CS440/ECE 448 Lecture 4:
Slides by Svetlana Lazebnik, 9/2016 SearCh ‘ntrO

Modified by Mark Hasegawa-Johnson, 1/2019

Types of agents

Reflex agent Goal-directed agent

° Consider hOW the World IS e Consider how the world WOULD BE

: Decisions based on (hypothesized)
* Choose action based on consequences of actions

current percept * Must have a model of how the world
« Do not consider the future evolves in response to actions

consequences of actions * Must formulate a goal

Source: D. Klein, P. Abbeel

Outline of today’s lecture

1.

3.
4.
5.

How to define search problems:
1. |Initial state, goal state, transition model
2. Actions, path cost

General algorithm for solving search problems

1. First data structure: a frontier list
2. Second data structure: a search tree
3. Third data structure: a “visited states” list

Depth-first search: very fast, but not guaranteed
Breadth-first search: guaranteed optimal
Uniform cost search = Dijkstra’s algorithm = BFS with variable costs

Search

We will consider the problem of designing goal-based agents in
fully observable, deterministic, discrete, static, known
environments

Start state

4

€= Goal state

Search

We will consider the problem of designing goal-based agents in
fully observable, deterministic, discrete, static, known
environments

* The agent must find a sequence of actions that reaches the goal

* The performance measure is defined by (a) reaching the goal
and (b) how “expensive” the path to the goal is

* The agent doesn’t know the performance measure.
This is a goal-directed agent, not a utility-directed agent

* The programmer (you) DOES know the performance measure.
So you design a goal-seeking strategy that minimizes cost.

* We are focused on the process of finding the solution;
we assume that the agent can safely ignore its percepts while executing
the solution (static environment, open-loop system)

Search problem components

e |nitial state Initial
. state
* Actions ‘

* Transition model

* What state results from
performing a given action
in a given state?

* Goal state
 Path cost
e Assume that this is a sum of Goal
nonnegative step costs @ e

* The optimal solution is the sequence of actions
that gives the lowest path cost for reaching the goal

Knowledge Representation: State

e State = description of the world

* Must have enough detail to decide whether or not
you’re currently in the initial state

* Must have enough detail to decide whether or not
you’ve reached the goal state

* Often but not always: “defining the state” and
“defining the transition model” are the same thing

Example: Romania

* On vacation in Romania; currently in Arad
Flight leaves tomorrow from Bucharest

Initial state
 Arad

"] Oradea

Actions 75
* Go from one city to another Aradf}

Transition model

* If you go from city A to
city B, you end up in city B

113

Jimisoara

* Goal state
* Bucharest Mirsova
e Path cost ¥ etacis
7 RIS
* Sum of edge costs Dobreta (4
(total distance traveled) = A 9% L

State space

e The initial state, actions, and transition
model define the state space of the
problem

* The set of all states reachable from the
initial state by any sequence of actions

* Can be represented as a directed graph
where the nodes are states and links
between nodes are actions

* What is the state space
for the Romania problem?

» State Space = O{# cities}

HCraiova

Traveling Salesman Problem

e Goal:
Visit every city in US

 Path cost: f ﬂ

Total miles traveled T
* Initial state: \ o
Champaign, IL =

* Actions:
Travel from one city to another

* Transition model:
When you visit a city, mark it as “visited.”

* State Space = O(2#cities)

Example: Vacuum world

A ;B

o o
o OQ o

e States
e Agent location and dirt location
* How many possible states?

 What if there are n possible locations?

* The size of the state space grows exponentially with the “size”
of the world!

e Actions
 Left, right, suck

* Transition model

Vacuum world state space graph

(=1 1= 57
& | e
S S

R

=]
=
S

S

| A ' R L
ogR

R

T~

i
ZR
s

<L

S

L

Complexity of the State Space

* Many “video game” style problems can be subdivided:

* If there are M different things your character needs to pick up:
2M different world states (one for each subset of things that you’ve picked up)

* If there are N different locations you can be in while carrying

any subset of those M objects:
Total number of world states = 0 (2" N)

 Why a maze is nice: you don’t need to pick anything up
* Only N different world states to consider

Example: The 8-puzzle

e States

7 1| 2
e Locations of tiles
+ 8-puzzle: 181,440 states (91/2) >
* 15-puzzle: ~10 trillion states 8 3
e 24-puzzle: ~10%° states
Start State
* Actions ;
* Move blank left, right, up, down
3 || 4
e Path cost =

* 1 per move

Goal State

* Finding the optimal solution of n-Puzzle is NP-hard

http://www.aaai.org/Papers/AAAI/1986/AAAI86-027.pdf

Example: Robot motion planning

- . - R/‘\“R

i Saxl .

* States
e Real-valued joint parameters (angles, displacements)

* Actions
* Continuous motions of robot joints

* Goal state
e Configuration in which object is grasped

* Path cost
* Time to execute, smoothness of path, etc.

Outline of today’s lecture

3.
4.
5.

General algorithm for solving search problems
1. First data structure: a frontier list

2. Second data structure: a search tree

3. Third data structure: a “visited states” list

Depth-first search: very fast, but not guaranteed
Breadth-first search: guaranteed optimal
Uniform cost search = Dijkstra’s algorithm = BFS with variable costs

First data structure: a frontier list

* Let’s begin at the start state and expand it
by making a list of all possible (immediate) successor states

* Maintain a frontier, i.e. a list of unexpanded states

* At each step, pick a state from the frontier to expand:

* Check to see if it’s a goal state

* If not, find the other states that can be reached from this state,
and add them to the frontier, if they’re not already there

* Keep going until you reach a goal state

Second data structure: a search tree

* “What if” tree of sequences of actions St;;tt'gg

and outcomes

Action /—
* The root node corresponds to the S
uccessor

starting state state () @
* The children of a node correspond to ..

the successor states of that node’s state () ()

* A path through the tree corresponds to
a sequence of actions
* A solution is a path ending in the goal state ‘ Goal state

Knowledge Representation: States and Nodes

 State = description of the world

* Must have enough detail to decide whether or not
you’re currently in the initial state

* Must have enough detail to decide whether or not
you’ve reached the goal state

* Often but not always: “defining the state” and
“defining the transition model” are the same thing

* Node = a point in the search tree
* Private data: ID of the state reached by this node

* Private data: the ID of the parent node
* NB: each state may occur multiple times in the same search tree

Tree Search Algorithm Outline

* |nitialize the frontier using the starting state

While the frontier is not empty

* Choose a frontier node according to search strategy
and take it off the frontier

 If the node contains the goal state, return solution
* Else expand the node and add its children to the frontier

Search strategy determines
* |s this process guaranteed to return an OPTIMAL solution?
* |s this process guaranteed to return ANY solution?
* Time complexity: How much time does it take?
e Space complexity: How much RAM is consumed by the frontier?

* For now: assume that search strategy = random

Tree search example

75
Sibiu m Fagaras
118
80
Timiscara ‘ Rimnicu Vikea
1 Pitesti
7 Lugp) 9 €
Start: Arad 70 —
Goal: Bucharest M Mehadia 148 10
75 138
Dobreta [120
- Cralova

211

Neamt
— 87
] lasi
92
] Vaslui
142
98
85 Hirsova
Urziceni
) 86
Bucharest
90
Eforie
(] Giurgiu

366=0+366

Straight-line distance

© Bucharest
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Ias

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vikea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

Tree search example

Start: Arad
Goal: Bucharest

Craiova

Bucharest

393=140+253

L] Vaslui

Hirsova

86

Eforie

imisoara

447=118+329

WAL BRI AT RRAA

© Bucharest
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Ias

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vikea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

Tree search example

Start: Arad
Goal: Bucharest

g9 ¢_ Fagaras

_Rimnicu Vikea
9 Phtestl

m

] Mehadia 148
75 138
Dobreta [120
= Craiova

e

10

646=280+366 415=239+176 671=291+380 413=220+193

Neamt
8 87
] lasi
92
M vasiul
211 142
98
a5 Hirsova
Urzicen|
u 86
Bucharest
90
Eforie
4 Giurgiu

—=p

imisoara

447=118+329

Straight-line distance

© Bucharest
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Ias

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vikea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

- i'

447=118+329

Tree search example

@

646=280+366 415=239+176 671=291+380

526=366+160 417=317+100 553=300+253

Straight-line distance

© Bucharest
Arad W6
Bucharest 0
Crailova 160
] lasi Dobreta 142
Eforie 161
92 Fagaras 176
Giurgiu 77
M) vasiul Hirsova 151
Iasi 226
Lugoj 244
142 Mehadia 241
Neamt 234
Oradea 230
Start: Arad 28 preoys | DiteSt 10
Goal: Bucharest (] Mehadia Urziceni Rimnicu Vikea 103
75 86 Sibiu 253
- Bucharest Timisoara 329
Dobreta [Urziceni 20
Eforie Vaslui 199
] Giurgiu Zerind 174

Start: Arad
Goal: Bucharest

Tree search example

Com o

Rimnicu Vikea

] Mehadia
75

Dobreta [120

646—2&4»366

cj\sm.“) -

611 2314380

=P

imisoara

447=118+329

591=338+253 450=450+0

Neamt

92

L] Vasiui

142
98
Hirsova
Urziceni
86
Eforie

526=366+160 417=317+100 553=300+253

Straight-line distance

© Bucharest
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Ias

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vikea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

(;_Sbnx :}

Tree search example e

—=p»

imisoara

447=118+329

--

591=338+253 450=45040 526=366+160

553—3(D+253

418=418+0 615=455+160 607=414+193

Neamt
. 87
] lasi
92
M vasiui
211 142
Start: Arad - 28 ——
Goal: Bucharest M Mehadia 10 Urziceni
75 . \ 86
' Buclrarest
20 \ /Y
Dobrets [a0
Eforie
4 Giurgiu

Straight-line distance

© Bucharest
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Ias

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vikea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

Handling repeated states

* |nitialize the frontier using the starting state

 While the frontier is not empty

* Choose a frontier node according to search strategy
and take it off the frontier

* |f the node contains the goal state, return solution
* Else expand the node and add its children to the frontier

* To handle repeated states:

* Every time you expand a node, add that state to the
explored set

* When adding nodes to the frontier, CHECK FIRST to see
if they’ve already been explored

Time Complexity

* Without explored set :
* 0{1}/node
* 0{b™} = # nodes expanded
* b = branching factor (hnumber of children each node might have)
* m = length of the longest possible path

* With explored set :
* 0{1}/node using a hash table to see if node is already in explored set
* 0{|S|} = # nodes expanded

* Usually, O{|S|} < O{b™}. I'll continue to talk about O{b™}, but
remember that it’s upper-bounded by O{|S|}.

Tree search w/o repeats

Neamt
8 87
75
] lasi
-Arsd o
1 92
Sibiu a9 Fagaras
118
50 M vasiui
Timiscara ' Rimnicu Vikea
1 211 142
= Luo] 9 Pltest]
Start: Arad 70 - o 28 Hirsovs
Goal: Bucharest M Mehadia 148 10 Urzicen|
75 i 86
120 138 Bucharest
Dobreta [| a0
Cralova Eforie
4 Giurgiu

366=0+366

Straight-line distance

© Bucharest
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Ias

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vikea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

h / t 393=140+4253
Explored:
Arad
Neamt
— 87
] lasi
92
T
80 ™ vasiui
Rimnicu Vikea
=}
142
9 presti N\
Start: Arad - 98 Hirsovs
Goal: Bucharest M Mehadia 148 10 S~ Vricent
) 86
e 120 138 Bucharest
Dobreta [20
= Craiova Eforie
1 Giurgiu

<=

imisoara

447=118+329

WAL BRI AT RRAA

© Bucharest
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Ias

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vikea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

449=75+374

Tree search example

Explored:
Arad
Sibiu

<
SS

~
~ -

g0
¢ Rimnicu Vikea
ey Vikes
9 Pitesti
[s]
Start: Arad 145
Goal: Bucharest M Mehadia 10
75 138
Dobreta M 120
- Cralova

—

< Shu >

> &> cEoraEs

646=280+366 415=239+176 671=291+380 413=220+193

Neamt
— 87
L] lasi
92
™) vaslui
211 142
98
85 Hirsova
Urziceni
5 86
Bucharest
90
Eforie
N Giurgiu

imisoara

447=118+329

Straight-line distance

© Bucharest
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Ias

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vikea
Sibiu
Timisoara
Urziceni
Vaslui

Zerind

Tree search example W oo @

imisoaia

447=118+329

> > C

526=366+160 417=317+100 553=300+253

Explored:
Arad
Sibiu
Rimnicu Vilcea Neamt
8 87
] lasi
92
™ vasiul
142
Start: Arad - 98 ——
Goal: Bucharest M Mehadia 10 Urziceni
75 H 86
Bucharest
120
Dobreta [e m
{(Mcraiova Eforie
----------------- [Giurgiu

Straight-line distance

© Bucharest
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Ias

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vikea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

86
0
160
242
161
176
T7
151
226
14+
241
134
A0
1O
193
253
329

Tree search example o= --

=P

.Q.irnisoala

447=118+329

@

Straight-line distance

© Bucharest
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Ias

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vikea
Sibiu
Timisoara
Urzicemi

591=338%253 450=450+0 526=366+160 417=317+100 553=3004253
Explored:
Arad
Sibiu
Rimnicu Vilces Neamt
Fagaras — 87
] lasi
92
ibiu a9 Fagaras
a0 ™ vasiui
Rimnicu Vikea
142
Start: Arad 98 A
Goal: Bucharest M Mehadia Urziceni
75 86
Dobreta [120
Eforie

Vaslui
Zerind

Q_Sbuu‘)

=

imisoara

447=118+329
Tree search example db
6462004366 . 671=2914380 .
% 450=450+0 526—366+160 fmgdozz
Explored: it
Arad 418=418+0 615=455+160 607=414%193
e Straight-line distance
Sibiu
© Bucharest
Rinnicu Vilces Neamt Arad W6
Fagaras - 87 g"cha“d -
, . ralova 160
Pitesti - lasi Dobreta 242
o5 Eforie 161
Fagaras 176
Sibiu o9 Fagaras Cilllgill --
30 M) vasiui gll:stwa 151
-----------------------] si 226
, Timiscara imnicu Vikea LIBOJ 244
_______________ 142 Mehadia 231
1 : 211 Neamt 2134
g Luee] Oradea 180
Start: Arad 7C - 28 Hirsova Tiesti 10
Goal: Bucharest [Mehadia Orzicen| Rimnicu Vikcea 103
75 ¥ 86 Sibiu 253
120 / Bucrarest Timisoara 329
Dobreta [o Urziceni 80
Eforie Vaslui 199
Zerind 174

Outline of today’s lecture

3. Depth-first search: very fast, but not guaranteed
4. Breadth-first search: guaranteed optimal
5. Uniform cost search = Dijkstra’s algorithm = BFS with variable costs

Depth-First Search

* Basic idea:
* Try to find a solution as fast as possible
* How:
* From the frontier, always choose a node which is
AS FAR FROM THE STARTING POINT AS POSSIBLE
* How:
* Frontier is a LIFO (last-in, first-out) stack.

* The node you expand = whichever node has been most
recently placed on the queue.

Depth-first search

* Expand deepest unexpanded node
* Implementation: frontier is LIFO (a stack)

Example state space
graph for a tiny search
problem

Depth-first search

Expansion order:

(s,d,b,a,
c,a,
e,h,p,q,
d,
rfc,a, ﬂ .
6) ? PR
© of B

PREPPRING FRADATES[] [~V ¥ ~ ¥V ° v " A~]

OKAY, WHAT KINDS OF HM. WHICH SNAKES ARE

\WHAT SITUATIONS EMERGENCIES CAN HAPPEN? DANGEROUS? LET'S SEE... ::lE RESEARCH LSCO"WNG
MIGHT T PREPARE. RR? A) SNAKEBITE DANGER RKE VENOMS 15 SCATTERED
DA DAY (RN SNAKE. 2 PrD INCONSISTENT, TLL MAKE

) MEDKALEMERGENCY | B) LIGHINNGSRKE 3 GARTER SNAKE. 7
2) DPNCING L O PLURM AR) SRR s A PREADSHEET To ORGRAIZE I
L, 9 F0D TROEXPENSIVE

o} O, O

@) 0

2 Ty
A

TMHERETPKK. BY Dy, THE INIAND
YOUUP. YOURE TAIPAN HAS THE DEADUEST
NOTDRESSED\ ? VENOM OF ANY SNAKE

)

IS

http://xkcd.com/761/ il

T REAUY NEED ToSrop
USING DEPTH-FIRST SEARCHES.

http://xkcd.com/761/

Analysis of search strategies

* Strategies are evaluated along the following criteria:
* Completeness: does it always find a solution if one exists?
* Optimality: does it always find a least-cost solution?
* Time complexity: number of nodes generated
* Space complexity: maximum number of nodes in memory

* Time and space complexity are measured in terms of
* b: maximum branching factor of the search tree
* d: depth of the optimal solution
* m: maximum length of any path in the state space
(may be infinite)
* |S| : number of distinct states

Properties of depth-first search

 Complete? (always finds a solution if one exists?)
Fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
- complete in finite spaces
e Optimal? (always finds an optimal solution?)
No — returns the first solution it finds

* Time? (how long does it take, in terms of b, d, m?)
Could be the time to reach a solution at maximum depth m: O(b™)

Terrible if m is much larger than d
But VERY FAST if there are LOTS of solutions

e Space? (how much storage space, in terms of b, d, m?)
O(bm), i.e., linear space!

Outline of today’s lecture

4. Breadth-first search: guaranteed optimal
5. Uniform cost search = Dijkstra’s algorithm = BFS with variable costs

Breadth-first search

* Initialize the frontier using the starting state

 While the frontier is not empty

* Search strategy: choose one of the nodes
which is CLOSEST to the starting state

* |f the node contains the goal state, return solution
* Else expand the node and add its children
to the frontier

Breadth-first search

* Expand shallowest unexpanded node

* Implementation: frontier is FIFO (first-in, first out)
(a queue)

Breadth-first search

Expansion order:

(s,

d,e,p,
b,c,e,h,r,q,
a,a,h,r,p,q,f, /2“
S e .
@ | R SN
@ @;Q @ Q@@;Q
®OO @ ©O
| PN !

Properties of breadth-first search

e Complete?
Yes (if branching factor b is finite).
Even w/o repeated-state checking, it still works!!!

* Optimal?

Yes — if cost = 1 per step (uniform cost search will fix this)
* Time?

Number of nodes in a b-ary tree of depth d: O(b%)

(d is the depth of the optimal solution)
e Space?

O(b%). --- much larger than DFS!

Outline of today’s lecture

1.

2.

3.
4.
5.

How to define a search problem:
1. |Initial state, goal state, transition model
2. Actions, path cost

General algorithm for solving search problems

1. First data structure: a frontier list
2. Second data structure: a search tree
3. Third data structure: a “visited states” list

Depth-first search: very fast, but not guaranteed
Breadth-first search: guaranteed optimal
Uniform cost search = Dijkstra’s algorithm = BFS with variable costs

Uniform-cost search = Dijkstra’s algorithm

* For each frontier node, save the total cost of the path
from the initial state to that node

* Expand the frontier node with the lowest path cost

* Implementation:
frontier is a priority queue ordered by path cost

* Equivalent to breadth-first if step costs all equal

* Equivalent to Dijkstra’s algorithm, if Dijkstra’s algorithm
is modified so that a node’s value is computed only
when it becomes nonzero

Uniform-cost search example

Uniform-cost search example

Expansion order:
(s,p(1),
d(3),b(4),
e(5),r(7),f(8)
e(9),
G(10))

Cost

contours N | AN
p q (F)8 q cC G
| N |
q 11 ©)10 a

Properties of uniform-cost search

e Complete?
Yes (if branching factor b is finite).
Even w/o repeated-state checking, it still works!!!

* Optimal?
Yes

* Time?
Number of nodes in a b-ary tree of depth d: 0{b?}
Priority queue is O{log, d}/node

e Space?

0{b?} --- much larger than DFS! This might be a reason to
use DFS.

Search strategies so far

Ti Impl h
Algorithm Complete? Optimal? ime Space mplement the
complexity complexity Frontier as a..

If all step costs are

d d
o 0{b%) 0{b%) e

DFS No No 0{b™} O{bm} Stack

UCS Yes Yes 0{b%log, d} 0{b%} Priority Queue

Next time

 know how far it is, from the start point, to each node on the frontier.
« What if we also have an ESTIMATE of the distance from each node to the

GOAL?

