
CS440/ECE448 Lecture 29:
Review II

Final Exam Mon, May 6, 9:30–10:45

Covers all lectures after the first exam.
Same format as the first exam.
Location (if you’re in Prof. Hockenmaier’s sections)
Materials Science and Engineering Building, Room
100 (http://ada.fs.illinois.edu/0034.html)

Conflict exam: Wed, May 8, 9:30–10:45
Location: Siebel 3403.

If you need to take your exam at DRES,
make sure to notify DRES in advance

http://ada.fs.illinois.edu/0034.html

CS 440/ECE448 Lecture 19:
Bayes Net Inference

Mark Hasegawa-Johnson, 3/2019 modified by Julia
Hockenmaier 3/2019
Including slides by Svetlana Lazebnik, 11/2016

Parameter learning
• Inference problem: given values of evidence variables

E = e, answer questions about query variables X using
the posterior P(X | E = e)

• Learning problem: estimate the parameters of the
probabilistic model P(X | E) given a training sample
{(x1,e1), …, (xn,en)}

• Learning from complete observations: relative
frequency estimates

• Learning from data with missing observations:
EM algorithm

Missing data: the EM algorithm
• The EM algorithm starts (“Expectation Maximization”)

starts with an initial guess for each parameter value.
• We try to improve the initial guess, using the algorithm on the

next two slides:
• E-step
• M-step

0.5?

0.5?
0.5?

0.5?
0.5?

0.5?
0.5?
0.5?
0.5?

Training set
Sample C S R W

1 ? F T T

2 ? T F T

3 ? F F F

4 ? T T T

5 ? T F T

6 ? F T F

… … … …. …

Missing data: the EM algorithm
• E-Step (Expectation): Given the model parameters, replace each of the missing

numbers with a probability (a number between 0 and 1) using

! " = 1 %, ',(= !(" = 1, %, ',()
! " = 1, %, ',(+ !(" = 0, %, ',()

0.5?

0.5?
0.5?

0.5?
0.5?

0.5?
0.5?
0.5?
0.5?

Training set
Sample C S R W

1 0.5? F T T

2 0.5? T F T

3 0.5? F F F

4 0.5? T T T

5 0.5? T F T

6 0.5? F T F

… … … …. …

Missing data: the EM algorithm
• M-Step (Maximization): Given the missing data estimates, replace each of the

missing model parameters using

! Variable = T Parents = value = 1[# times Variable = 5, Parents = value]
1[#times Parents = value]

0.5

0.5
0.5

0.5
0.5

1.0
1.0
0.5
0.0

Training set
Sample C S R W

1 0.5? F T T

2 0.5? T F T

3 0.5? F F F

4 0.5? T T T

5 0.5? T F T

6 0.5? F T F

… … … …. …

CS440/ECE448 Lecture 20:
Hidden Markov Models

Slides by Svetlana Lazebnik, 11/2016
Modified by Mark Hasegawa-Johnson, 3/2019

Hidden Markov Models
• At each time slice t, the state of the world is

described by an unobservable (hidden) variable Xt
and an observable evidence variable Et

• Transition model: The current state is conditionally
independent of all the other states given the state in
the previous time step
Markov assumption: P(Xt | X0, …, Xt-1) := P(Xt | Xt-1)
• Observation model: The evidence at time t depends

only on the state at time t
Markov assumption: P(Et | X0:t, E1:t-1) = P(Et | Xt)

X0

E1

X1

Et-1

Xt-1

Et

Xt…
E2

X2

state

evidence

Example

Transition model

Observation model

An alternative visualization

Rt = T Rt = F

Rt-1 = T 0.7 0.3

Rt-1 = F 0.3 0.7

Ut = T Ut = F

Rt = T 0.9 0.1

Rt = F 0.2 0.8

Transition
probabilities

Observation
(emission)

probabilities

R=T R=F

0.7

0.7

0.3

0.3

U=T: 0.9
U=F: 0.1

U=T: 0.2
U=F: 0.8

HMM Learning and Inference
• Inference tasks
• Filtering: what is the distribution over the current state Xt

given all the evidence so far, e1:t
• Smoothing: what is the distribution of some state Xk given the

entire observation sequence e1:t?
• Evaluation: compute the probability of a given observation

sequence e1:t
• Decoding: what is the most likely state sequence X0:t given the

observation sequence e1:t?
• Learning
• Given a training sample of sequences, learn the model

parameters (transition and emission probabilities)
• EM algorithm

CS440/ECE448 Lecture 21:
Markov Decision Processes

Slides by Svetlana Lazebnik, 11/2016
Modified by Mark Hasegawa-Johnson, 3/2019

Markov Decision Processes (MDPs)
• Components that define the MDP. Depending on the problem

statement, you either know these, or you learn them from data:
• States s, beginning with initial state s0
• Actions a

• Each state s has actions A(s) available from it
• Transition model P(s’ | s, a)

• Markov assumption: the probability of going to s’ from s depends only
on s and a and not on any other past actions or states

• Reward function R(s)
• Policy – the “solution” to the MDP:

• p(s) ∈ A(s): the action that an agent takes in any given state

Maximizing expected utility
• The optimal policy p(s) should maximize the expected utility over all

possible state sequences produced by following that policy:
!

"#$#% "%&'%()%"
"#$*#+(, -*./ "0

1 23453673|29 = ; 29 < 23453673

• How to define the utility of a state sequence?
• Sum of rewards of individual states
• Problem: infinite state sequences
• Solution: discount individual state rewards by a factor g between 0 and 1:

)10(
1

)(

)()()(]),,,([

max

0

2
2

10210

<<
-

£=

+++=

å
¥

=

g
g

g

gg
RsR

sRsRsRsssU

t
t

t

!!

Utilities of states

• Expected utility obtained by policy p starting in state s:

!" # = %
&'(') &)*+),-)&
&'(.'/,0 1.23 &

4 #5675895|#, < = = # ! #5675895

• The “true” utility of a state, denoted U(s), is the best possible
expected sum of discounted rewards
• if the agent executes the best possible policy starting in state s

• Reminiscent of minimax values of states…

Finding the utilities of states

å
'

)'(),|'(
s

sUassP

U(s’)

Max node

Chance node

å
Î

=
')(

*)'(),|'(maxarg)(
ssAa

sUassPsp

P(s’ | s, a)

• If state s’ has utility U(s’), then
what is the expected utility of
taking action a in state s?

• How do we choose the optimal
action?

• What is the recursive expression for U(s) in terms of the utilities
of its successor states?

å+=
'

)'(),|'(max)()(
s

a sUassPsRsU g

The Bellman equation
• Recursive relationship between the utilities of

successive states:

• For N states, we get N equations in N unknowns
• Solving them solves the MDP
• Nonlinear equations -> no closed-form solution, need to use

an iterative solution method (is there a globally optimum
solution?)
• We could try to solve them through expectiminimax search,

but that would run into trouble with infinite sequences
• Instead, we solve them algebraically
• Two methods: value iteration and policy iteration

å
Î

+=
')(

)'(),|'(max)()(
ssAa

sUassPsRsU g

Method 1: Value iteration
• Start out with every U(s) = 0
• Iterate until convergence
• During the ith iteration, update the utility of each state

according to this rule:

• In the limit of infinitely many iterations,
this is guaranteed to find the correct utility values
• Error decreases exponentially, so in practice, don’t need an

infinite number of iterations…

å
Î+ +¬

')(1)'(),|'(max)()(
s

isAai sUassPsRsU g

Method 2: Policy iteration

• Start with some initial policy p0 and alternate between the following steps:
• Policy evaluation: calculate Upi(s) for every state s
• Policy improvement: calculate a new policy pi+1 based on the updated utilities

• Notice it’s kind of like hill-climbing in the N-queens problem.
• Policy evaluation: Find ways in which the current policy is suboptimal
• Policy improvement: Fix those problems

• Unlike Value Iteration, this is guaranteed to converge in a finite number of
steps, as long as the state space and action set are both finite.

Method 2, Step 1: Policy evaluation
• Given a fixed policy p, calculate Up(s) for every state s

• p(s) is fixed, therefore !(#$|#, ' #) is an #’×# matrix,
therefore we can solve a linear equation to get Up(s)!
• Why is this “Policy Evaluation” formula so much

easier to solve than the original Bellman equation?

å
Î

+=
')(

)'(),|'(max)()(
ssAa

sUassPsRsU g

å+=
'

)'())(,|'()()(
s

sUsssPsRsU pp pg

CS 440/ECE448 Lecture 22:
Reinforcement Learning

Slides by Svetlana Lazebnik, 11/2016

Modified by Mark Hasegawa-Johnson, 4/2019

By Nicolas P. Rougier - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=29327040

Reinforcement learning strategies

• Model-based
• Learn the model of the MDP (transition probabilities and rewards)

and try to solve the MDP concurrently
• Model-free
• Learn how to act without explicitly learning

the transition probabilities P(s’ | s, a)
• Q-learning: learn an action-utility function Q(s,a)

that tells us the value of doing action a in state s

Model-based reinforcement learning
• Basic idea:

Try to learn the model of the MDP (transition probabilities and rewards)
and learn how to act (solve the MDP) simultaneously

• Learning the model:
• Keep track of how many times state s’ follows state s when you take action a
• Update the transition probability P(s’ | s, a)

according to these relative frequencies
• Keep track of the rewards R(s)

• Learning how to act:
• Estimate the utilities U(s) using Bellman’s equations
• Choose the action that maximizes expected future utility:

å
Î

=
')(

*)'(),|'(maxarg)(
ssAa

sUassPsp

Exploration vs. exploitation
• Exploration: take a new action with unknown consequences
• Pros:

• Get a more accurate model of the environment
• Discover higher-reward states than the ones found so far

• Cons:
• When you’re exploring, you’re not maximizing your utility
• Something bad might happen

• Exploitation: go with the best strategy found so far
• Pros:

• Maximize reward as reflected in the current utility estimates
• Avoid bad stuff

• Cons:
• Might also prevent you from discovering the true optimal strategy

Incorporating exploration
• Idea: explore more in the beginning,

become more and more greedy over time
• Standard (“greedy”) selection of optimal action:

• Modified strategy with exploration function f(u,n)
f(u,n) trades off greed [preference for high utility u]
against curiosity [preference for low observed frequencies n]

÷
ø

ö
ç
è

æ
= å

Î ')('
)',(),'()',|'(maxarg

ssAa
asNsUassPfa

î
í
ì <

=
+

otherwise
if

),(
u

NnR
nuf e

exploration function
Number of times we’ve taken

action a’ in state s

å
Î

=
')('

)'()',|'(maxarg
ssAa

sUassPa

Set utility of a’ to R+ [= optimistic reward estimate]
if a’ in state s explored less than Ne [a constant] times

Set utility to actual observed utility

Model-free reinforcement learning
• Idea: learn how to act without explicitly learning the

transition probabilities P(s’ | s, a)
• Q-learning: learn an action-utility function Q(s,a) that

tells us the value of doing action a in state s
• Relationship between Q-values and utilities:

• Selecting an action:
• Compare with:

• With Q-values, don’t need to know the transition model to
select the next action

),(max)(asQsU a=

),(maxarg)(* asQs a=p
å=
'

*)'(),|'(maxarg)(
s

a sUassPsp

Temporal difference (TD) learning
• Equilibrium constraint on Q values:

• Temporal difference (TD) update:
• Pretend that the currently observed transition (s,a,s’)

is the only possible outcome.
Call this “local quality” as !"#$%" &, (;
it is computed using ! &, (.

• Then interpolate between ! &, (and !"#$%"(&, ()
to compute !+,-(&, ().

å+=
'

')','(max),|'()(),(
s

a asQassPsRasQ g

),(),()1(),(asQasQasQ localnew aa +-=

)','(max)(),(' asQsRasQ a
local g+=

Function approximation
• So far, we’ve assumed a lookup table representation for utility

function U(s) or action-utility function Q(s,a)
• But what if the state space is really large or continuous?
• Alternative idea: approximate the utility function, e.g.,

as a weighted linear combination of features:

• RL algorithms can be modified to estimate these weights
• More generally, functions can be nonlinear (e.g., neural networks)

• Recall: features for designing evaluation functions in games
• Benefits:

• Can handle very large state spaces (games), continuous state spaces (robot
control)

• Can generalize to previously unseen states

)()()()(2211 sfwsfwsfwsU nn!++=

CS440/ECE448 Lecture 23:
Deep Learning

Mark Hasegawa-Johnson, 4/2019
Including Slides by

Svetlana Lazebnik, 10/2016

Notation Usually we have two databases:

• A training database consists of !
different training tokens (one
token = one image, or sentence,
or speech files, or whatever).
We write them as vectors, #⃗$ =
[#$', … , #$*], for 1 ≤ . ≤ !.
Each one has an associated
reference (ground truth) label /$.

• A testing database contains only
the test tokens #⃗$, for N + 1 ≤ .

Validation classification#⃗' #⃗2 #⃗3 #⃗4

/' =
“cam

era”
/2 =

“abacus”
/3 =

“slug”
/4 =

“chickens”

For both training and testing, we
have to present the token "⃗# to
the input of the neural net, and
then the neural net computes
some output $⃗#.

$#

Notation

Notation
A deep neural net has thousands of
neurons (nodes).
Each neuron (node) has two key
variables:
• The “affine”, !"#, models the

synapse of a biological neuron,
collecting information from a lot of
other neurons:

!"# =%
&
'"&(&#

• The “activation,” '"#, models the
axon of a biological neuron i.e., it’s
zero when the input is negative,
and nonzero when the input is
positive:

'"# =)(!"#)

Notation for a Neural Net without Layers

• !"# is the $%& activation for the '%& token:
• Some of the activations are provided by the input, i.e., !"# =)"# for some of

the $’s.
• Some of the activations are outputs, i.e., *"# = !"# for some of the $’s.
• Some of the activations are neither inputs nor outputs. Those are called

“hidden nodes.”
• Which	ones	are	inputs,	hidden,	and	outputs?		Well,	it	depends	on	the	
particular	neural	network	design,	there’s	no	way	to	know,	in	general.

• C"# is the $%& affine for the '%& token
• DE# is the (G, $)%& weight.

Notation for a Neural Net with Layers

• !"#
(%) is the '() activation in the *+, layer for the -() token:
• The 0() layer is the input, i.e., !"#

(/) = 1"#.

• The 2() layer is the output, i.e., 3"# = !"#
(4).

• All other layers are “hidden layers.”

• 5"#
(%) is the '() affine in the *+, layer for the -() token

• 67#
(%) is the (8, ')() weight in the *+, layer.

5"#
(%) =:

7
!"7
(%;<)67#

(%)

Forward Propagation (Using the Neural Net)
• We use a neural net by presenting a token "⃗#, and computing the

output $⃗#.
• This is done by setting:
• %#&

(() = "#&
• For 1 ≤ - ≤ .:

• /#&
(0) = ∑2 %#2

(034)52&
(0)

• %#&
(0) = 6(/#&

(0))
• $#& = %#&

(7)

• This algorithm is called “forward propagation,” because information
propagates forward through the network, from the 09: layer to the
.9: layer.

How well did it do?
• We test a neural net by computing "⃗# from $⃗#, for each of the tokens
1 ≤ ' ≤ (, and then comparing the network output to the reference
(ground truth) answer,)#.
• During training: we measure error using training data, and try to train the

network in order to reduce the error rate.
• During ”development test:” we compare different networks on the

development test data.
• During “evaluation test:” our customer tests our network with data it’s never

seen before.

• But… How do we compare "⃗# to)#? i.e., how we define “error” or
“loss”?

Regression problems: Sum-squared error
• For example, suppose that the

network output is an image.
• An image is a vector, "⃗# ="#%, … , "#(
• The “right answer” is the image we

were trying to reconstruct,)# =)#%, … ,)#(.
• Then a reasonable loss function is

sum-squared error (SSE):

*++, =-
#.%

/
-
0.%

(
)#0 − "#0

2

Classifier problems: Cross-entropy
• On the other hand, for this course, we

usually want !" to be some category label,
for example, !" = “%ℎ'%()*+”.

• In that case, we can use a special kind of
nonlinearity at the output of our neural
network, called a softmax, that gives a
probabilistic interpretation to the network
outputs:

-". = /(!" = 123 type of category)
• Then a reasonable loss function is the log

probability of the correct class:

?@A = −C
"DE

F

ln -",JK

• This error criterion is called “cross entropy”
for reasons that are fascinating but way
beyond the scope of this course.

Validation classificationM⃗E M⃗N M⃗O M⃗P

!
E
=

“cam
era”

!
N
=

“abacus”
!
O
=

“slug”
!
P
=

“chickens”

Classifier output: Softmax
• We want !" to be some category label, for example, !" = “%&&'(”.
• In that case, we want *"+ to meet the criteria for a probability, i.e., we

need *"+ ≥ 0 and ∑+ *"+ = 1.
• In order to do that, we use a special kind of nonlinearity in the last

layer of the neural net, called a softmax:

*"+ =
0123

(5)

∑7 0128
(5)

Training the Neural Net
A neural net is trained according to

gradient descent:

!"#
(%) = !"#

(%) −) *+
*!"#

(%)

So that the loss function, L,
gradually approaches a local

minimum.

Training the Neural Net: Notation

• Let’s use the following shorthand:

! Variable = *+
*(Variable)

For example:
!./0

(1) = *+
*./0

(1)

Training the Neural Net: Last Layer

The cross entropy loss is:

!"# = −&
'()

*
ln -',/0

= −&
'()

*
ln 120,30

(5)

∑8 1209
(5)

Its derivative is:

:;'<
(=) = >-'< − 1 @ = A'

-'< @ ≠ A'

Here’s how to remember
that:

• If j is the right answer,
then error is minimized
(:;'<

(=) = 0) when -'< = 1.

• If j is the wrong answer,
then error is minimized
(:;'<

(=) = 0) when -'< = 0.

1

0

Loss
(j is the
wrong
answer)

-'<

-'<

Loss
(j is the
right
answer)

Credit: Tosha, distributed under CC-BY 1.0,
https://commons.wikimedia.org/wiki/File:Parabola-antipodera.gif

Convolution versus Matrix Multiplication

A regular neural net uses a matrix
multiplication in each layer:

!"#
(%) =(

)
*")
(%+,)-)#

(%)

A convolutional neural net uses a
convolution at each layer:

!"#
(%) =(

)
*",)
(%+,)-#+)

(%)

=

*⃗"
(%+,)!⃗"

(%) = -(%) 0

=

*⃗"
(%+,)!⃗"

(%) = -(%) ∗

Convolution with Many Channels
Usually, we want the convolutional network to compute many different channels, c:

!"#,%
(') =*

+
,",+
('-.)/#-+,%

(')

Each of the channels is computing a different type of feature (average, edge, etc.).
Each pixel, in each output channel, tells the degree to which that channel exists at that
location in the image.

=

,⃗"
('-.)!⃗",.

('), … , !⃗",2
(') = /.('), … ,/2(') ∗

Deep Reinforcement
Learning

CS440/ECE448 Lecture
24

Slides by Svetlana Lazebnik,
11/2017
Modified by Mark Hasegawa-
Johnson, 4/2019

Image: Megajuice, CC0,
https://commons.wikimedia.org/

w/index.php?curid=57895741

https://commons.wikimedia.org/

Deep Q learning
• Regular TD update: “nudge” Q(s,a) towards the target

• Deep Q learning: encourage estimate to match the target by
minimizing squared error:

• Compare to supervised learning:

• Key difference: the target in Q learning is not fixed – (s’,a’) is just one
step ahead of (s,a)!

()),()','(max)(),(),(' asQasQsRasQasQ a -++¬ ga

L(w) = R(s)+γmaxa 'Q(s ',a ';w)−Q(s,a;w)()2

L(w) = y− f (x;w)()2

target estimate

Online Q learning algorithm
• In state s, perform action a. Environment sends you to state s’; choose

the action a’ that you’ll perform there.
• Observe: !"#$%"(',)) = , ' + .max%2 !('2,)2;4)
• Update weights to reduce the error

5 4 = !"#$%" − !(',);4) 7

• Gradient:
∇95 = ! ',);4 − !"#$%" ∇9!

• Weight update:
4⟵4−;∇95

• This is called stochastic gradient descent (SGD)
• “Stochastic” because the training sample (s,a,s’,a’) was chosen at

random by our exploration function

Does Q-learning Converge?

• No!
• Because:

! = argmax((*, !)
• If we always choose the action that is best, according to our current

estimate of the Q-function, then we can never learn anything about
any of the other actions!

Incorporating exploration (slide from last week)
• Idea: explore more in the beginning, become more and

more greedy over time
• Standard (“greedy”) selection of optimal action:

• Modified strategy:

÷
ø

ö
ç
è

æ
= å

Î ')('
)',(),'()',|'(maxarg

ssAa
asNsUassPfa

î
í
ì <

=
+

otherwise
if

),(
u

NnR
nuf e

exploration
function

Number of times we’ve
taken action a’ in state

s

å
Î

=
')('

)'()',|'(maxarg
ssAa

sUassPa

(optimistic reward
estimate)

…but that doesn’t work either:

• … which means that we get at least !" samples of each
action
• We can estimate Q(s,a) based on !" samples
• But !" is a constant, so it never → ∞
• So Error never → 0

î
í
ì <

=
+

otherwise
if

),(
u

NnR
nuf e

Policy gradient methods

• Learning the policy directly can be much simpler than learning Q
values
• We can train a neural network to output stochastic policies, or

probabilities of taking each action in a given state
• Softmax policy:

π (s,a;u) =
exp f (s,a;u)()
exp f (s,a ';u)()

a '∑

Policy gradient methods

• Learning the policy directly can be much simpler than learning Q
values
• We can train a neural network to output stochastic policies, or

probabilities of taking each action in a given state
• Softmax policy:

π (s,a;u) =
exp f (s,a;u)()
exp f (s,a ';u)()

a '∑

Policy gradient: the softmax function
• Notice that the softmax is normalized so that

! ", $; & ≥ 0, and ∑*! ", $; & = 1

• So we can interpret ! ", $;- as some kind of probability. Something like
“the probability that $ is the best action to take from state ".”
• In reality, there is no such probability. There is just one correct action. But

the agent doesn’t know what it is! So ! ", $; & is kind of like the agent’s
“degree of belief” that $ is the best action (determined by parameters &).

Actor-critic algorithm

• Remember the relationship between the utility of a state, and the quality
of an action:

! " = max' ((", +)
• If we don’t know which action is best, then we could say that

!(") ≈.
'
/ ", +; 1 ((", +;2)

• / ", +; 1 is the “actor:” a neural net that tells the agent how to act.
• ((", +;2) is the “critic:” a neural net that tells the agent how good or

bad that action was.

Actor-critic algorithm
• Define objective function as total discounted reward:

• The gradient for a stochastic policy is given by

• Actor network update:
• Critic network update: use Q learning (following actor’s

policy)

∇uJ = E ∇u logπ (s,a;u)Q
π (s,a;w)"# $%

J(u) = E R1 +γR2 +γ
2R3 +...!" #$

Actor
network

Critic network

u← u+α∇uJ

CS440/ECE448 Artificial Intelligence

Lecture 25:
Natural Language Processing

with Neural Nets
Julia Hockenmaier

April 2019

Neural Language Models

A neural LM defines a distribution over the V words in the
vocabulary, conditioned on the preceding words.

• Output layer: V units (one per word in the vocabulary)
with softmax to get a distribution
• Input: Represent each preceding word by its

d-dimensional embedding.
• Fixed-length history (n-gram): use preceding n−1 words
• Variable-length history: use a recurrent neural net

58

Recurrent neural networks (RNNs)

Basic RNN: Modify the standard feedforward architecture
(which predicts a string w0…wn one word at a time) such that the
output of the current step (wi) is given as additional input to the
next time step (when predicting the output for wi+1).
• “Output” — typically (the last) hidden layer.

59

input

output

hidden

input

output

hidden

Feedforward Net Recurrent Net

Basic RNNs

Each time step corresponds to a feedforward net where the
hidden layer gets its input not just from the layer below but also
from the activations of the hidden layer at the previous time step

60

input

output

hidden

CS440/ECE448 Lecture 26:
Speech

Mark Hasegawa-Johnson, 4/17/2019, CC-By 3.0

https://creativecommons.org/licenses/by/3.0/

A Sequence Model you Know: HMM
You’ve seen this slide before, in lecture 20, on HMMs…

• Markov assumption for state transitions
• The current state is conditionally independent of all the other

states given the state in the previous time step
P(Qt | Q0:t-1) = P(Qt | Qt-1)

• Markov assumption for observations
• The evidence at time t depends only on the state at time t
P(Et | Q0:t, E1:t-1) = P(Et | Qt)

Q0

E1

Q1

Et-1

Qt-1

Et

Qt…
E2

Q2

The Problem of Continuous Observations
• But what about the likelihood? How can we model

! "#|$# ?
• The big problem: "# is continuous, not discrete, so we can’t model
!("#|$#) using a lookup table!

Q0

E1

Q1

Et-1

Qt-1

Et

Qt…
E2

Q2

Solutions to the Problem of Continuous Observations

Most systems model ! "|# using one of these three standard methods:
1. Use a parameterized probability density, such as a Gaussian. In this case

you learn senone-dependent parameters ($% and &%').
2. Quantize E (using vector quantization) to one of K different code vectors.

Then you can learn the lookup table !(" = *|# for 1 ≤ * ≤ -.
3. Use a neural net with a softmax output to compute ! #|" , then use

Bayes’ rule to get ! "|# from ! #|" .

Q0

E1

Q1

Et-1

Qt-1

Et

Qt…
E2

Q2

Classifier output: Softmax
You’ve seen this slide before, in lecture 24, on Deep Learning….
• We want !" to be a senone, for example, !" = “the jth type of phoneme ɑɪ”.
• In that case, we can force the neural net to learn want the neural net to compute

a probability,
&' = (! =)|*

…if we just force &' to meet the criteria for a probability, i.e., we need

&' ≥ 0, .
'
&' = 1

• In order to do that, we use a special kind of nonlinearity in the last layer of the
neural net, called a softmax:

&' =
012

∑4 015

•The softmax computes ! "|#
•The HMM needs to know ! #|"
•How can we get ! #|" from ! "|# ?
•Answer: Bayes’ rule!

Hybrid DNN-HMM: the problem

Estimating p(E|Q) from p(Q|E)

Bayes rule:

! " # = ! # " ! "
! #

… but notice, if our goal is to find the best possible state sequence
#%,… , #(, then we don’t care about the ! " factor:

argmax
.

!("|#) = argmax
.

! # "
! #

Hybrid DNN-HMM: the solution

! "#, "%, &#, &%, … (= !* &#|&+ ! "# &# !* &%|&# ! "% &% …

∝ !* &#|&+
! &# "#
! &#

!* &%|&#
! &% "%
! &%

…

From the neural net

HMM Parameters

Hybrid DNN-HMM: intuitive explanation

• Prior probability, p(Q), tells how frequently HMM state Q is, in normal
conversations, if we don’t hear the speech
• DNN computes a posterior probability, p(Q|E), saying how probable Q

is given the available evidence
• If p(Q|E) > p(Q), that means that the evidence favors Q more than

usual, so we should consider the possibility that this rare word has
been spoken.

• If p(Q|E) is still a small number, that doesn’t really matter; what really
matters is whether p(Q|E) > p(Q)

CS440/ECE448 Lecture 27:
Societal Impacts of AI

Slides by Svetlana Lazebnik, 12/2017
Modified by Mark Hasegawa-Johnson, 4/2019

Image source: https://www.britac.ac.uk/
audio/machines-morality-and-future-medical-care

AI and privacy
• Concerns
• Personal data being inadvertently revealed or falling into the wrong hands
• Personal data being misused by the parties who collected it
• Personal data enabling individuals to be manipulated without their knowledge

• Potential solutions
• Technological: encryption, differential confidentiality, anonymizing tools
• Regulation: require the use of a technology; forbid disclosure

AI, bias, and fairness
• Concerns
• AI will inadvertently absorb biases from data
• Making important decisions based on biased data will

exacerbate bias: especially for law enforcement,
employment, loans, health insurance, etc.

• Even well-intentioned applications can create negative side
effects: filter bubbles, targeted advertising

• Outcomes cannot be appealed because AI systems are
opaque and proprietary

• Potential solutions
• Regulation and transparency: e.g., right to explanation
• More inclusivity among AI technologists: AI4ALL

https://en.wikipedia.org/wiki/Right_to_explanation
http://ai-4-all.org/

AI ethics

• We should be aware of all these issues when developing AI
technologies!
• Privacy violations
• Potential for deception, misuse and manipulation
• Exacerbating bias and unfair outcomes
• Lack of transparency and due process
• Threats to human rights and dignity
• Weaponization
• Unintended consequences

