values
based on data that reaches each

node
b. Branch and create 2 (or more)
nodes
2. Return

X2

x1
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Decision tree algorithm

Training
Recursively, for each node in tree:
1. If [abels in the node are mixed:

a. Choose attribute and split values
based on data that reaches each

node
b. Branch and create 2 (or more)
nodes
2. Return

X2

(0,0)
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Decision tree algorithm

Training
Recursively, for each node in tree:

1. If labels in the node are mixed:

a. Choose attribute and split values
based on data that reaches each

node
b. Branch and create 2 (or more)
nodes
2. Return

X2

(0,0)

x2 <0.6

27N\
x1<0.7 x2<0.8
rd W e W

x1



Decision tree algorithm

Prediction
1.Check conditions to descend tree

2.Return label of leaf node

X2

(0,0)

x1<0.7 x2 <0.8
pd
\x e o
x1 <04
M
x1<0.5
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o) X
X
X
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How do you choose what/where to split?

@ Which attribute is better to split on, X; or X7

X, | % | Y
T T
y T F

1 X

t f t A2 f LI
/\ /\ T F
Y=Ui4oy=ti1 Y=t:3 yeio [E 7
Y=f: 0 Y=f:3 Y=f:1 Y=f:2 . =
F |7
FF

Idea: Use counts at leaves to define probability distributions, so we can measure
uncertainty

Slide Source: Zemel, Urtasun, Fidler
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Quantifying Uncertainty: Coin Flip Example

Sequence 1:
200100000000000100 ... 7

Sequence 2:
1010111010011 0101 ... 7

16

3 10

VEISUS ‘ I '

0 1

Slide Source: Zemel, Urtasun, Fidler
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Quantifying Uncertainty: Coin Flip Example

Entropy H.:
H(X) == p(x)log, p(x)
xeX
8/9
a/9 98
1/9 Ij I]
— 0 1
0 1
3 8 1 1 N 1 A 4 5 5

@ How surprised are we by a new value in the sequence?

@ How much information does it convey?

Slide Source: Zemel, Urtasun, Fidler
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Quantifying Uncertainty: Coin Flip Example

Entropy: H(X)=- Z p(x) log, p(x)

xeX

entropy

1.0
u.sf-
D.Bf—
0.45-

0.2

0 probability p of heads

Slide Source: Zemel, Urtasun, Fidler
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Entropy of a Joint Distribution

@ Example: X = {Raining, Not raining}, Y = {Cloudy, Not cloudy}

Cloudy |Not Cloudy

Raining | 24/100 | 1/100

Not Raining| 25/100 50/100

HIXY) = =) ) plx.y)logy p(x.y)

xeXyeY

% 24 1, 1 25 25 5 50
= ——o — 0gr — — —— o — 0y ——

100 °22700 100 22700 100 227100 100 22700
~ 1.56bits

Slide Source: Zemel, Urtasun, Fidler
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Specific Conditional Entropy

@ Example: X = {Raining, Not raining}, Y = {Cloudy, Not cloudy}

Cloudy |Not Cloudy

Raining | 24/100 | 1/100

Not Raining|] 25/100 50/100

@ What is the entropy of cloudiness Y, given that it is raining?

HYIX =x) = = p(y|x)log, p(y|x)
yeY

%4 24 1 1
(9] O
o5 08255 T Hp 982 5

~ 0.24bits

@ We used: p(y|x) = pg?;')’}, and p(x)=)_, p(x,y) (sumin a row)

Slide Source: Zemel, Urtasun, Fidler
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Conditional Entropy

Cloudy |Not Cloudy

Raining | 24/100 | 1/100

Not Raining| 25/100 50/100

@ [he expected conditional entropy:

HIYIX) = 3 p)H(YIX = x)

xeX

= =) ) plx.y)logy p(ylx)

xeXyeY

Slide Source: Zemel, Urtasun, Fidler
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Conditional Entropy

@ Example: X = {Raining, Not raining}, Y = {Cloudy, Not cloudy}

Cloudy [Not Cloudy

Raining | 24/100 | 1/100

Not Raining| 25/100 50/100

@ What is the entropy of cloudiness, given the knowledge of whether or not it
is raining?

HYIX) = 3 pGOH(YIX =3
xeX
1 L 3 -
= 1H(c|oudy|l5 raining) -+ EH(cloudy|n0t raining)
~ 0.75 bits

Slide Source: Zemel, Urtasun, Fidler
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Conditional Entropy

@ Some useful properties:

» H is always non-negative
» Chain rule: H(X.Y)=H(X|Y)+ H(Y)=H(Y|X)+ H(X)

» |f X and Y independent, then X doesn't tell us anything about Y:
H(Y|X)= H(Y)

» But Y tells us everything about Y: H(Y|Y) =0

» By knowing X, we can only decrease uncertainty about Y':

H(Y|X) < H(Y)

Slide Source: Zemel, Urtasun, Fidler
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Information Gain

Cloudy |Not Cloudy

Raining | 24/100 | 1/100

Not Raining| 25/100 50/100

@ How much information about cloudiness do we get by discovering whether it
is raining?

IG(Y|X) = H(Y)—-H(Y|X)
~ 0.25 bits
Also called information gain in Y due to X

o
@ If X is completely uninformative about Y: IG(Y|X) =0
o If X is completely informative about Y: IG(Y|X) = H(Y)

@ How can we use this to construct our decision tree?

Slide Source: Zemel, Urtasun, Fidler
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Constructing decision tree

Training

Recursively, for each node in tree:

1.

d.

If labels in the node are mixed:

Choose attribute and split values
based on data that reaches each
node

Branch and create 2 (or more)
nodes

2. Return

=)

1. Measure information gain
» For each discrete attribute: compute

information gain of split
For each continuous attribute: select
most informative threshold and
compute its information gain. Can
be done efficiently based on sorted
values.

2. Select attribute / threshold with
highest information gain



Patrons?

Pause, stretch, and think: Is it better to split based on type or patrons?

Slide Source: Zemel, Urtasun, Fidler
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Patrons?

IG(Y) = H(Y) = H(Y|X)

IG(type) = 1 — [1—22H(Y\Fr.) i %H(ym.) ; iH(Y|Thai) ; iH(Y\Bm.)] 0
2 4 2 4
IG(Patrons) = 1 — [12H(0 1)+ B —H(1,0) + — H(E E)] ~ 0.541

Slide Source: Zemel, Urtasun, Fidler
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What if you need to predict a continuous value?

* Regression Tree

— Same idea, but choose splits to minimize sum squared error

Ynenode Sfnode (Xn) — :Vn)z
— frode (X,,) returns the average prediction value of data points in the
leaf node containing x,,



Variants

Different splitting criteria, e.g. Gini index: 1 — Zipiz (very
similar result, a little faster to compute)
Most commonly, split on one attribute at a time

— In case of continuous vector data, can also split on linear projections
of features

Can stop early
— when leaf node contains fewer than N,_.. points
— when max tree depth is reached

Can also predict multiple continuous values or multiple classes



Decision Tree vs. 1-NN

* Both have piecewise-linear
decisions

* Decision tree is typically “axis-
aligned”

* Decision tree has ability for early
stopping to improve generalization

* True power of decision trees arrives
with ensembles (lots of small or
randomized trees)

DT Boundaries

v

(0,0) x1

1-NN Boundaries

v

(0,0)




Regression Tree for Temperature Prediction

X[334] ==8.395
squared_error = 112.287
samples = 1825

 Min leaf size: 200 S Chicago, yesterday

* RMSE=3.42
Milwaukee, yesterday Grand Rapids, yesterday

— °
X[372] ==-1.745 X[405] == 17.75

squared_error = 44.986 squared_error = 25.567
samples = 819 samples = 1006
value = 0.949 value = 18.706

Chicago, yesterday / \ Chicago, yesterday

X[334] == 13.45 X[334] ==21.26
squared_error = 13.909 squared_error = 7.393
samples = 493 samples = 423 samples = 583
value = 4,961 value = 14.094 value = 22.053

AAA

squared_error = 7.068 squared_error = 5.253 squared_error = 4.087

X[334] == 4.615

squared_error = 25.753 squared_error = 17.272

samples = 326
value = -5.118

from sklearn import tree

from sklearn.tree import DecisionTreeRegressor

model = DecisionTreeRegressor (random state=0, min samples leaf=200)
model.fit (x_train, y train)

y _pred = model.predict (x val)

tree rmse = np.sqrt(np.mean((y_pred-y val)**2))

tree mae = np.sqrt(np.median(np.abs(y pred-y val)))

print ('LR: RMSE={}, MAE={}'.format (tree rmse, tree mae))

print ('R"2: {}'.format(1—tree_rmse**2/np.mean((y_pred—y_pred.mean())**2)))
plt.figure (figsize=(20,20)

squared_error = 9.393

tree.plot tree (model)

plt.show()_
for £ in [334, 372, 405]:
print ('{}: {}, {}'.format (£f,

feature to cityl[f],

feature to day([f]))

squared_error = 12.178
samples = 286
value = 2.989

squared_error = 11.513
samples = 207
value = 7.685

samples = 219
value = 11.803

samples = 204
value = 16.554

samples = 266
value = 20.235

samples = 317
value = 23.579




Classification/Regression Trees Summary

* Key Assumptions
— Samples with similar features have similar predictions

e Model Parameters

— Tree structure with split criteria at each internal node and prediction at each leaf
node

* Designs
— Limits on tree growth
— What kinds of splits are considered

— Criterion for choosing attribute/split (e.g. gini impurity score is another common
choice)

* When to Use
— Want an explainable decision function (e.g. for medical diagnosis)
— As part of an ensemble (as we’ll see Thursday)

* When Not to Use
— One tree is not a great performer, but a forest is



Things to remember

* Decision/regression trees
learn to split up the feature
space into partitions with
similar values

* Entropy is a measure of
uncertainty

* Information gain measures
how much particular
knowledge reduces prediction
uncertainty




Thursday

* Ensembles: model averaging and forests
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