
Probability
and Naïve
Bayes

Applied Machine Learning
Derek Hoiem

Dall-E: portrait of Thomas Bayes with a Dunce Cap
on his head

KNN Usage Example: Deep Face

1. Detect facial features
2. Align faces to be frontal
3. Extract features using deep network while training classifier to label image into person (dataset based on employee faces)
4. In testing, extract features from deep network and use nearest neighbor classifier to assign identity

• Performs similarly to humans in the LFW dataset (labeled faces in the wild)
• Can be used to organize photo albums, identifying celebrities, or alert user when someone posts an image of them
• This algorithm is used by Facebook (though with expanded training data)
• Think about potential unintended consequences, e.g. due to how features are trained or its application

CVPR 2014

KNN Summary
• Key Assumptions

– Samples with similar input features will have similar output predictions
– Depending on distance measure, may assume all dimensions are equally important

• Model Parameters
– Features and predictions of the training set

• Designs
– K (number of nearest neighbors to use for prediction)
– How to combine multiple predictions if K > 1
– Feature design (selection, transformations)
– Distance function (e.g. L2, L1, Mahalanobis)

• When to Use
– Few examples per class, many classes
– Features are all roughly equally important
– Training data available for prediction changes frequently
– Can be applied to classification or regression, with discrete or continuous features
– Most powerful when combined with feature learning

• When Not to Use
– Many examples are available per class (feature learning with linear classifier may be better)
– Limited storage (cannot store many training examples)
– Limited computation (linear model may be faster to evaluate)

Things to remember (from last class)
• Supervised machine learning involves:

1. Fitting parameters to a model using training data
2. Refining the model based on validation

performance
3. Evaluating the final model on a held out test set

• KNN is a simple but effective
classifier/regressor that predicts the label of
the most similar training example(s)

• With more samples, fitting the training data
becomes harder, but test error is expected to
decrease

• Test errors have many sources
– intrinsic to problem
– model bias / limited power
– model variance / limited training data
– differences in training and test distributions

• Model design and fitting is just one part of a
larger process in collecting data, developing,
and deploying models

Today’s Lecture

• Introduce probabilistic models

• Review of probability

• Naïve Bayes Classifier
– Assumptions / model
– How to estimate from data
– How to predict given new features

• “Semi-naïve Bayes” object detector

Probabilistic model

𝑦𝑦∗ = argmax
𝑦𝑦

𝑃𝑃(𝑦𝑦|𝑥𝑥)

Joint and conditional probability

𝑃𝑃 𝑥𝑥,𝑦𝑦 = 𝑃𝑃 𝑥𝑥 𝑦𝑦 𝑃𝑃 𝑦𝑦 = 𝑃𝑃 𝑦𝑦 𝑥𝑥 𝑃𝑃(𝑥𝑥)

𝑃𝑃 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 = 𝑃𝑃 𝑎𝑎 𝑏𝑏, 𝑐𝑐 𝑃𝑃 𝑏𝑏 𝑐𝑐 𝑃𝑃(𝑐𝑐)

𝑃𝑃 𝑥𝑥 𝑦𝑦 =
𝑃𝑃 𝑥𝑥,𝑦𝑦
𝑃𝑃 𝑦𝑦

=
𝑃𝑃 𝑦𝑦 𝑥𝑥 𝑃𝑃 𝑥𝑥

𝑃𝑃 𝑦𝑦Bayes Rule:

Probabilistic model

𝑦𝑦∗ = argmax
𝑦𝑦

𝑃𝑃(𝑦𝑦|𝑥𝑥)

Or equivalently…

𝑦𝑦∗ = argmax
𝑦𝑦

𝑃𝑃 𝑥𝑥 𝑦𝑦 𝑃𝑃 𝑦𝑦

argmax
𝑦𝑦

𝑃𝑃 𝑦𝑦 𝑥𝑥 = argmax
𝑦𝑦

𝑃𝑃 𝑦𝑦 𝑥𝑥 𝑃𝑃 𝑥𝑥 = argmax
𝑦𝑦

𝑃𝑃 𝑦𝑦, 𝑥𝑥 = argmax
𝑦𝑦

𝑃𝑃 𝑥𝑥 𝑦𝑦 𝑃𝑃(𝑦𝑦)

Example

F T

Cat 15 25

Dog 5 40

Larger than 10 lbs?
𝑃𝑃 𝑦𝑦 = 𝐶𝐶𝐶𝐶𝐶𝐶 =

𝑃𝑃 𝑦𝑦 = 𝐶𝐶𝐶𝐶𝐶𝐶 𝑥𝑥 = 𝐹𝐹 =

𝑃𝑃(𝑥𝑥 = 𝐹𝐹|𝑦𝑦 = 𝐶𝐶𝐶𝐶𝐶𝐶) =

𝑦𝑦

𝑥𝑥:

�
𝑣𝑣∈𝑥𝑥

𝑃𝑃 𝑥𝑥 = 𝑣𝑣 = 1

�
𝑣𝑣∈𝑥𝑥

𝑃𝑃 𝑥𝑥 = 𝑣𝑣,𝑦𝑦 = 𝑃𝑃(𝑦𝑦)

Law of total probability

Marginalization

For continuous variables, replace sum over possible values with integral over domain

𝑃𝑃 𝐴𝐴,𝐵𝐵 = 𝑃𝑃 𝐴𝐴 𝑃𝑃 𝐵𝐵

𝑃𝑃 𝐴𝐴 𝐵𝐵 = 𝑃𝑃(𝐴𝐴), 𝑃𝑃 𝐵𝐵 𝐴𝐴 = 𝑃𝑃(𝐵𝐵)

A is independent of B if (and only if)

Notation
• xi is the ith feature variable

– i indicates the feature index

• xn is the nth feature vector
– n indicates the sample index
– yn is the nth label

• xni is the ith feature of the nth sample
• 𝛿𝛿(𝑥𝑥𝑛𝑛𝑛𝑛 = 𝑣𝑣) returns 1 if 𝑥𝑥𝑛𝑛𝑛𝑛 = 𝑣𝑣; 0 otherwise

– v indicates a feature value
– 𝛿𝛿 is an indicator function, mapping from true/false to 1/0

Estimate probabilities of discrete variables by counting

𝑃𝑃 𝑥𝑥 = 𝑣𝑣 =
1

|𝑁𝑁|
�
𝑛𝑛

𝛿𝛿 𝑥𝑥𝑛𝑛 = 𝑣𝑣

What if you have 100 variables? How can you count all
combinations?

Fully modeling dependencies between many variables (more
than 3 or 4) is challenging and requires a lot of data

Naïve Bayes Model
Assume features x1..xm are independent given the label y:

Then

𝑃𝑃 𝒙𝒙 𝑦𝑦 = �
𝑖𝑖

𝑃𝑃(𝑥𝑥𝑖𝑖|𝑦𝑦)

𝑦𝑦∗ = argmax
𝑦𝑦

�
𝑖𝑖

𝑃𝑃 𝑥𝑥𝑖𝑖 𝑦𝑦 𝑃𝑃(𝑦𝑦)

Examples
• Digit classification: choose

the label that maximizes
the product of likelihoods
of each pixel intensity

• Temperature prediction:
each feature predicts y
with some offset and
variance (y-xi is univariate
Gaussian)

Naïve Bayes Algorithm
• Training

1. Estimate parameters for P(xi|y) for each i
2. Estimate parameters for P(y)

• Prediction
1. Solve for y that maximizes P(x,y) 𝑦𝑦∗ = argmax

𝑦𝑦
�
𝑖𝑖

𝑃𝑃 𝑥𝑥𝑖𝑖 𝑦𝑦 𝑃𝑃(𝑦𝑦)

How to estimate P(xi|y) from data?
• Basic principles of fitting likelihood parameters from data

– MLE (maximum likelihood estimation): Choose the parameter that
maximizes the likelihood of the data

– MAP (maximum a priori): Choose the parameter that maximizes the
data likelihood and its own prior

• As Warren Buffet says, it’s not just about maximizing expected return – it’s
about making sure there are no zeros.

How to estimate P(xi|y) from data?
• Binomial (x is binary; y is discrete)

𝑃𝑃 𝑥𝑥𝑖𝑖 𝑦𝑦 = 𝑘𝑘 = 𝜃𝜃𝑘𝑘𝑘𝑘
𝑥𝑥𝑖𝑖(1 − 𝜃𝜃𝑘𝑘𝑖𝑖)1−𝑥𝑥𝑖𝑖

• Multinomial (x is has multiple discrete values, y is discrete)

theta_ki[k,i] = np.sum((X[:,i]==1) & (y==k)) / np.sum(y==k)

How to estimate P(xi|y) from data?
• xi is Gaussian (aka Normal), y is discrete

How to estimate P(xi|y) from data?
• (y-xi) is Gaussian

mu[i] = np.mean(y-X[:,i], axis=0)
std[i] = np.std(y-X[:,i], axis=0)

How to estimate P(xi|y) from data?
• xi and y are jointly Gaussian

– N(.) stands for normal distribution with given value, mean, and
covariance or variance

How to estimate P(xi|y) from data?
• xi is continuous (non-Gaussian), y is discrete

– First turn x into discrete (e.g. if values range [0, 1), assign
x=floor(x*10)

– Now can estimate as multinomial

How to estimate P(xi|y) from data?
• If x is text, e.g. “blue”, “orange”, “green”

– Map each possible text value into an integer and solve as multinomial

How to estimate P(y)?

Three options:
• Assume that y is “uniform” (every value is equally likely) and ignore
• If y is discrete, count
• If y is continuous, model as Gaussian or convert to discrete and count

Stretch break: Simple Naive Bayes example
• Suppose I want to classify a fruit based on description

– Features: weight, color, shape, whether it’s hard
– E.g.

• 0.5 lb, “red”, “round”, yes
• 15 lb, “green”, “oval”, yes
• 0.01 lb, “purple”, “round”, no

Q1: What are these three fruit?
Q2: How might you model P(xi|fruit) for each of these four features?

Simple Naive Bayes example
• Suppose I want to classify a fruit based on description

– Features: weight, color, shape, whether it’s hard
– E.g.

• 0.5 lb, “red”, “round”, yes
• 15 lb, “green”, “oval”, yes
• 0.01 lb, “purple”, “round”, no

– Model P(weight | fruit) as a Gaussian
– Model P(color | fruit) as a discrete distribution (multinomial
– Model P(shape | fruit) as a multinomial
– Model P(is_hard | fruit) as a Bernoulli (binary)

Apple
Watermelon

Grape

How to predict y from x?

If y is discrete:
1. Compute P(x,y) for each value of y
2. Choose value with maximum likelihood

Turning product into sum of logs is an important frequently
used trick for argmax/argmin!

How to predict y from x?

General formulation (set partial derivative wrt y
of log P(x,y) to 0)

Example: y-xi is Gaussian (HW1)

Prediction is weighted average of
means, where weights are inverse
variance

Using priors
• Priors on the likelihood parameters prevent a single feature

from having zero or extremely low likelihood due to insufficient
training data

• Discrete: initialize counts with 𝛼𝛼 (e.g. 𝛼𝛼 = 1)
P(xi=v|y=k) = (𝛼𝛼 + count(xi=v, y=k)) / sumv[𝛼𝛼 + count(xi=v, y=k)]

• Continuous: add some 𝜖𝜖 to the variance (e.g. 𝜖𝜖 = 0.1/𝑁𝑁)
– For multivariate, add to diagonal of covariance

theta_kiv[k,i,v] = (np.sum((X[:,i]==v) & (y==k))+alpha) / (np.sum(y==k)+alpha*num_v)

std[i] = np.std(y-X[:,i], axis=0)+np.sqrt(0.1/len(X))

Example

x1 x2 y

1 1 1 1

2 0 1 1

3 1 0 0

4 0 1 0

5 1 1 1

6 1 0 0

7 1 0 1

8 0 1 0

x1 𝑦𝑦 = 0 𝑦𝑦 = 1

0

1

𝑃𝑃(𝑥𝑥𝑥|𝑦𝑦)

x2 𝑦𝑦 = 0 𝑦𝑦 = 1

0
1

𝑃𝑃(𝑥𝑥𝑥|𝑦𝑦)

𝑃𝑃(𝑦𝑦)
𝑦𝑦 = 0 𝑦𝑦 = 1

𝑃𝑃(𝑦𝑦, 𝑥𝑥𝑥 = 1, 𝑥𝑥𝑥 = 1) = ?

Example

x1 x2 y

1 1 1 1

2 0 1 1

3 1 0 0

4 0 1 0

5 1 1 1

6 1 0 0

7 1 0 1

8 0 1 0

x1 𝑦𝑦 = 0 𝑦𝑦 = 1

0 2/4 1/4

1 2/4 3/4

𝑃𝑃(𝑥𝑥𝑥|𝑦𝑦)

x2 𝑦𝑦 = 0 𝑦𝑦 = 1

0 2/4 1/4
1 2/4 3/4

𝑃𝑃(𝑥𝑥𝑥|𝑦𝑦)

𝑃𝑃(𝑦𝑦)
𝑦𝑦 = 0 𝑦𝑦 = 1

2/4 2/4

𝑃𝑃(𝑦𝑦, 𝑥𝑥𝑥 = 1, 𝑥𝑥𝑥 = 1) = ?

Prior over parameters: initialize each count with 𝛼𝛼

x1 x2 y

1 1 1 1

2 0 1 1

3 1 0 0

4 0 1 0

5 1 1 1

6 1 0 0

7 1 0 1

8 0 1 0

x1 𝑦𝑦 = 0 𝑦𝑦 = 1

0 2/4 1/4

1 2/4 3/4

𝑃𝑃(𝑥𝑥𝑥|𝑦𝑦)

x2 𝑦𝑦 = 0 𝑦𝑦 = 1

0 2/4 1/4
1 2/4 3/4

𝑃𝑃(𝑥𝑥𝑥|𝑦𝑦)

𝑃𝑃(𝑦𝑦)
𝑦𝑦 = 0 𝑦𝑦 = 1

2/4 2/4

x1 𝑦𝑦 = 0 𝑦𝑦 = 1

0 3/6 2/6

1 3/6 4/6

𝛼𝛼 = 1

x2 𝑦𝑦 = 0 𝑦𝑦 = 1

0 3/6 2/6

1 3/6 4/6

𝑦𝑦 = 0 𝑦𝑦 = 1

2/4 2/4

Use case: “Semi-naïve Bayes” object detection

• Best performing
face/car detector in
2000-2005

• Model probabilities of
small groups of features
(wavelet coefficients)

• Search for groupings,
discretize features,
estimate parameters

https://www.cs.cmu.edu/afs/cs.cmu.edu/user/hws/www/CVPR00.pdf

https://www.cs.cmu.edu/afs/cs.cmu.edu/user/hws/www/CVPR00.pdf

Naïve Bayes Summary
• Key Assumptions

– Features are independent, given the labels
• Model Parameters

– Parameters of probability functions P(xi|y) and P(y)
• Designs

– Choice of probability function
• When to Use

– Limited training data
– Features are not highly interdependent
– Want something fast to code, train, and test

• When Not to Use
– Logistic or linear regression will usually work better if there is sufficient data

(more flexible / fewer assumptions than Naïve Bayes)
– Does not provide a good confidence estimate because it “overcounts” influence

of dependent variables

Naïve Bayes
• Pros

– Easy and fast to train
– Fast inference
– Can be used with continuous, discrete, or mixed features

• Cons
– Does not account for feature interactions
– Does not provide good confidence estimate

• Notes
– Best when used with discrete variables, variables that are well fit by

Gaussian, or kernel density estimation

Things to remember
• Probabilistic models are a large class of

machine learning methods

• Naïve Bayes assumes that features are
independent given the label
– Easy/fast to estimate parameters
– Less risk of overfitting when data is

limited

• You can look up how to estimate
parameters for most common probability
models
– Or take partial derivative of total

data/label likelihood given parameter

• Prediction involves finding y that
maximizes P(x,y), either by trying all y or
solving partial derivative

• Maximizing log P(x,y) is equivalent to
maximizing P(x,y) and often much easier

𝑃𝑃 𝒙𝒙,𝑦𝑦 = �
𝑖𝑖

𝑃𝑃 𝑥𝑥𝑖𝑖 𝑦𝑦 𝑃𝑃(𝑦𝑦)

Next class
• Logistic Regression and Linear Regression

	Probability and Naïve Bayes
	KNN Usage Example: Deep Face
	KNN Summary
	Things to remember (from last class)
	Today’s Lecture
	Probabilistic model
	Joint and conditional probability
	Probabilistic model
	Example
	Slide Number 10
	Slide Number 11
	Notation
	Estimate probabilities of discrete variables by counting
	What if you have 100 variables? How can you count all combinations?
	Naïve Bayes Model
	Examples
	Naïve Bayes Algorithm
	How to estimate P(xi|y) from data?
	How to estimate P(xi|y) from data?
	How to estimate P(xi|y) from data?
	How to estimate P(xi|y) from data?
	How to estimate P(xi|y) from data?
	How to estimate P(xi|y) from data?
	How to estimate P(xi|y) from data?
	How to estimate P(y)?
	Stretch break: Simple Naive Bayes example
	Simple Naive Bayes example
	How to predict y from x?
	How to predict y from x?
	Using priors
	Example
	Example
	Prior over parameters: initialize each count with 𝛼
	Use case: “Semi-naïve Bayes” object detection
	Naïve Bayes Summary
	Naïve Bayes
	Things to remember
	Next class

