Announcements

• Next Tuesday, May 2
 – Last class
 – Projects due 11:59PM
 • Paper w/ required sections
 • Code
 • Sample runs
 • Instructions on how to run
 – email .zip to dejong@cs.uiuc.edu
Announcements

• Final Exam
 – Emphasizes material since midterm
 – Length 1hr. 15min.
 – Wed. May 10;
 9:00AM – 10:15AM
 – 1320 DCL for NetIDs starting A - N
 – 151 Loomis for NetIDs starting O - Z
Dimensionality Reduction

• “Curse of Dimensionality”
• Transform the data
 – from a high-dimensional space
 – to a space of lower dimension
 – keeping as much useful information as possible
• “Feature Extraction”
• (Lossy) Compression
Principal Component Analysis

- Start with a data set of examples w/ numeric features
- Linear transform of the data
- Replace original features
 - linear combinations of original features
 - new features are orthogonal (uncorrelated)
 - ordered by “importance”
 (importance = account for variance/information in data)
- Ignores any class information
- Spreads out the data in a more natural way
- Best if
 - Observed data = signal (i.e., pattern) + noise
 - noise is independent and Gaussian
PCA

• Spectral decomposition of the covariance matrix
• Oooooh!!
• Quick background on covariance
Recall from earlier

- Assume our data set is an iid random sample
- Mean of a random variable x
 - $\text{mean}(x) = E[x]$ (the expectation)
 - estimate from a data sample by averaging
 - expected value need not be very likely (e.g., coin flips)
- Generalizes immediately to multivariate x
 - $x = <x_1, x_2, x_3, \ldots, x_n>$
 - $\text{mean}(x)$ is also a vector:
 $E[x] = <E[x_1], E[x_2], E[x_3], \ldots, E[x_n]>$
 - can translate distribution to the origin by subtracting the mean from each datum
Recall from earlier

• Variance characterizes the dispersion about the mean
 – \(\text{var}(x) = \sigma^2(x) = \mathbb{E}[(x - \text{mean}(x))^2] \)
 – squared avoids cancelling + / -
 – \(\sigma^2(x) \) is non-negative

• Multivariate generalization is the covariance matrix
 – \(\text{var}(\mathbf{x}) \) is a matrix
 – \(n \times n \) where \(\mathbf{x} \) has \(n \) components
 – \(\text{var}(\mathbf{x})_{i,j} = \text{covar}(x_i, x_j) = \mathbb{E}[(x_i - \mathbb{E}[x_i]) \cdot (x_j - \mathbb{E}[x_j])] \)
 – \(\text{var}(\mathbf{x}) = \boldsymbol{\Sigma}(\mathbf{x}) = \mathbb{E}[(\mathbf{x} - \mathbb{E}[\mathbf{x}]) (\mathbf{x} - \mathbb{E}[\mathbf{x}])^T] \)
 – \(\boldsymbol{\Sigma}(\mathbf{x}) \) is symmetric
 – components can be negative
 but \(\boldsymbol{\Sigma}(\mathbf{x}) \) is positive semi-definite
 – Diagonal components are variances
 – Off diagonal: product of \(i, j \) standard deviations times the \(i, j \) correlation coefficient
PCA

- Subtract the mean from the data set
- Find the linear combination of features that accounts for most of the variance
- This is the first principal component
- Project the data onto its subspace
- The projected data have zero variance in this dimension
- Repeat
- For n original features we get n principal components
- If the features are not linearly independent
 - we will run out of variance to account for
 - the covariance matrix is singular
 (non-invertible, has a null space, zero determinant,...)
 - the last principal components will be degenerate
PCA

- PC1: first principal component, accounting for the most variance
- PC2: second principal component
- Note significant covariance among the original features
- But not in the transformed space; variances are axis-aligned & uncorrelated
PCA

• Each principal component is a “new” feature
 – Each is a linear combination of old features
 – They are mutually orthogonal
 – uncorrelated, zero covariance
 – the new covariance matrix is diagonal
• With all (non-degenerate) principal components
 – linear transformation of the data
 – preserves all of the information
• Keep only the first k principal components
 – loses information
 – but keeps most of the variance
• Lossy data compression
PCA

• The principal components are the eigenvectors of the covariance matrix
• The magnitude of their corresponding eigenvalue specifies the amount of variance accounted for
• Eigen decomposition (aka spectral decomposition)
PCA Procedure

• Find eigenvalues & eigenvectors (e.g., SVD)
• Sort eigenvectors on magnitude of their eigenvalues
• Drop eigenvectors of small eigenvalues
• Assemble remaining (unit) eigenvectors into a transformation matrix
• Centralize the original data (subtract mean)
• Transform into the new lower dim. space (matrix multiply)
• Learn a classifier using the transformed data
Many Others...

Random Projection

• PCA projects examples onto principal components
• High dimensional space (BOW for NLP or vision)
• Instead of PCA
 – choose random unit vectors
 – assemble into a transformation matrix
 – significant dimensionality reduction if $|\text{RP}| \ll n$
• Can work quite well (!)
 – not quite as well...
 – improves w/ number of random vectors
 – much cheaper than PCA, SVD
• As number of random vectors increases
 – interpoint distances between examples are preserved
 – with high probability
Games & Game Theory

• Tic-Tac-Toe,
 Qubic, Othello, Checkers, Chess
• Monopoly
 Backgammon
• Chutes & Ladders
 Card Game War
 Casino Craps?
• Seven Minutes in Heaven
• Which of these games would you want to play with a computer?
What is a game?

• Ludwig Wittgenstein, philosopher
 – “Whereof we cannot speak, therefore we must be silent”
 – “Game” cannot be defined except by family resemblance

• Roger Caillois, sociologist
 – fun
 – separate in time and place
 – unforeseeable outcome
 – accomplish nothing useful
 – governed by rules
 – fictitious

• Many others...
Game Theory

Decision-making According to Rules in a Multi-agent Setting

• Economics, Psychology, Computer Science...
• Multi-agent
 – Do we need to consider other agents?
 – Standard Reinforcement Learning?
 – Agent models (cooperative, competitive)
 • Intelligent, rational
 • bounded rationality
• Decision-making
• Mechanism design
Important Distinctions

• Games
 – Zero-sum / Non-Zero-sum
 – Simultaneous / Turn-taking / Continuous
 – Perfect information / Imperfect information / Stochastic
 – Extensive and Normal Forms
Extensive Form

• Best for Sequential or Turn-Taking games
• Generalization of a decision tree
• Game state changes with each action
• Ply: a single action
• Move: two plys
• Evaluator (SBE) computes a Utility for the state
 – For zero-sum, can use the same evaluator
 – High=good for player A; Low=good for player B
• Mini-Max procedure greatly improves over direct Evaluator application
• Alternate levels want to maximize & minimize utility
4-Ply Mini-Max Game Tree
with α-β Pruning; two possible actions: L & R

Evaluator is applied only at the lowest level; These values are propagated up using the mini-max procedure; Note that some nodes become dominated and need not be evaluated.

From Wikipedia Minimax
Game Tree Issues

• Horizon effect
 – Good line of play
 – Deferring a loss
• Search until quiescence
 – Unanswered threats
 – Continue the search for additional plies
• Secondary search
 – After an action is chosen
 – Explore the chosen line of play more deeply
• Table of openings and end games
• Training Evaluation function parameters
 – Self play
 – Games w/ expert
 – Expert-Expert games
Chess playing systems

- 200 million node evaluations per move (3 min)
 - minimax with a decent evaluation function and quiescence search
 - ~ 5 ply; human novice
- Alpha-beta pruning
 - ~ 10 ply; experienced player
- Deep Blue:
 - 30 billion evaluations per move
 - Evaluation function with 8000 features
 - Extensive opening and endgame tables
 - ~ 14 ply; grand master
- Hydra
 - 36 billion evaluations per second
 - ~ 18 ply; unbeatable by humans? reduces chess to tic-tac-toe?