Hypothesis Space for MLPs
Hypothesis Space for MLPs

Notice several properties:

1) There are many alternative ways to adjust to a misclassified training example (motivates minibatch training)
2) Any adjustment to a misclassified examples has non-local effects
3) Most regions do not use most hyperplanes
 • Representational efficiency
 • Redundant computations in a naïve parallelization
4) Hyperplanes induce many specious regions
 • Many regions may be formed that include no training examples
 • But the classifier will have an opinion
 • OK if these examples are unlikely but can yield bizarre behavior

These are unfortunate properties
Activation Functions

- **Sigmoid** (now “bias” rather than “threshold”)
- **Hyperbolic tangent**
- **Rectified linear unit (ReLU)**
- **ArcTangent**
- **Leaky ReLU**
- **many others** (some with additional shape parameters)

These change the ANN response within a region (esp. near boundaries)
Two Wrinkles

• This is a greedy / hill-climbing / gradient descent algorithm
 – So...
 – Is Expected Utility/Loss convex in \(w \)?
 For: \(\hat{L}_Z = F(Z, w) \)
 – No, far from it...

• ANN = structure + weights
 – We can adjust the weights
 – How do we choose a structure? (Wrinkle #1)
 – Structure makes a difference and it is combinatorial...

• Some heuristic approaches
 – Based on non-systematic search (remember simulated annealing)
 – Random restarts
 – Weight resets
 – Incremental structure changes
 – Ablations / Additions
With enough units, an ANN (MLP) can learn any assignment of training labels (Wrinkle #2)

Is this a good thing?

No, perfect in training \Rightarrow poor in test

Synonymous parametric optimizers | training
Overfitting! (seems less in ConvNets [but share other issues])
Overfitting in Neural Nets

• With enough hidden units
 – Can achieve perfect training accuracy
 – Will overfit
 – Will perform poorly on new inputs

• Reduce the expressiveness
 – Specify a known-impoverished neural net structure...
 – Limit the dynamic range of weights (limit their absolute value)
 – Delete certain units and retrain
 – ...

• “Regularization” (important term)
 – Often a policy or procedure (extra loss) included in the classifier
 – Reduces expressiveness but can be sensitive to the training
 – To avoid overfitting and improving test behavior
 – Stabilizes learning by increasing bias and reducing variance
 – Serves as a kind of prior distribution over H
 (eg, Prefer simplicity, Prefer parameters w/ a small dynamic range)
Back to Perceptrons

• Linearity initially killed interest in perceptrons
 – Features contribute independently
 – Features contribute monotonically

• Non-learnable problematic phenomena:
 – non monotonicity
 • # wheels to recognize a car peak at 4 wheels
 • # engines...
 – context dependent sign of partial derivative
 • XOR when x0 = 1, x1: 0→1 turns output off to on
 • but when x0=0, x1: 0→1 turns output on to off

• Rescued by ANNs as multi-layer perceptrons

• More recent renaissance of the humble perceptron
 (and other linear classifiers)
Perceptron Renaissance

• Classify the species of gilled mushroom (Agaricus vs. Leptota Family)
 – 100 Boolean features for each instance
 – How well can a perceptron do?
 – Quite poorly; there is no simple rule; the problem is not linear

• Classify news articles by topic (Sports vs. Politics)
 – How well can a perceptron do?
 – Quite well; why? how?? This should be harder than gilled mushrooms
Features
AI’s dirty little secret

• Today’s AI successes rely on machine learning
• Machine learning is largely statistical
• So... think statistically (not functionally, not logically)
• Mushrooms vs. News Stories, what’s the difference?
• Features!
 – Feature engineering (for car |wheels – 4| is a great feature)
 – Feature selection / creation
 – Dimensionality reduction
 – Finding a good set of features is
 • crucial to success
 • a black art; not science...
• Features should encode evidence for classification
• Redundancy is usually very desirable
• Mushrooms: 100 Booleans; News Articles: ~20,000 Booleans
Deep Dive into NLP Features
Simple Natural Language Processing
How to represent a news article to a classifier

• Nuanced deep natural language understanding may be in the future...not for today’s AI
• Simple unstructured text analysis
 – Spam vs. Useful email
 – Transcriptions of Fox vs. CNN news stories
 – Obama’s speeches vs. Trump’s speeches
 – rec.sport.baseball vs. talk.politics.guncontrol
 – Tweet analysis
 – Detect false (alternative?) Amazon / Yelp recommendation
• *Bag of words* model works surprisingly well
• Best with lots of training data
• What’s a *bag*? What’s a *set*?
• Simple membership vs. cardinality
Bag of Words

• Text article is a *sequence* of words and punctuation
• 10,000 – 50,000 common words in English
• Represent a document as a bag of words; lose syntax (!)
• News article is a vertex in 10K Boolean hypercube
• Finite number of news articles?
• $2^{10,000}$ vertices (about 2^{266} atoms in universe)
Bag of Words

• Consider two utterances:
 – John likes to watch movies. Mary likes movies too.
 – John also likes to watch football games.

• For these “documents” the universe of (all 10) words:
 – { "John", "likes", "to", "watch", "movies", "also", "football", "games", "Mary", "too" }

• Each utterance / document can be represented as a 10-entry vector:
 – [1, 2, 1, 1, 2, 0, 0, 0, 1, 1]
 – [1, 1, 1, 1, 0, 1, 1, 1, 0, 0]
Two Obvious Problems

• Problem 1: these utterances do not mean the same thing
 – Dogs chase cats.
 – Cats chase dogs.
• But they have the same representation
• Solution: NONE – don’t use BOW,
 BOW is very simple and doesn’t work for everything!
 Rely on the redundancy of BIG statistics
• Problem 2: with 50,000 possible words the representation really looks like
 – [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...]
 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, ...
• Solution: Sparse vector representation:
 – {“John” 1, “likes” 2, “to” 2...}
Refinements
What’s wrong with a Bag?

• A count of the words is not so meaningful
 – document length is too prominent
 – longer documents have higher counts
 – compare
 • the representation of a long document
 • the first half of the same long document

• Similar documents can look very different

• Unfortunate for statistical modeling
Normalized Term Frequency
(sometimes just TF)

- Normalize the simple count
 - instead of raw counts
 - measure proportion / probability / rate that term t is used in a document d

\[TF(t,d) = \frac{\text{raw count of } t \text{ in } d}{\text{length of } d} \]

- Many variants
 - should numerator grow linearly with count?
 - is document length the best normalization?
Normalized Term Frequency

• As features
 – document d has features \{t_i\} (ie, words name features)
 – each feature \(t_i\) has feature value \(\text{TF}(t_i,d)\)

• Information Retrieval (IR)
 – query determines features of interest
 – a document’s relevance is judged by combining feature values (eg, \(\text{argmax} \ \text{dot product of query & documents}\))

• Classification of a new document
 – there is some probability it came from each class
 – each document is a draw from its topic’s underlying distribution
 – use training documents to estimate these class distributions
 – assign new document to the class that makes its draw most likely
TF as Classification Features

- TF is, in a sense, universal or document-blind
- $\text{TF}(t,d) = \frac{\text{raw count of } t \text{ in } d}{\text{length of } d}$
 Approximates $\text{Pr}(t \mid d)$
- Features apply to any document set the same way
- Value is independent of discriminating power on this set of document classes
- Appreciate that (with similar TF) some terms may be more discriminative for these documents than others
- Introduce IDF, Inverse Document Frequency
Inverse Document Frequency

• With little effort the discriminating power of TF features can be improved
• For term t (“terms” could be just “words” – more later)
 \[\text{IDF}(t) = \log\left(\frac{\# \text{ of documents}}{\# \text{ of documents w/ t}}\right)\]
• Again variants are possible
• Use words as features (as before)
• But the feature value for term t in document d becomes \(\text{TF}(t, d) \cdot \text{IDF}(t)\)
• Known as TF-IDF
• Thus TF is then specialized to this document set
Further Improvements

• Often punctuation is dropped
• Convert everything to all lower case
• Stop words
 – How about the words “the” or “sesquipedality”
 – Some words are too common to be discriminative
 – Others are too unlikely to be seen
 – Stop words: a list of words to be removed from the feature set
• Stemming
 – combine variants of a word
 – earthquake and earthquakes
 – eat and eating
• N-grams: keep statistics on term sequences
 – use pairs of terms (2-gram), triples (3-gram), etc.
 – requires many more training inputs (why?)
Further Improvements

• Synonym sets
 – augment (replace?) words with designated synonyms (e.g., WordNet synsets; “big” “large” “huge”...)

• Named entity resolution (like lexical analysis)
 – replace “the Statue of Liberty” with a single token

• Guess at the word sense using a window around the target word:
 table1: furniture; table2: mathematical illustration;
 table3: half of a backgammon board;...

• Include the part of speech POS; shallow syntactic parsing
 – “saw” noun vs. “saw” verb
Perceptron Renaissance

• Even the lowly perceptron can perform quite well
• Given a good set of features
 – class probabilities monotonic in feature values
 – many not-completely-redundant information-bearing features
• Given adequate training examples
 – for NLP often hundreds of thousands / millions of utterances
 – there are a number of corpora
 – luckily we have the web...
Back to ANNs

• Where are the features?
• After the input, each layer “invents” features to present to the next layer
• No feature engineering!
• Never worked very well
• Until ConvNets
• Use convolution instead of perceptron units
Convolution: Sobel Edge Detector

\[
\begin{array}{ccc}
-1 & 0 & +1 \\
-2 & 0 & +2 \\
-1 & 0 & +1 \\
\end{array}
\quad
\begin{array}{ccc}
+1 & +2 & +1 \\
0 & 0 & 0 \\
-1 & -2 & -1 \\
\end{array}
\]

G_x
G_y