
CS440/ECE 448 Lecture 4:
Search Intro

Slides by Svetlana Lazebnik, 9/2016
Modified by Mark Hasegawa-Johnson, 1/2019

Types of agents
Reflex agent

• Consider how the world IS
• Choose action based on

current percept
• Do not consider the future

consequences of actions

Goal-directed agent

• Consider how the world WOULD BE
• Decisions based on (hypothesized)

consequences of actions
• Must have a model of how the world

evolves in response to actions
• Must formulate a goal

Source: D. Klein, P. Abbeel

Outline of today’s lecture

1. How to define search problems:
1. Initial state, goal state, transition model

2. Actions, path cost

2. General algorithm for solving search problems
1. First data structure: a frontier list

2. Second data structure: a search tree

3. Third data structure: a “visited states” list

3. Depth-first search: very fast, but not guaranteed

4. Breadth-first search: guaranteed optimal

5. Uniform cost search = Dijkstra’s algorithm = BFS with variable costs

Search

We will consider the problem of designing goal-based agents in
fully observable, deterministic, discrete, static, known
environments

Start state

Goal state

Search

We will consider the problem of designing goal-based agents in
fully observable, deterministic, discrete, static, known
environments
• The agent must find a sequence of actions that reaches the goal
• The performance measure is defined by (a) reaching the goal

and (b) how “expensive” the path to the goal is
• The agent doesn’t know the performance measure.

This is a goal-directed agent, not a utility-directed agent
• The programmer (you) DOES know the performance measure.

So you design a goal-seeking strategy that minimizes cost.
• We are focused on the process of finding the solution;

we assume that the agent can safely ignore its percepts while executing
the solution (static environment, open-loop system)

Search problem components
• Initial state
• Actions
• Transition model

• What state results from
performing a given action
in a given state?

• Goal state
• Path cost

• Assume that this is a sum of
nonnegative step costs

• The optimal solution is the sequence of actions
that gives the lowest path cost for reaching the goal

Initial
state

Goal
state

Knowledge Representation: State

• State = description of the world
• Must have enough detail to decide whether or not

you’re currently in the initial state
• Must have enough detail to decide whether or not

you’ve reached the goal state
• Often but not always: “defining the state” and

“defining the transition model” are the same thing

Example: Romania
• On vacation in Romania; currently in Arad
• Flight leaves tomorrow from Bucharest

• Initial state
• Arad

• Actions
• Go from one city to another

• Transition model
• If you go from city A to

city B, you end up in city B

• Goal state
• Bucharest

• Path cost
• Sum of edge costs

(total distance traveled)

State space
• The initial state, actions, and transition

model define the state space of the
problem
• The set of all states reachable from the

initial state by any sequence of actions
• Can be represented as a directed graph

where the nodes are states and links
between nodes are actions

• What is the state space
for the Romania problem?
• State Space = O{# cities}

Traveling Salesman Problem
• Goal:

Visit every city in US
• Path cost:

Total miles traveled
• Initial state:

Champaign, IL
• Actions:

Travel from one city to another
• Transition model:

When you visit a city, mark it as “visited.”
• State Space = O(2#cities)

Example: Vacuum world

• States
• Agent location and dirt location
• How many possible states?
• What if there are n possible locations?

• The size of the state space grows exponentially with the “size”
of the world!

• Actions
• Left, right, suck

• Transition model

Vacuum world state space graph

Complexity of the State Space
• Many “video game” style problems can be subdivided:
• If there are M different things your character needs to pick up:
2" different world states (one for each subset of things that you’ve picked up)
• If there are N different locations you can be in while carrying

any subset of those M objects:
Total number of world states = #(2"%)

• Why a maze is nice: you don’t need to pick anything up
• Only N different world states to consider

Example: The 8-puzzle
• States

• Locations of tiles
• 8-puzzle: 181,440 states (9!/2)
• 15-puzzle: ~10 trillion states
• 24-puzzle: ~1025 states

• Actions
•Move blank left, right, up, down

• Path cost
• 1 per move

• Finding the optimal solution of n-Puzzle is NP-hard

http://www.aaai.org/Papers/AAAI/1986/AAAI86-027.pdf

Example: Robot motion planning

• States
• Real-valued joint parameters (angles, displacements)

• Actions
• Continuous motions of robot joints

• Goal state
• Configuration in which object is grasped

• Path cost
• Time to execute, smoothness of path, etc.

Outline of today’s lecture

1. How to define search problems:
1. Initial state, goal state, transition model

2. Actions, path cost

2. General algorithm for solving search problems
1. First data structure: a frontier list

2. Second data structure: a search tree

3. Third data structure: a “visited states” list

3. Depth-first search: very fast, but not guaranteed

4. Breadth-first search: guaranteed optimal

5. Uniform cost search = Dijkstra’s algorithm = BFS with variable costs

First data structure: a frontier list
• Let’s begin at the start state and expand it

by making a list of all possible (immediate) successor states
• Maintain a frontier, i.e. a list of unexpanded states
• At each step, pick a state from the frontier to expand:

• Check to see if it’s a goal state
• If not, find the other states that can be reached from this state,

and add them to the frontier, if they’re not already there
• Keep going until you reach a goal state

Second data structure: a search tree
• “What if” tree of sequences of actions

and outcomes

• The root node corresponds to the
starting state

• The children of a node correspond to
the successor states of that node’s state

• A path through the tree corresponds to
a sequence of actions

• A solution is a path ending in the goal state

… … …
…

Starting
state

Successor
state

Action

Goal state

Knowledge Representation: States and Nodes

• State = description of the world
• Must have enough detail to decide whether or not

you’re currently in the initial state
• Must have enough detail to decide whether or not

you’ve reached the goal state
• Often but not always: “defining the state” and

“defining the transition model” are the same thing
• Node = a point in the search tree
• Private data: ID of the state reached by this node
• Private data: the ID of the parent node
• NB: each state may occur multiple times in the same search tree

Tree Search Algorithm Outline
• Initialize the frontier using the starting state
• While the frontier is not empty

• Choose a frontier node according to search strategy
and take it off the frontier

• If the node contains the goal state, return solution
• Else expand the node and add its children to the frontier

• Search strategy determines
• Is this process guaranteed to return an OPTIMAL solution?
• Is this process guaranteed to return ANY solution?
• Time complexity: How much time does it take?
• Space complexity: How much RAM is consumed by the frontier?

• For now: assume that search strategy = random

Tree search example

Start: Arad
Goal: Bucharest

Start: Arad
Goal: Bucharest

Tree search example

Tree search example

Start: Arad
Goal: Bucharest

Tree search example

Start: Arad
Goal: Bucharest

Tree search example

Start: Arad
Goal: Bucharest

Tree search example

Start: Arad
Goal: Bucharest

e

Handling repeated states
• Initialize the frontier using the starting state
• While the frontier is not empty
• Choose a frontier node according to search strategy

and take it off the frontier
• If the node contains the goal state, return solution
• Else expand the node and add its children to the frontier

• To handle repeated states:
• Every time you expand a node, add that state to the

explored set
• When adding nodes to the frontier, CHECK FIRST to see

if they’ve already been explored

Time Complexity
• Without explored set :
• !{1}/node
• !{%&} = # nodes expanded
• b = branching factor (number of children each node might have)
• m = length of the longest possible path

• With explored set :
• !{1}/node using a hash table to see if node is already in explored set
• !{ ' } = # nodes expanded

• Usually, ! ' < !{%&}. I’ll continue to talk about !{%&}, but
remember that it’s upper-bounded by ! ' .

Tree search w/o repeats

Start: Arad
Goal: Bucharest

Start: Arad
Goal: Bucharest

Tree search w/o repeats
Explored:
Arad

Tree search example

Start: Arad
Goal: Bucharest

Explored:
Arad
Sibiu

Tree search example

Start: Arad
Goal: Bucharest

Explored:
Arad
Sibiu
Rimnicu Vilcea

Tree search example

Start: Arad
Goal: Bucharest

e

Explored:
Arad
Sibiu
Rimnicu Vilces
Fagaras

Tree search example

Start: Arad
Goal: Bucharest

e

Explored:
Arad
Sibiu
Rinnicu Vilces
Fagaras
Pitesti

Outline of today’s lecture

1. How to define search problems:
1. Initial state, goal state, transition model

2. Actions, path cost

2. General algorithm for solving search problems
1. First data structure: a frontier list

2. Second data structure: a search tree

3. Third data structure: a “visited states” list

3. Depth-first search: very fast, but not guaranteed

4. Breadth-first search: guaranteed optimal

5. Uniform cost search = Dijkstra’s algorithm = BFS with variable costs

Depth-First Search

• Basic idea:
• Try to find a solution as fast as possible

• How:
• From the frontier, always choose a node which is

AS FAR FROM THE STARTING POINT AS POSSIBLE
• How:
• Frontier is a LIFO (last-in, first-out) stack.
• The node you expand = whichever node has been most

recently placed on the queue.

Depth-first search

• Expand deepest unexpanded node
• Implementation: frontier is LIFO (a stack)

Example state space
graph for a tiny search

problem

Depth-first search
Expansion order:
(s,d,b,a,

c,a,
e,h,p,q,

q,
r,f,c,a,

G)

http://xkcd.com/761/

http://xkcd.com/761/

Analysis of search strategies
• Strategies are evaluated along the following criteria:
• Completeness: does it always find a solution if one exists?
• Optimality: does it always find a least-cost solution?
• Time complexity: number of nodes generated
• Space complexity: maximum number of nodes in memory

• Time and space complexity are measured in terms of
• !: maximum branching factor of the search tree
• ": depth of the optimal solution
• m: maximum length of any path in the state space

(may be infinite)
• |$| : number of distinct states

Properties of depth-first search
• Complete? (always finds a solution if one exists?)

Fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path

à complete in finite spaces

• Optimal? (always finds an optimal solution?)
No – returns the first solution it finds

• Time? (how long does it take, in terms of b, d, m?)
Could be the time to reach a solution at maximum depth m: !(#$)
Terrible if m is much larger than d
But VERY FAST if there are LOTS of solutions

• Space? (how much storage space, in terms of b, d, m?)
O(bm), i.e., linear space!

Outline of today’s lecture

1. How to define a search problem:
1. Initial state, goal state, transition model

2. Actions, path cost

2. General algorithm for solving search problems
1. First data structure: a frontier list

2. Second data structure: a search tree

3. Third data structure: a “visited states” list

3. Depth-first search: very fast, but not guaranteed

4. Breadth-first search: guaranteed optimal

5. Uniform cost search = Dijkstra’s algorithm = BFS with variable costs

Breadth-first search
• Initialize the frontier using the starting state
• While the frontier is not empty
• Search strategy: choose one of the nodes

which is CLOSEST to the starting state
• If the node contains the goal state, return solution
• Else expand the node and add its children

to the frontier

Breadth-first search
• Expand shallowest unexpanded node
• Implementation: frontier is FIFO (first-in, first out)

(a queue)

Example from P. Abbeel and D. Klein

Breadth-first search
Expansion order:
(s,
d,e,p,
b,c,e,h,r,q,
a,a,h,r,p,q,f,
p,q,f,q,c,G)

Properties of breadth-first search
• Complete?

Yes (if branching factor b is finite).
Even w/o repeated-state checking, it still works!!!

• Optimal?
Yes – if cost = 1 per step (uniform cost search will fix this)

• Time?
Number of nodes in a b-ary tree of depth d: !(#$)
(d is the depth of the optimal solution)

• Space?
!(#$). --- much larger than DFS!

Outline of today’s lecture

1. How to define a search problem:
1. Initial state, goal state, transition model

2. Actions, path cost

2. General algorithm for solving search problems
1. First data structure: a frontier list

2. Second data structure: a search tree

3. Third data structure: a “visited states” list

3. Depth-first search: very fast, but not guaranteed

4. Breadth-first search: guaranteed optimal

5. Uniform cost search = Dijkstra’s algorithm = BFS with variable costs

Uniform-cost search = Dijkstra’s algorithm
• For each frontier node, save the total cost of the path

from the initial state to that node
• Expand the frontier node with the lowest path cost
• Implementation:
frontier is a priority queue ordered by path cost
• Equivalent to breadth-first if step costs all equal
• Equivalent to Dijkstra’s algorithm, if Dijkstra’s algorithm

is modified so that a node’s value is computed only
when it becomes nonzero

Uniform-cost search example

Uniform-cost search example
Expansion order:
(s,p(1),

d(3),b(4),
e(5),r(7),f(8)

e(9),
G(10))

Properties of uniform-cost search
• Complete?

Yes (if branching factor b is finite).
Even w/o repeated-state checking, it still works!!!

• Optimal?
Yes

• Time?
Number of nodes in a b-ary tree of depth d: !{#$}
Priority queue is !{log($}/node

• Space?
!{#$} --- much larger than DFS! This might be a reason to

use DFS.

Search strategies so far
Algorithm Complete? Optimal? Time

complexity
Space

complexity
Implement the
Frontier as a…

BFS Yes If all step costs are
equal !{#$} !{#$} Queue

DFS No No !{#&} !{#'} Stack

UCS Yes Yes !{#$ log+ ,} !{#$} Priority Queue

Next time
• know how far it is, from the start point, to each node on the frontier.
• What if we also have an ESTIMATE of the distance from each node to the

GOAL?

