CS440/ECE 448 Lecture 4: Search Intro

Slides by Svetlana Lazebnik, 9/2016
Modified by Mark Hasegawa-Johnson, 1/2019
Types of agents

Reflex agent

- Consider how the world IS
- Choose action based on current percept
- Do not consider the future consequences of actions

Goal-directed agent

- Consider how the world WOULD BE
- Decisions based on (hypothesized) consequences of actions
- Must have a model of how the world evolves in response to actions
- Must formulate a goal

Source: D. Klein, P. Abbeel
Outline of today’s lecture

1. How to define search problems:
 1. Initial state, goal state, transition model
 2. Actions, path cost

2. General algorithm for solving search problems
 1. First data structure: a frontier list
 2. Second data structure: a search tree
 3. Third data structure: a “visited states” list

3. Depth-first search: very fast, but not guaranteed

4. Breadth-first search: guaranteed optimal

5. Uniform cost search = Dijkstra’s algorithm = BFS with variable costs
Search

We will consider the problem of designing goal-based agents in fully observable, deterministic, discrete, static, known environments.
Search

We will consider the problem of designing goal-based agents in fully observable, deterministic, discrete, static, known environments

- The agent must find a sequence of actions that reaches the goal
- The performance measure is defined by (a) reaching the goal and (b) how “expensive” the path to the goal is
 - The agent doesn’t know the performance measure. This is a goal-directed agent, not a utility-directed agent
 - The programmer (you) DOES know the performance measure. So you design a goal-seeking strategy that minimizes cost.
- We are focused on the process of finding the solution; we assume that the agent can safely ignore its percepts while executing the solution (static environment, open-loop system)
Search problem components

• Initial state
• Actions
• Transition model
 • What state results from performing a given action in a given state?
• Goal state
• Path cost
 • Assume that this is a sum of nonnegative step costs

• The optimal solution is the sequence of actions that gives the lowest path cost for reaching the goal
Knowledge Representation: State

• State = description of the world
 • Must have enough detail to decide whether or not you’re currently in the initial state
 • Must have enough detail to decide whether or not you’ve reached the goal state
 • Often but not always: “defining the state” and “defining the transition model” are the same thing
Example: Romania

- On vacation in Romania; currently in Arad
- Flight leaves tomorrow from Bucharest

Initial state
- Arad

Actions
- Go from one city to another

Transition model
- If you go from city A to city B, you end up in city B

Goal state
- Bucharest

Path cost
- Sum of edge costs (total distance traveled)
State space

• The initial state, actions, and transition model define the **state space** of the problem
 • The set of all states reachable from the initial state by any sequence of actions
 • Can be represented as a **directed graph** where the nodes are states and links between nodes are actions

• What is the state space for the Romania problem?
 • State Space = \(O\{\# \text{ cities} \} \)
Traveling Salesman Problem

• **Goal:**
 Visit every city in US

• **Path cost:**
 Total miles traveled

• **Initial state:**
 Champaign, IL

• **Actions:**
 Travel from one city to another

• **Transition model:**
 When you visit a city, mark it as “visited.”
 • State Space = $O(2^{\#\text{cities}})$
Example: Vacuum world

- **States**
 - Agent location and dirt location
 - How many possible states?
 - What if there are n possible locations?
 - The size of the state space grows exponentially with the “size” of the world!

- **Actions**
 - Left, right, suck

- **Transition model**
Vacuum world state space graph
Complexity of the State Space

• Many “video game” style problems can be subdivided:
 • If there are \(M \) different things your character needs to pick up:
 \(2^M \) different world states (one for each subset of things that you’ve picked up)
 • If there are \(N \) different locations you can be in while carrying any subset of those \(M \) objects:
 Total number of world states = \(O(2^MN) \)

• Why a maze is nice: you don’t need to pick anything up
 • Only \(N \) different world states to consider
Example: The 8-puzzle

• **States**
 - Locations of tiles
 - 8-puzzle: 181,440 states (9!/2)
 - 15-puzzle: ~10 trillion states
 - 24-puzzle: ~10^{25} states

• **Actions**
 - Move blank left, right, up, down

• **Path cost**
 - 1 per move

• **Finding the optimal solution of n-Puzzle is NP-hard**
Example: Robot motion planning

- **States**
 - Real-valued joint parameters (angles, displacements)
- **Actions**
 - Continuous motions of robot joints
- **Goal state**
 - Configuration in which object is grasped
- **Path cost**
 - Time to execute, smoothness of path, etc.
Outline of today’s lecture

1. How to define search problems:
 1. Initial state, goal state, transition model
 2. Actions, path cost

2. General algorithm for solving search problems
 1. First data structure: a frontier list
 2. Second data structure: a search tree
 3. Third data structure: a “visited states” list

3. Depth-first search: very fast, but not guaranteed
4. Breadth-first search: guaranteed optimal
5. Uniform cost search = Dijkstra’s algorithm = BFS with variable costs
First data structure: a frontier list

- Let’s begin at the \textit{start state} and \textit{expand} it by making a \textit{list of all possible} (immediate) \textit{successor states}
- Maintain a \textit{frontier}, i.e. a list of unexpanded states
- At each step, \textbf{pick a state from the frontier to expand}:
 - Check to see if it’s a goal state
 - If not, find the other states that can be reached from this state, and add them to the frontier, if they’re not already there
- Keep going until you reach a goal state
Second data structure: a search tree

• “What if” tree of sequences of actions and outcomes

• The **root node** corresponds to the starting state

• The **children** of a node correspond to the **successor states** of that node’s state

• A **path** through the tree corresponds to a **sequence of actions**
 • A solution is a path ending in the goal state
Knowledge Representation: States and Nodes

• **State** = description of the world
 • Must have enough detail to decide whether or not you’re currently in the **initial state**
 • Must have enough detail to decide whether or not you’ve reached the **goal state**
 • Often but not always: “defining the state” and “defining the transition model” are the same thing

• **Node** = a point in the search tree
 • Private data: ID of the state reached by this node
 • Private data: the ID of the parent node
 • NB: each state may occur multiple times in the same search tree
Tree Search Algorithm Outline

• Initialize the **frontier** using the **starting state**
• While the frontier is not empty
 • Choose a frontier node according to **search strategy** and take it off the frontier
 • If the node contains the **goal state**, return solution
 • Else **expand** the node and add its children to the frontier

• **Search strategy** determines
 • Is this process guaranteed to return an **OPTIMAL** solution?
 • Is this process guaranteed to return ANY solution?
 • Time complexity: How much time does it take?
 • Space complexity: How much RAM is consumed by the frontier?

• For now: assume that search strategy = random
Tree search example

Start: Arad
Goal: Bucharest
Handling repeated states

- Initialize the **frontier** using the **starting state**
- While the frontier is not empty
 - Choose a frontier node according to **search strategy** and take it off the frontier
 - If the node contains the **goal state**, return solution
 - Else **expand** the node and add its children to the frontier
- To handle repeated states:
 - Every time you expand a node, add that state to the **explored set**
 - When adding nodes to the frontier, CHECK FIRST to see if they’ve already been explored
Time Complexity

• Without **explored set**:
 • $O\{1\}$/node
 • $O\{b^m\} = \#$ nodes expanded
 • $b =$ branching factor (number of children each node might have)
 • $m =$ length of the longest possible path

• With **explored set**:
 • $O\{1\}$/node using a hash table to see if node is already in **explored set**
 • $O\{|S|\} = \#$ nodes expanded

• Usually, $O\{|S|\} < O\{b^m\}$. I’ll continue to talk about $O\{b^m\}$, but remember that it’s upper-bounded by $O\{|S|\}$.
Tree search w/o repeats

Start: Arad
Goal: Bucharest
Tree search w/o repeats

Explored:
Arad

Start: Arad
Goal: Bucharest
Tree search example

Explored:
Arad
Sibiu

Start: Arad
Goal: Bucharest
Tree search example

Explored:
Arad
Sibiu
Rimnicu Vilcea

Start: Arad
Goal: Bucharest
Tree search example

Explored:
- Arad
- Sibiu
- Rimnicu Vilces
- Fagaras

Start: Arad
Goal: Bucharest
Tree search example

Explored:
Arad
Sibiu
Rinnicu Vilce
Fagaras
Pitesti

Start: Arad
Goal: Bucharest
Outline of today’s lecture

1. How to define search problems:
 1. Initial state, goal state, transition model
 2. Actions, path cost

2. General algorithm for solving search problems
 1. First data structure: a frontier list
 2. Second data structure: a search tree
 3. Third data structure: a “visited states” list

3. Depth-first search: very fast, but not guaranteed
4. Breadth-first search: guaranteed optimal
5. Uniform cost search = Dijkstra’s algorithm = BFS with variable costs
Depth-First Search

• Basic idea:
 • Try to find a solution as fast as possible

• How:
 • From the frontier, always choose a node which is AS FAR FROM THE STARTING POINT AS POSSIBLE

• How:
 • Frontier is a LIFO (last-in, first-out) stack.
 • The node you expand = whichever node has been most recently placed on the queue.
Depth-first search

- Expand deepest unexpanded node
- Implementation: *frontier* is LIFO (a stack)

Example state space graph for a tiny search problem.
Depth-first search

Expansion order:
(s,d,b,a,
c,a,
e,h,p,q, q,
r,f,c,a, G)
Preparing for a date:

What situations might I prepare for?
1) Medical emergency
2) Dancing
3) Food too expensive

Okay, what kinds of emergencies can happen?
1) Snakebite
2) Lightning strike
3) Fall from chair

Hmm, which snakes are dangerous? Let's see...
1) a) Corn snake
2) b) Garter snake
3) c) Copperhead

The research comparing snake venoms is scattered and inconsistent. I'll make a spreadsheet to organize it.

I'm here to pick you up. You're not dressed.

By the way, the inland taipan has the deadliest venom of any snake!

I really need to stop using depth-first searches.
Analysis of search strategies

- **Strategies are evaluated** along the following criteria:
 - **Completeness**: does it always find a solution if one exists?
 - **Optimality**: does it always find a least-cost solution?
 - **Time complexity**: number of nodes generated
 - **Space complexity**: maximum number of nodes in memory

- **Time and space complexity** are measured in terms of
 - b: maximum branching factor of the search tree
 - d: depth of the optimal solution
 - m: maximum length of any path in the state space (may be infinite)
 - $|S|$: number of distinct states
Properties of depth-first search

• **Complete? (always finds a solution if one exists?)**
 Fails in infinite-depth spaces, spaces with loops
 Modify to avoid repeated states along path
 → complete in finite spaces

• **Optimal? (always finds an optimal solution?)**
 No – returns the first solution it finds

• **Time? (how long does it take, in terms of b, d, m?)**
 Could be the time to reach a solution at maximum depth \(m: O(b^m) \)
 Terrible if \(m \) is much larger than \(d \)
 But VERY FAST if there are LOTS of solutions

• **Space? (how much storage space, in terms of b, d, m?)**
 \(O(bm) \), i.e., linear space!
Outline of today’s lecture

1. How to define a search problem:
 1. Initial state, goal state, transition model
 2. Actions, path cost

2. General algorithm for solving search problems
 1. First data structure: a frontier list
 2. Second data structure: a search tree
 3. Third data structure: a “visited states” list

3. Depth-first search: very fast, but not guaranteed

4. Breadth-first search: guaranteed optimal

5. Uniform cost search = Dijkstra’s algorithm = BFS with variable costs
Breadth-first search

- Initialize the **frontier** using the **starting state**
- While the frontier is not empty
 - **Search strategy:** choose one of the nodes which is CLOSEST to the starting state
 - If the node contains the **goal state**, return solution
 - Else **expand** the node and add its children to the frontier
Breadth-first search

- Expand shallowest unexpanded node
- Implementation: `frontier` is FIFO (first-in, first out) (a queue)

Example from P. Abbeel and D. Klein
Breadth-first search

Expansion order:
(s,
d,e,p,
b,c,e,h,r,q,
a,a,h,r,p,q,f,
p,q,f,q,c,G)
Properties of breadth-first search

• **Complete?**
 Yes (if branching factor b is finite).
 Even w/o repeated-state checking, it still works!!!

• **Optimal?**
 Yes – if cost = 1 per step (uniform cost search will fix this)

• **Time?**
 Number of nodes in a b-ary tree of depth d: $O(b^d)$
 (d is the depth of the optimal solution)

• **Space?**
 $O(b^d)$. --- much larger than DFS!
Outline of today’s lecture

1. How to define a search problem:
 1. Initial state, goal state, transition model
 2. Actions, path cost

2. General algorithm for solving search problems
 1. First data structure: a frontier list
 2. Second data structure: a search tree
 3. Third data structure: a “visited states” list

3. Depth-first search: very fast, but not guaranteed

4. Breadth-first search: guaranteed optimal

5. Uniform cost search = Dijkstra’s algorithm = BFS with variable costs
Uniform-cost search = Dijkstra’s algorithm

• For each frontier node, save the total cost of the path from the initial state to that node
• Expand the frontier node with the lowest path cost
• Implementation:
 frontier is a priority queue ordered by path cost
• Equivalent to breadth-first if step costs all equal
• Equivalent to Dijkstra’s algorithm, if Dijkstra’s algorithm is modified so that a node’s value is computed only when it becomes nonzero
Uniform-cost search example
Uniform-cost search example

Expansion order:
(s,p(1),
 d(3), b(4),
 e(5), r(7), f(8)
 e(9),
 G(10))
Properties of uniform-cost search

• **Complete?**
 Yes (if branching factor b is finite).
 Even w/o repeated-state checking, it still works!!!

• **Optimal?**
 Yes

• **Time?**
 Number of nodes in a b-ary tree of depth d: $O\{b^d\}$
 Priority queue is $O\{\log_2 d\}$/node

• **Space?**
 $O\{b^d\}$ --- much larger than DFS! This might be a reason to use DFS.
Search strategies so far

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complete?</th>
<th>Optimal?</th>
<th>Time complexity</th>
<th>Space complexity</th>
<th>Implement the Frontier as a…</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFS</td>
<td>Yes</td>
<td>If all step costs are equal</td>
<td>$O{b^d}$</td>
<td>$O{b^d}$</td>
<td>Queue</td>
</tr>
<tr>
<td>DFS</td>
<td>No</td>
<td>No</td>
<td>$O{b^m}$</td>
<td>$O{bm}$</td>
<td>Stack</td>
</tr>
<tr>
<td>UCS</td>
<td>Yes</td>
<td>Yes</td>
<td>$O{b^d \log_2 d}$</td>
<td>$O{b^d}$</td>
<td>Priority Queue</td>
</tr>
</tbody>
</table>

Next time
- know how far it is, from the start point, to each node on the frontier.
- What if we also have an ESTIMATE of the distance from each node to the GOAL?