CS440/ECE 448 Lecture 4:
Slides by Svetlana Lazebnik, 9/2016 SearCh ‘ntrO

Modified by Mark Hasegawa-Johnson, 1/2019




Types of agents

Reflex agent Goal-directed agent

° Consider hOW the World IS e Consider how the world WOULD BE

: Decisions based on (hypothesized)
* Choose action based on consequences of actions

current percept * Must have a model of how the world
« Do not consider the future evolves in response to actions

consequences of actions * Must formulate a goal

Source: D. Klein, P. Abbeel



Outline of today’s lecture

1.

3.
4.
5.

How to define search problems:
1. |Initial state, goal state, transition model
2. Actions, path cost

General algorithm for solving search problems

1. First data structure: a frontier list
2. Second data structure: a search tree
3. Third data structure: a “visited states” list

Depth-first search: very fast, but not guaranteed
Breadth-first search: guaranteed optimal
Uniform cost search = Dijkstra’s algorithm = BFS with variable costs



Search

We will consider the problem of designing goal-based agents in
fully observable, deterministic, discrete, static, known
environments

Start state

4

€= Goal state



Search

We will consider the problem of designing goal-based agents in
fully observable, deterministic, discrete, static, known
environments

* The agent must find a sequence of actions that reaches the goal

* The performance measure is defined by (a) reaching the goal
and (b) how “expensive” the path to the goal is

* The agent doesn’t know the performance measure.
This is a goal-directed agent, not a utility-directed agent

* The programmer (you) DOES know the performance measure.
So you design a goal-seeking strategy that minimizes cost.

* We are focused on the process of finding the solution;
we assume that the agent can safely ignore its percepts while executing
the solution (static environment, open-loop system)



Search problem components

e |nitial state Initial
. state
* Actions ‘

* Transition model

* What state results from
performing a given action
in a given state?

* Goal state
 Path cost
e Assume that this is a sum of Goal
nonnegative step costs @ e

* The optimal solution is the sequence of actions
that gives the lowest path cost for reaching the goal



Knowledge Representation: State

e State = description of the world

* Must have enough detail to decide whether or not
you’re currently in the initial state

* Must have enough detail to decide whether or not
you’ve reached the goal state

* Often but not always: “defining the state” and
“defining the transition model” are the same thing




Example: Romania

* On vacation in Romania; currently in Arad
Flight leaves tomorrow from Bucharest

Initial state
 Arad

"] Oradea

Actions 75
* Go from one city to another  Aradf}

Transition model

* If you go from city A to
city B, you end up in city B

113

Jimisoara

* Goal state
* Bucharest Mirsova
e Path cost ¥ etacis
7 RIS
* Sum of edge costs Dobreta (4
(total distance traveled) = A 9% L



State space

e The initial state, actions, and transition
model define the state space of the
problem

* The set of all states reachable from the
initial state by any sequence of actions

* Can be represented as a directed graph
where the nodes are states and links
between nodes are actions

* What is the state space
for the Romania problem?

» State Space = O{# cities}

HCraiova



Traveling Salesman Problem

e Goal:
Visit every city in US

 Path cost: f ﬂ

Total miles traveled T
* Initial state: \ o
Champaign, IL =

* Actions:
Travel from one city to another

* Transition model:
When you visit a city, mark it as “visited.”

* State Space = O(2#cities)




Example: Vacuum world

A ;B

o o
o OQ o

e States
e Agent location and dirt location
* How many possible states?

 What if there are n possible locations?

* The size of the state space grows exponentially with the “size”
of the world!

e Actions
 Left, right, suck

* Transition model



Vacuum world state space graph
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Complexity of the State Space

* Many “video game” style problems can be subdivided:

* If there are M different things your character needs to pick up:
2M different world states (one for each subset of things that you’ve picked up)

* If there are N different locations you can be in while carrying

any subset of those M objects:
Total number of world states = 0 (2" N)

 Why a maze is nice: you don’t need to pick anything up
* Only N different world states to consider



Example: The 8-puzzle

e States

7 1| 2
e Locations of tiles
+ 8-puzzle: 181,440 states (91/2) >
* 15-puzzle: ~10 trillion states 8 3
e 24-puzzle: ~10%° states
Start State
* Actions ;
* Move blank left, right, up, down
3 || 4
e Path cost =

* 1 per move

Goal State

* Finding the optimal solution of n-Puzzle is NP-hard



http://www.aaai.org/Papers/AAAI/1986/AAAI86-027.pdf

Example: Robot motion planning

- . - R/‘\“R

i Saxl .

* States
e Real-valued joint parameters (angles, displacements)

* Actions
* Continuous motions of robot joints

* Goal state
e Configuration in which object is grasped

* Path cost
* Time to execute, smoothness of path, etc.



Outline of today’s lecture

3.
4.
5.

General algorithm for solving search problems
1. First data structure: a frontier list

2. Second data structure: a search tree

3. Third data structure: a “visited states” list

Depth-first search: very fast, but not guaranteed
Breadth-first search: guaranteed optimal
Uniform cost search = Dijkstra’s algorithm = BFS with variable costs



First data structure: a frontier list

* Let’s begin at the start state and expand it
by making a list of all possible (immediate) successor states

* Maintain a frontier, i.e. a list of unexpanded states

* At each step, pick a state from the frontier to expand:

* Check to see if it’s a goal state

* If not, find the other states that can be reached from this state,
and add them to the frontier, if they’re not already there

* Keep going until you reach a goal state



Second data structure: a search tree

* “What if” tree of sequences of actions St;;tt'gg

and outcomes

Action /—
* The root node corresponds to the S
uccessor

starting state state () @
* The children of a node correspond to ..

the successor states of that node’s state () ()

* A path through the tree corresponds to
a sequence of actions
* A solution is a path ending in the goal state ‘ Goal state



Knowledge Representation: States and Nodes

 State = description of the world

* Must have enough detail to decide whether or not
you’re currently in the initial state

* Must have enough detail to decide whether or not
you’ve reached the goal state

* Often but not always: “defining the state” and
“defining the transition model” are the same thing

* Node = a point in the search tree
* Private data: ID of the state reached by this node

* Private data: the ID of the parent node
* NB: each state may occur multiple times in the same search tree



Tree Search Algorithm Outline

* |nitialize the frontier using the starting state

While the frontier is not empty

* Choose a frontier node according to search strategy
and take it off the frontier

 If the node contains the goal state, return solution
* Else expand the node and add its children to the frontier

Search strategy determines
* |s this process guaranteed to return an OPTIMAL solution?
* |s this process guaranteed to return ANY solution?
* Time complexity: How much time does it take?
e Space complexity: How much RAM is consumed by the frontier?

* For now: assume that search strategy = random



Tree search example

75
Sibiu m Fagaras
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80
Timiscara ‘ Rimnicu Vikea
1 Pitesti
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Tree search example

Start: Arad
Goal: Bucharest

Craiova

Bucharest

393=140+253

L] Vaslui

Hirsova

86

Eforie

imisoara

447=118+329

WAL BRI AT RRAA
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Tree search example
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447=118+329

Tree search example

@

646=280+366 415=239+176 671=291+380

526=366+160 417=317+100 553=300+253

Straight-line distance
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Eforie  Vaslui 199
] Giurgiu Zerind 174



Start: Arad
Goal: Bucharest

Tree search example
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Tree search example e
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Handling repeated states

* |nitialize the frontier using the starting state

 While the frontier is not empty

* Choose a frontier node according to search strategy
and take it off the frontier

* |f the node contains the goal state, return solution
* Else expand the node and add its children to the frontier

* To handle repeated states:

* Every time you expand a node, add that state to the
explored set

* When adding nodes to the frontier, CHECK FIRST to see
if they’ve already been explored



Time Complexity

* Without explored set :
* 0{1}/node
* 0{b™} = # nodes expanded
* b = branching factor (hnumber of children each node might have)
* m = length of the longest possible path

* With explored set :
* 0{1}/node using a hash table to see if node is already in explored set
* 0{|S|} = # nodes expanded

* Usually, O{|S|} < O{b™}. I'll continue to talk about O{b™}, but
remember that it’s upper-bounded by O{|S|}.



Tree search w/o repeats
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Tree search example
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Outline of today’s lecture

3. Depth-first search: very fast, but not guaranteed
4. Breadth-first search: guaranteed optimal
5. Uniform cost search = Dijkstra’s algorithm = BFS with variable costs



Depth-First Search

* Basic idea:
* Try to find a solution as fast as possible
* How:
* From the frontier, always choose a node which is
AS FAR FROM THE STARTING POINT AS POSSIBLE
* How:
* Frontier is a LIFO (last-in, first-out) stack.

* The node you expand = whichever node has been most
recently placed on the queue.



Depth-first search

* Expand deepest unexpanded node
* Implementation: frontier is LIFO (a stack)

Example state space
graph for a tiny search
problem




Depth-first search

Expansion order:

(s,d,b,a,
c,a,
e,h,p,q,
d,
rfc,a, ﬂ .
6) ? PR
© of B
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Analysis of search strategies

* Strategies are evaluated along the following criteria:
* Completeness: does it always find a solution if one exists?
* Optimality: does it always find a least-cost solution?
* Time complexity: number of nodes generated
* Space complexity: maximum number of nodes in memory

* Time and space complexity are measured in terms of
* b: maximum branching factor of the search tree
* d: depth of the optimal solution
* m: maximum length of any path in the state space
(may be infinite)
* |S| : number of distinct states



Properties of depth-first search

 Complete? (always finds a solution if one exists?)
Fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
- complete in finite spaces
e Optimal? (always finds an optimal solution?)
No — returns the first solution it finds

* Time? (how long does it take, in terms of b, d, m?)
Could be the time to reach a solution at maximum depth m: O(b™)

Terrible if m is much larger than d
But VERY FAST if there are LOTS of solutions

e Space? (how much storage space, in terms of b, d, m?)
O(bm), i.e., linear space!



Outline of today’s lecture

4. Breadth-first search: guaranteed optimal
5. Uniform cost search = Dijkstra’s algorithm = BFS with variable costs



Breadth-first search

* Initialize the frontier using the starting state

 While the frontier is not empty

* Search strategy: choose one of the nodes
which is CLOSEST to the starting state

* |f the node contains the goal state, return solution
* Else expand the node and add its children
to the frontier



Breadth-first search

* Expand shallowest unexpanded node

* Implementation: frontier is FIFO (first-in, first out)
(a queue)




Breadth-first search

Expansion order:

(s,

d,e,p,
b,c,e,h,r,q,
a,a,h,r,p,q,f, /2“
S e .
@ | R SN
@ @;Q @ Q@@;Q
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Properties of breadth-first search

e Complete?
Yes (if branching factor b is finite).
Even w/o repeated-state checking, it still works!!!

* Optimal?

Yes — if cost = 1 per step (uniform cost search will fix this)
* Time?

Number of nodes in a b-ary tree of depth d: O(b%)

(d is the depth of the optimal solution)
e Space?

O(b%). --- much larger than DFS!



Outline of today’s lecture

1.

2.

3.
4.
5.

How to define a search problem:
1. |Initial state, goal state, transition model
2. Actions, path cost

General algorithm for solving search problems

1. First data structure: a frontier list
2. Second data structure: a search tree
3. Third data structure: a “visited states” list

Depth-first search: very fast, but not guaranteed
Breadth-first search: guaranteed optimal
Uniform cost search = Dijkstra’s algorithm = BFS with variable costs



Uniform-cost search = Dijkstra’s algorithm

* For each frontier node, save the total cost of the path
from the initial state to that node

* Expand the frontier node with the lowest path cost

* Implementation:
frontier is a priority queue ordered by path cost

* Equivalent to breadth-first if step costs all equal

* Equivalent to Dijkstra’s algorithm, if Dijkstra’s algorithm
is modified so that a node’s value is computed only
when it becomes nonzero



Uniform-cost search example




Uniform-cost search example

Expansion order:
(s,p(1),
d(3),b(4),
e(5),r(7),f(8)
e(9),
G(10))

Cost

contours N | AN
p q (F)8 q cC G
| N |
q 11 ©)10 a



Properties of uniform-cost search

e Complete?
Yes (if branching factor b is finite).
Even w/o repeated-state checking, it still works!!!

* Optimal?
Yes

* Time?
Number of nodes in a b-ary tree of depth d: 0{b?}
Priority queue is O{log, d}/node

e Space?

0{b?} --- much larger than DFS! This might be a reason to
use DFS.



Search strategies so far

Ti Impl h
Algorithm Complete? Optimal? ime Space mplement the
complexity complexity Frontier as a..

If all step costs are

d d
o 0{b%) 0{b%) e

DFS No No 0{b™} O{bm} Stack

UCS Yes Yes 0{b%log, d} 0{b%} Priority Queue

Next time

 know how far it is, from the start point, to each node on the frontier.
« What if we also have an ESTIMATE of the distance from each node to the

GOAL?



