
Decision and
Regression
Trees

Applied Machine Learning
Derek Hoiem

Dall-E: A dirt road splits around a large gnarly
tree, fractal art

Logistics
More course staff introductions
• Josh Levine (TA)
• Kshitij Phulare (TA)
• Pedro Cisneros (Post-doc Course Assistant)

All course materials: https://courses.engr.illinois.edu/cs441/sp2023/
- See CampusWire for Office Hours

Survey by email
- Will spend some time going over key concepts Thursday

https://courses.engr.illinois.edu/cs441/sp2023/

Recap of previous lectures
• Nearest neighbor is widely used

– Super-powers: can instantly learn new classes and predict from one or many examples

• Naïve Bayes represents a common assumption as part of density estimation, more typical as
part of an approach rather than the final predictor
– Super-powers: Fast estimation from lots of data; not terrible estimation from limited data

• Logistic Regression is widely used
– Super-powers: Effective prediction from high-dimensional features; good confidence estimates

• Linear Regression is widely used
– Super-powers: Can extrapolate, explain relationships, and predict continuous values from many

variables

• Almost all algorithms involve nearest neighbor, logistic regression, or linear regression
– The main learning challenge is typically feature learning

HW 1 summary
MNIST Digit Classification
Predict label (0-9) from pixel intensities (784x1
vector)
1. Implement and test KNN, Naïve Bayes, Linear

Logistic Regression
2. Plot Error vs Training Size
3. Select best parameter using validation

Temperature Regression
Predict Cleveland’s next day temperature from
recent temperatures of US cities
1. Implement and test KNN, Naive Bayes (NB), and

Linear Regression (LR)
2. Identify most important features with L1 linear

regression, and re-train/evaluate with most
important features

Stretch Goals
1. Improve MNIST Classification
2. Improve Temperature Regression
3. Generate a train/test classification dataset in

which Naive Bayes outperforms 1-NN and
Logistic Regression

Completing HWs
• Read assignment and tips
• Code by adding to starter code notebook (which mainly has

data loading and visualization functions)
• Complete report, including expected points
• Submit the report, notebook pdf/html, and zip/ipynb code

– Mainly grader will look at report first, notebook pdf for clarification,
and run code rarely

– Notebook does not need to include all outputs

• So far, we’ve seen two main
choices for how to use features
1. Nearest neighbor uses all the

features jointly to find similar
examples

2. Linear models make predictions
out of weighted sums of the
features

• If you wanted to give someone a
rule to split the ‘o’ from the ‘x’,
what other idea might you try?

x

x

xx

x

x
x

x

x
o

ooo

o
o
o

x2
x1

If x2 < 0.6 and x2 > 0.2 and x2 < 0.7, ‘o’
Else ‘x’

Can we learn how to make these kinds of
rules automatically?

Decision trees

Fig Credit: Zemel, Urtasun, Fidler

• Training: Iteratively choose the attribute and split value that
best separates the classes for the data in the current node

• Combines feature selection/modeling with prediction

https://www.cs.toronto.edu/%7Eurtasun/courses/CSC411_Fall16/06_trees_handout.pdf

Decision Tree Classification

Slide Credit: Zemel, Urtasun, Fidler

https://www.cs.toronto.edu/%7Eurtasun/courses/CSC411_Fall16/06_trees_handout.pdf

Example with discrete inputs

Slide Credit: Zemel, Urtasun, Fidler

https://www.cs.toronto.edu/%7Eurtasun/courses/CSC411_Fall16/06_trees_handout.pdf

Example with discrete inputs

Figure Source: Zemel, Urtasun, Fidler

https://www.cs.toronto.edu/%7Eurtasun/courses/CSC411_Fall16/06_trees_handout.pdf

Decision Trees

Figure Source: Zemel, Urtasun, Fidler

https://www.cs.toronto.edu/%7Eurtasun/courses/CSC411_Fall16/06_trees_handout.pdf

Decision tree algorithm

Training
Recursively, for each node in tree:

1. If labels in the node are mixed:
a. Choose attribute and split values

based on data that reaches each
node

b. Branch and create 2 (or more)
nodes

2. Return

x x

x x

x

x
x

x
o

o
o

o

o

o
o

x2

x1

Decision tree algorithm

Training
Recursively, for each node in tree:

1. If labels in the node are mixed:
a. Choose attribute and split values

based on data that reaches each
node

b. Branch and create 2 (or more)
nodes

2. Return

x x

x x

x

x
x

x
o

o
o

o

o

o
o

x2

x1

x2 < 0.6

(0,0) 1

1

ny

Decision tree algorithm

Training
Recursively, for each node in tree:

1. If labels in the node are mixed:
a. Choose attribute and split values

based on data that reaches each
node

b. Branch and create 2 (or more)
nodes

2. Return

x x

x x

x

x
x

x
o

o
o

o

o

o
o

x2

x1

x2 < 0.6

(0,0) 1

1

x1 < 0.7

o x

ny

Decision tree algorithm

Training
Recursively, for each node in tree:

1. If labels in the node are mixed:
a. Choose attribute and split values

based on data that reaches each
node

b. Branch and create 2 (or more)
nodes

2. Return

x x

x x

x

x
x

x
o

o
o

o

o

o
o

x2

x1

x2 < 0.6

(0,0) 1

1

x1 < 0.7

o x

x2 < 0.8

x

ny

Decision tree algorithm

Training
Recursively, for each node in tree:

1. If labels in the node are mixed:
a. Choose attribute and split values

based on data that reaches each
node

b. Branch and create 2 (or more)
nodes

2. Return

x x

x x

x

x
x

x
o

o
o

o

o

o
o

x2

x1

x2 < 0.6

(0,0) 1

1

x1 < 0.7

o x

x2 < 0.8

xx1 < 0.4

x1 < 0.5 x

xo

ny

Decision tree algorithm

x x

x x

x

x
x

x
o

o
o

o

o

o
o

x2

x1(0,0) 1

*
*

Prediction
1.Check conditions to descend tree
2.Return label of leaf node

x2 < 0.6

x1 < 0.7

o x

x2 < 0.8

xx1 < 0.4

x1 < 0.5 x

xo

ny

How do you choose what/where to split?

Slide Source: Zemel, Urtasun, Fidler

https://www.cs.toronto.edu/%7Eurtasun/courses/CSC411_Fall16/06_trees_handout.pdf

Quantifying Uncertainty: Coin Flip Example

Slide Source: Zemel, Urtasun, Fidler

https://www.cs.toronto.edu/%7Eurtasun/courses/CSC411_Fall16/06_trees_handout.pdf

Quantifying Uncertainty: Coin Flip Example

Slide Source: Zemel, Urtasun, Fidler

https://www.cs.toronto.edu/%7Eurtasun/courses/CSC411_Fall16/06_trees_handout.pdf

Quantifying Uncertainty: Coin Flip Example

Slide Source: Zemel, Urtasun, Fidler

Entropy:

https://www.cs.toronto.edu/%7Eurtasun/courses/CSC411_Fall16/06_trees_handout.pdf

Entropy of a Joint Distribution

Slide Source: Zemel, Urtasun, Fidler

https://www.cs.toronto.edu/%7Eurtasun/courses/CSC411_Fall16/06_trees_handout.pdf

Specific Conditional Entropy

Slide Source: Zemel, Urtasun, Fidler

https://www.cs.toronto.edu/%7Eurtasun/courses/CSC411_Fall16/06_trees_handout.pdf

Conditional Entropy

Slide Source: Zemel, Urtasun, Fidler

https://www.cs.toronto.edu/%7Eurtasun/courses/CSC411_Fall16/06_trees_handout.pdf

Conditional Entropy

Slide Source: Zemel, Urtasun, Fidler

https://www.cs.toronto.edu/%7Eurtasun/courses/CSC411_Fall16/06_trees_handout.pdf

Conditional Entropy

Slide Source: Zemel, Urtasun, Fidler

https://www.cs.toronto.edu/%7Eurtasun/courses/CSC411_Fall16/06_trees_handout.pdf

Information Gain

Slide Source: Zemel, Urtasun, Fidler

https://www.cs.toronto.edu/%7Eurtasun/courses/CSC411_Fall16/06_trees_handout.pdf

Constructing decision tree

Training
Recursively, for each node in tree:

1. If labels in the node are mixed:
a. Choose attribute and split values

based on data that reaches each
node

b. Branch and create 2 (or more)
nodes

2. Return

1. Measure information gain
• For each discrete attribute: compute

information gain of split
• For each continuous attribute: select

most informative threshold and
compute its information gain. Can
be done efficiently based on sorted
values.

2. Select attribute / threshold with
highest information gain

Slide Source: Zemel, Urtasun, Fidler

Pause, stretch, and think: Is it better to split based on type or patrons?

https://www.cs.toronto.edu/%7Eurtasun/courses/CSC411_Fall16/06_trees_handout.pdf

Slide Source: Zemel, Urtasun, Fidler

https://www.cs.toronto.edu/%7Eurtasun/courses/CSC411_Fall16/06_trees_handout.pdf

What if you need to predict a continuous value?
• Regression Tree

– Same idea, but choose splits to minimize sum squared error
∑𝑛𝑛∈𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑥𝑥𝑛𝑛 − 𝑦𝑦𝑛𝑛 2

– 𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑥𝑥𝑛𝑛 returns the average prediction value of data points in the
leaf node containing 𝑥𝑥𝑛𝑛

Variants

• Different splitting criteria, e.g. Gini index: 1 − ∑𝑖𝑖 𝑝𝑝𝑖𝑖2 (very
similar result, a little faster to compute)

• Most commonly, split on one attribute at a time
– In case of continuous vector data, can also split on linear projections

of features

• Can stop early
– when leaf node contains fewer than Nmin points
– when max tree depth is reached

• Can also predict multiple continuous values or multiple classes

Decision Tree vs. 1-NN
• Both have piecewise-linear

decisions
• Decision tree is typically “axis-

aligned”
• Decision tree has ability for early

stopping to improve generalization

• True power of decision trees arrives
with ensembles (lots of small or
randomized trees)

DT Boundaries

1-NN Boundaries

Regression Tree for Temperature Prediction
• Min leaf size: 200
• RMSE= 3.42
• R2=0.88

Chicago, yesterday

Chicago, yesterday Chicago, yesterday

Milwaukee, yesterday Grand Rapids, yesterday

from sklearn import tree
from sklearn.tree import DecisionTreeRegressor
model = DecisionTreeRegressor(random_state=0, min_samples_leaf=200)
model.fit(x_train, y_train)
y_pred = model.predict(x_val)
tree_rmse = np.sqrt(np.mean((y_pred-y_val)**2))
tree_mae = np.sqrt(np.median(np.abs(y_pred-y_val)))
print('LR: RMSE={}, MAE={}'.format(tree_rmse, tree_mae))
print('R^2: {}'.format(1-tree_rmse**2/np.mean((y_pred-y_pred.mean())**2)))
plt.figure(figsize=(20,20))
tree.plot_tree(model)
plt.show()
for f in [334, 372, 405]:
print('{}: {}, {}'.format(f, feature_to_city[f], feature_to_day[f]))

Classification/Regression Trees Summary
• Key Assumptions

– Samples with similar features have similar predictions
• Model Parameters

– Tree structure with split criteria at each internal node and prediction at each leaf
node

• Designs
– Limits on tree growth
– What kinds of splits are considered
– Criterion for choosing attribute/split (e.g. gini impurity score is another common

choice)
• When to Use

– Want an explainable decision function (e.g. for medical diagnosis)
– As part of an ensemble (as we’ll see Thursday)

• When Not to Use
– One tree is not a great performer, but a forest is

Things to remember
• Decision/regression trees

learn to split up the feature
space into partitions with
similar values

• Entropy is a measure of
uncertainty

• Information gain measures
how much particular
knowledge reduces prediction
uncertainty

Thursday
• Ensembles: model averaging and forests

	Decision and Regression Trees
	Logistics
	Recap of previous lectures
	HW 1 summary
	Completing HWs
	Slide Number 8
	Decision trees
	Decision Tree Classification
	Example with discrete inputs
	Example with discrete inputs
	Decision Trees
	Decision tree algorithm
	Decision tree algorithm
	Decision tree algorithm
	Decision tree algorithm
	Decision tree algorithm
	Decision tree algorithm
	How do you choose what/where to split?
	Quantifying Uncertainty: Coin Flip Example
	Quantifying Uncertainty: Coin Flip Example
	Quantifying Uncertainty: Coin Flip Example
	Entropy of a Joint Distribution
	Specific Conditional Entropy
	Conditional Entropy
	Conditional Entropy
	Conditional Entropy
	Information Gain
	Constructing decision tree
	Slide Number 33
	Slide Number 34
	What if you need to predict a continuous value?
	Variants
	Decision Tree vs. 1-NN
	Regression Tree for Temperature Prediction
	Classification/Regression Trees Summary
	Things to remember
	Thursday

