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CS 440/ECE448 Lecture 19:
Bayes Net Inference

Mark Hasegawa-Johnson, 3/2019 modified by Julia 
Hockenmaier 3/2019
Including slides by Svetlana Lazebnik, 11/2016



Parameter learning
• Inference problem: given values of evidence variables 

E = e, answer questions about query variables X using 
the posterior P(X | E = e)

• Learning problem: estimate the parameters of the 
probabilistic model P(X | E) given a training sample
{(x1,e1), …, (xn,en)}

• Learning from complete observations: relative 
frequency estimates

• Learning from data with missing observations:
EM algorithm



Missing data: the EM algorithm
• The EM algorithm starts (“Expectation Maximization”) 

starts with an initial guess for each parameter value.
• We try to improve the initial guess, using the algorithm on the 

next two slides:
• E-step 
• M-step
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Missing data: the EM algorithm
• E-Step (Expectation): Given the model parameters, replace each of the missing 

numbers with a probability (a number between 0 and 1) using

! " = 1 %, ',( = !(" = 1, %, ',()
! " = 1, %, ',( + !(" = 0, %, ',()
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Missing data: the EM algorithm
• M-Step (Maximization): Given the missing data estimates, replace each of the 

missing model parameters using

! Variable = T Parents = value = 1[# times Variable = 5, Parents = value]
1[#times Parents = value]
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CS440/ECE448 Lecture 20:
Hidden Markov Models

Slides by Svetlana Lazebnik, 11/2016
Modified by Mark Hasegawa-Johnson, 3/2019



Hidden Markov Models
• At each time slice t, the state of the world is 

described by an unobservable (hidden) variable Xt
and an observable evidence variable Et

• Transition model: The current state is conditionally 
independent of all the other states given the state in 
the previous time step
Markov assumption: P(Xt | X0, …, Xt-1) := P(Xt | Xt-1) 
• Observation model: The evidence at time t depends 

only on the state at time t
Markov assumption: P(Et | X0:t, E1:t-1) = P(Et | Xt) 

X0

E1

X1

Et-1

Xt-1

Et

Xt…
E2

X2



state

evidence

Example

Transition model

Observation model



An alternative visualization
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Rt-1 = T 0.7 0.3

Rt-1 = F 0.3 0.7
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HMM Learning and Inference
• Inference tasks
• Filtering: what is the distribution over the current state Xt

given all the evidence so far, e1:t
• Smoothing: what is the distribution of some state Xk given the 

entire observation sequence e1:t?
• Evaluation: compute the probability of a given observation 

sequence e1:t
• Decoding: what is the most likely state sequence X0:t given the 

observation sequence e1:t?
• Learning
• Given a training sample of sequences, learn the model 

parameters (transition and emission probabilities)
• EM algorithm



CS440/ECE448 Lecture 21:
Markov Decision Processes

Slides by Svetlana Lazebnik, 11/2016
Modified by Mark Hasegawa-Johnson, 3/2019



Markov Decision Processes (MDPs)
• Components that define the MDP.  Depending on the problem 

statement, you either know these, or you learn them from data:
• States s, beginning with initial state s0
• Actions a

• Each state s has actions A(s) available from it
• Transition model P(s’ | s, a)

• Markov assumption: the probability of going to s’ from s depends only 
on s and a and not on any other past actions or states

• Reward function R(s)
• Policy – the “solution” to the MDP:

• p(s) ∈ A(s): the action that an agent takes in any given state



Maximizing expected utility
• The optimal policy p(s) should maximize the expected utility over all 

possible state sequences produced by following that policy:
!
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• How to define the utility of a state sequence?
• Sum of rewards of individual states
• Problem: infinite state sequences
• Solution: discount individual state rewards by a factor g between 0 and 1:
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Utilities of states

• Expected utility obtained by policy p starting in state s:

!" # = %
&'(') &)*+),-)&
&'(.'/,0 1.23 &

4 #5675895|#, < = = # ! #5675895

• The “true” utility of a state, denoted U(s), is the best possible
expected sum of discounted rewards 
• if the agent executes the best possible policy starting in state s

• Reminiscent of minimax values of states…



Finding the utilities of states
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• If state s’ has utility U(s’), then 
what is the expected utility of 
taking action a in state s?

• How do we choose the optimal 
action?

• What is the recursive expression for U(s) in terms of the utilities 
of its successor states?

å+=
'

)'(),|'(max)()(
s

a sUassPsRsU g



The Bellman equation
• Recursive relationship between the utilities of 

successive states:

• For N states, we get N equations in N unknowns
• Solving them solves the MDP
• Nonlinear equations -> no closed-form solution, need to use 

an iterative solution method (is there a globally optimum 
solution?)
• We could try to solve them through expectiminimax search, 

but that would run into trouble with infinite sequences
• Instead, we solve them algebraically
• Two methods: value iteration and policy iteration
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Method 1: Value iteration
• Start out with every U(s) = 0
• Iterate until convergence
• During the ith iteration, update the utility of each state 

according to this rule:

• In the limit of infinitely many iterations, 
this is guaranteed to find the correct utility values
• Error decreases exponentially, so in practice, don’t need an 

infinite number of iterations…
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Method 2: Policy iteration

• Start with some initial policy p0 and alternate between the following steps:
• Policy evaluation: calculate Upi(s) for every state s
• Policy improvement: calculate a new policy pi+1 based on the updated utilities

• Notice it’s kind of like hill-climbing in the N-queens problem.
• Policy evaluation: Find ways in which the current policy is suboptimal
• Policy improvement: Fix those problems

• Unlike Value Iteration, this is guaranteed to converge in a finite number of 
steps, as long as the state space and action set are both finite.



Method 2, Step 1: Policy evaluation
• Given a fixed policy p, calculate Up(s) for every state s

• p(s) is fixed, therefore !(#$|#, ' # ) is an #’×# matrix, 
therefore we can solve a linear equation to get Up(s)!
• Why is this “Policy Evaluation” formula so much 

easier to solve than the original Bellman equation?
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CS 440/ECE448 Lecture 22: 
Reinforcement Learning

Slides by Svetlana Lazebnik, 11/2016

Modified by Mark Hasegawa-Johnson, 4/2019

By Nicolas P. Rougier - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=29327040



Reinforcement learning strategies

• Model-based
• Learn the model of the MDP (transition probabilities and rewards) 

and try to solve the MDP concurrently
• Model-free
• Learn how to act without explicitly learning 

the transition probabilities P(s’ | s, a)
• Q-learning: learn an action-utility function Q(s,a)

that tells us the value of doing action a in state s



Model-based reinforcement learning
• Basic idea: 

Try to learn the model of the MDP (transition probabilities and rewards) 
and learn how to act (solve the MDP) simultaneously

• Learning the model:
• Keep track of how many times state s’ follows state s when you take action a
• Update the transition probability P(s’ | s, a) 

according to these relative frequencies
• Keep track of the rewards R(s)

• Learning how to act:
• Estimate the utilities U(s) using Bellman’s equations
• Choose the action that maximizes expected future utility:
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Exploration vs. exploitation
• Exploration: take a new action with unknown consequences
• Pros: 

• Get a more accurate model of the environment
• Discover higher-reward states than the ones found so far

• Cons: 
• When you’re exploring, you’re not maximizing your utility
• Something bad might happen

• Exploitation: go with the best strategy found so far
• Pros:

• Maximize reward as reflected in the current utility estimates
• Avoid bad stuff

• Cons: 
• Might also prevent you from discovering the true optimal strategy



Incorporating exploration
• Idea: explore more in the beginning, 

become more and more greedy over time
• Standard (“greedy”) selection of optimal action:

• Modified strategy with exploration function f(u,n)
f(u,n) trades off greed [preference for high utility u] 
against curiosity [preference for low observed frequencies n] 
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Model-free reinforcement learning
• Idea: learn how to act without explicitly learning the 

transition probabilities P(s’ | s, a)
• Q-learning: learn an action-utility function Q(s,a) that 

tells us the value of doing action a in state s
• Relationship between Q-values and utilities:

• Selecting an action:
• Compare with:

• With Q-values, don’t need to know the transition model to 
select the next action
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Temporal difference (TD) learning
• Equilibrium constraint on Q values:

• Temporal difference (TD) update:
• Pretend that the currently observed transition (s,a,s’) 

is the only possible outcome.  
Call this “local quality” as !"#$%" &, ( ; 
it is computed using ! &, ( .

• Then interpolate between ! &, ( and !"#$%"(&, ()
to compute !+,-(&, ().
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Function approximation
• So far, we’ve assumed a lookup table representation for utility 

function U(s) or action-utility function Q(s,a)
• But what if the state space is really large or continuous?
• Alternative idea: approximate the utility function, e.g., 

as a weighted linear combination of features:

• RL algorithms can be modified to estimate these weights
• More generally, functions can be nonlinear (e.g., neural networks)

• Recall: features for designing evaluation functions in games
• Benefits:

• Can handle very large state spaces (games), continuous state spaces (robot 
control)

• Can generalize to previously unseen states
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CS440/ECE448 Lecture 23: 
Deep Learning

Mark Hasegawa-Johnson, 4/2019
Including Slides by 

Svetlana Lazebnik, 10/2016



Notation Usually we have two databases:

• A training database consists of !
different training tokens (one 
token = one image, or sentence, 
or speech files, or whatever).  
We write them as vectors, #⃗$ =
[#$', … , #$*], for 1 ≤ . ≤ !.   
Each one has an associated 
reference (ground truth) label /$.

• A testing database contains only 
the test tokens #⃗$, for N + 1 ≤ .

  

Validation classification#⃗' #⃗2 #⃗3 #⃗4

/' =
“cam

era”
/2 =

“abacus”
/3 =

“slug”
/4 =

“chickens”



For both training and testing, we 
have to present the token "⃗# to 
the input of the neural net, and 
then the neural net computes 
some output $⃗#.

$#

Notation



Notation
A deep neural net has thousands of 
neurons (nodes). 
Each neuron (node) has two key 
variables:
• The “affine”, !"#, models the 

synapse of a biological neuron, 
collecting information from a lot of 
other neurons:

!"# =%
&
'"&(&#

• The “activation,” '"#, models the 
axon of a biological neuron i.e., it’s 
zero when the input is negative, 
and nonzero when the input is 
positive:

'"# = )(!"#)



Notation for a Neural Net without Layers

• !"# is the $%& activation for the '%& token:
• Some of the activations are provided by the input, i.e., !"# = )"# for some of 

the $’s.  
• Some of the activations are outputs, i.e., *"# = !"# for some of the $’s.  
• Some of the activations are neither inputs nor outputs.  Those are called 

“hidden nodes.”
• Which	ones	are	inputs,	hidden,	and	outputs?		Well,	it	depends	on	the	
particular	neural	network	design,	there’s	no	way	to	know,	in	general.

• C"# is the $%& affine for the '%& token
• DE# is the (G, $)%& weight.



Notation for a Neural Net with Layers

• !"#
(%) is the '() activation in the *+, layer for the -() token:
• The 0() layer is the input, i.e., !"#

(/) = 1"#.  

• The 2() layer is the output, i.e., 3"# = !"#
(4).  

• All other layers are “hidden layers.”

• 5"#
(%) is the '() affine in the *+, layer for the -() token

• 67#
(%) is the (8, ')() weight in the *+, layer.

5"#
(%) =:

7
!"7
(%;<)67#

(%)



Forward Propagation (Using the Neural Net)
• We use a neural net by presenting a token "⃗#, and computing the 

output $⃗#. 
• This is done by setting:
• %#&

(() = "#&
• For 1 ≤ - ≤ .:

• /#&
(0) = ∑2 %#2

(034)52&
(0)

• %#&
(0) = 6(/#&

(0))
• $#& = %#&

(7)

• This algorithm is called “forward propagation,” because information 
propagates forward through the network, from the 09: layer to the 
.9: layer.



How well did it do?
• We test a neural net by computing "⃗# from $⃗#, for each of the tokens 
1 ≤ ' ≤ (, and then comparing the network output to the reference 
(ground truth) answer, )#.
• During training: we measure error using training data, and try to train the 

network in order to reduce the error rate.
• During ”development test:” we compare different networks on the 

development test data.
• During “evaluation test:” our customer tests our network with data it’s never 

seen before.

• But… How do we compare "⃗# to )#?  i.e., how we define “error” or 
“loss”?



Regression problems: Sum-squared error
• For example, suppose that the 

network output is an image.
• An image is a vector, "⃗# ="#%, … , "#(
• The “right answer” is the image we 

were trying to reconstruct, )# =)#%, … , )#( .
• Then a reasonable loss function is 

sum-squared error (SSE):

*++, =-
#.%

/
-
0.%

(
)#0 − "#0

2



Classifier problems: Cross-entropy
• On the other hand, for this course, we 

usually want !" to be some category label, 
for example, !" = “%ℎ'%()*+”.

• In that case, we can use a special kind of 
nonlinearity at the output of our neural 
network, called a softmax, that gives a 
probabilistic interpretation to the network 
outputs:

-". = /(!" = 123 type of category)
• Then a reasonable loss function is the log 

probability of the correct class:

?@A = −C
"DE

F

ln -",JK

• This error criterion is called “cross entropy” 
for reasons that are fascinating but way 
beyond the scope of this course.

  

Validation classificationM⃗E M⃗N M⃗O M⃗P

!
E
=

“cam
era”

!
N
=

“abacus”
!
O
=

“slug”
!
P
=

“chickens”



Classifier output: Softmax
• We want !" to be some category label, for example, !" = “%&&'(”.
• In that case, we want *"+ to meet the criteria for a probability, i.e., we 

need *"+ ≥ 0 and ∑+ *"+ = 1.
• In order to do that, we use a special kind of nonlinearity in the last 

layer of the neural net, called a softmax:

*"+ =
0123

(5)

∑7 0128
(5)



Training the Neural Net
A neural net is trained according to 

gradient descent:

!"#
(%) = !"#

(%) − ) *+
*!"#

(%)

So that the loss function, L, 
gradually approaches a local 

minimum.



Training the Neural Net: Notation

• Let’s use the following shorthand:

! Variable = *+
*(Variable)

For example:
!./0

(1) = *+
*./0

(1)



Training the Neural Net: Last Layer

The cross entropy loss is:

!"# = −&
'()

*
ln -',/0

= −&
'()

*
ln 120,30

(5)

∑8 1209
(5)

Its derivative is:

:;'<
(=) = >-'< − 1 @ = A'

-'< @ ≠ A'

Here’s how to remember 
that:

• If j is the right answer, 
then error is minimized 
(:;'<

(=) = 0) when -'< = 1.

• If j is the wrong answer, 
then error is minimized 
(:;'<

(=) = 0) when -'< = 0.

1

0

Loss
(j is the
wrong
answer)

-'<

-'<

Loss
(j is the
right
answer)

Credit: Tosha, distributed under CC-BY 1.0,
https://commons.wikimedia.org/wiki/File:Parabola-antipodera.gif



Convolution versus Matrix Multiplication

A regular neural net uses a matrix 
multiplication in each layer:

!"#
(%) =(

)
*")
(%+,)-)#

(%)

A convolutional neural net uses a 
convolution at each layer:

!"#
(%) =(

)
*",)
(%+,)-#+)

(%)

=

*⃗"
(%+,)!⃗"

(%) = -(%) 0

=

*⃗"
(%+,)!⃗"

(%) = -(%) ∗



Convolution with Many Channels
Usually, we want the convolutional network to compute many different channels, c:

!"#,%
(') =*

+
,",+
('-.)/#-+,%

(')

Each of the channels is computing a different type of feature (average, edge, etc.).
Each pixel, in each output channel, tells the degree to which that channel exists at that 
location in the image.

=

,⃗"
('-.)!⃗",.

('), … , !⃗",2
(') = /.('), … ,/2(') ∗



Deep Reinforcement 
Learning

CS440/ECE448 Lecture 
24
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11/2017
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Image: Megajuice, CC0, 
https://commons.wikimedia.org/
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Deep Q learning
• Regular TD update: “nudge” Q(s,a) towards the target

• Deep Q learning: encourage estimate to match the target by 
minimizing squared error:

• Compare to supervised learning:

• Key difference: the target in Q learning is not fixed – (s’,a’) is just one 
step ahead of (s,a)!

( )),()','(max)(),(),( ' asQasQsRasQasQ a -++¬ ga

L(w) = R(s)+γmaxa 'Q(s ',a ';w)−Q(s,a;w)( )2

L(w) = y− f (x;w)( )2

target estimate



Online Q learning algorithm
• In state s, perform action a.  Environment sends you to state s’; choose 

the action a’ that you’ll perform there.
• Observe: !"#$%"(', )) = , ' + .max%2 !('2, )2;4)
• Update weights to reduce the error

5 4 = !"#$%" − !(', );4) 7

• Gradient:
∇95 = ! ', );4 − !"#$%" ∇9!

• Weight update:
4⟵4−;∇95

• This is called stochastic gradient descent (SGD)
• “Stochastic” because the training sample (s,a,s’,a’) was chosen at 

random by our exploration function 



Does Q-learning Converge?

• No!
• Because:

! = argmax((*, !)
• If we always choose the action that is best, according to our current 

estimate of the Q-function, then we can never learn anything about 
any of the other actions!



Incorporating exploration (slide from last week)
• Idea: explore more in the beginning, become more and 

more greedy over time
• Standard (“greedy”) selection of optimal action:

• Modified strategy:
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…but that doesn’t work either:

• … which means that we get at least !" samples of each 
action
• We can estimate Q(s,a) based on !" samples
• But !" is a constant, so it never → ∞
• So Error never → 0
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Policy gradient methods

• Learning the policy directly can be much simpler than learning Q 
values
• We can train a neural network to output stochastic policies, or 

probabilities of taking each action in a given state
• Softmax policy:

π (s,a;u) =
exp f (s,a;u)( )
exp f (s,a ';u)( )

a '∑



Policy gradient methods

• Learning the policy directly can be much simpler than learning Q 
values
• We can train a neural network to output stochastic policies, or 

probabilities of taking each action in a given state
• Softmax policy:

π (s,a;u) =
exp f (s,a;u)( )
exp f (s,a ';u)( )

a '∑



Policy gradient: the softmax function
• Notice that the softmax is normalized so that 

! ", $; & ≥ 0, and ∑*! ", $; & = 1

• So we can interpret ! ", $;- as some kind of probability.  Something like 
“the probability that $ is the best action to take from state ".”
• In reality, there is no such probability.  There is just one correct action.  But 

the agent doesn’t know what it is!  So ! ", $; & is kind of like the agent’s 
“degree of belief” that $ is the best action (determined by parameters &).



Actor-critic algorithm

• Remember the relationship between the utility of a state, and the quality 
of an action:

! " = max' ((", +)
• If we don’t know which action is best, then we could say that 

!(") ≈.
'
/ ", +; 1 ((", +;2)

• / ", +; 1 is the “actor:” a neural net that tells the agent how to act.
• ((", +;2) is the “critic:” a neural net that tells the agent how good or 

bad that action was.



Actor-critic algorithm
• Define objective function as total discounted reward: 

• The gradient for a stochastic policy is given by

• Actor network update:
• Critic network update: use Q learning (following actor’s 

policy)

∇uJ = E ∇u logπ (s,a;u)Q
π (s,a;w)"# $%

J(u) = E R1 +γR2 +γ
2R3 +...!" #$

Actor 
network

Critic network 

u← u+α∇uJ
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Neural Language Models

A neural LM defines a distribution over the V words in the 
vocabulary, conditioned on the preceding words.

• Output layer: V units (one per word in the vocabulary) 
with softmax to get a distribution
• Input: Represent each preceding word by its 

d-dimensional embedding. 
• Fixed-length history (n-gram): use preceding n−1 words
• Variable-length history: use a recurrent neural net

58



Recurrent neural networks (RNNs)

Basic RNN: Modify the standard feedforward architecture 
(which predicts a string w0…wn one word at a time) such that the 
output of the current step (wi) is given as additional input to the 
next time step (when predicting the output for wi+1).
• “Output” — typically (the last) hidden layer.

59
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Basic RNNs

Each time step corresponds to a feedforward net where the 
hidden layer gets its input not just from the layer below but also 
from the activations of the hidden layer at the previous time step
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A Sequence Model you Know: HMM
You’ve seen this slide before, in lecture 20, on HMMs…

• Markov assumption for state transitions
• The current state is conditionally independent of all the other 

states given the state in the previous time step
P(Qt | Q0:t-1) = P(Qt | Qt-1) 

• Markov assumption for observations
• The evidence at time t depends only on the state at time t
P(Et | Q0:t, E1:t-1)  = P(Et | Qt) 

Q0

E1

Q1

Et-1

Qt-1

Et

Qt…
E2

Q2



The Problem of Continuous Observations
• But what about the likelihood?  How can we model   

! "#|$# ?
• The big problem: "# is continuous, not discrete, so we can’t model 
!("#|$#) using a lookup table!

Q0

E1

Q1

Et-1

Qt-1

Et

Qt…
E2

Q2



Solutions to the Problem of Continuous Observations

Most systems model ! "|# using one of these three standard methods:
1. Use a parameterized probability density, such as a Gaussian.  In this case 

you learn senone-dependent parameters ($% and &%').
2. Quantize E (using vector quantization) to one of K different code vectors.  

Then you can learn the lookup table !( " = *|# for 1 ≤ * ≤ -. 
3. Use a neural net with a softmax output to compute ! #|" , then use 

Bayes’ rule to get ! "|# from ! #|" .

Q0

E1

Q1

Et-1

Qt-1

Et

Qt…
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Classifier output: Softmax
You’ve seen this slide before, in lecture 24, on Deep Learning….
• We want !" to be a senone, for example, !" = “the jth type of phoneme ɑɪ”.
• In that case, we can force the neural net to learn want the neural net to compute 

a probability, 
&' = ( ! = )|*

…if we just force &' to meet the criteria for a probability, i.e., we need 

&' ≥ 0, .
'
&' = 1

• In order to do that, we use a special kind of nonlinearity in the last layer of the 
neural net, called a softmax:

&' =
012

∑4 015



•The softmax computes ! "|#
•The HMM needs to know ! #|"
•How can we get ! #|" from ! "|# ? 
•Answer: Bayes’ rule!

Hybrid DNN-HMM: the problem



Estimating p(E|Q) from p(Q|E)

Bayes rule: 

! " # = ! # " ! "
! #

… but notice, if our goal is to find the best possible state sequence 
#%,… , #(, then we don’t care about the ! " factor:

argmax
.

!("|#) = argmax
.

! # "
! #



Hybrid DNN-HMM: the solution

! "#, "%, &#, &%, … ( = !* &#|&+ ! "# &# !* &%|&# ! "% &% …

∝ !* &#|&+
! &# "#
! &#

!* &%|&#
! &% "%
! &%

…

From the neural net

HMM Parameters



Hybrid DNN-HMM: intuitive explanation

• Prior probability, p(Q), tells how frequently HMM state Q is, in normal 
conversations, if we don’t hear the speech
• DNN computes a posterior probability, p(Q|E), saying how probable Q 

is given the available evidence
• If p(Q|E) > p(Q), that means that the evidence favors Q more than 

usual, so we should consider the possibility that this rare word has 
been spoken.  

• If p(Q|E) is still a small number, that doesn’t really matter; what really 
matters is whether p(Q|E) > p(Q)
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AI and privacy
• Concerns
• Personal data being inadvertently revealed or falling into the wrong hands
• Personal data being misused by the parties who collected it
• Personal data enabling individuals to be manipulated without their knowledge

• Potential solutions
• Technological: encryption, differential confidentiality, anonymizing tools
• Regulation: require the use of a technology; forbid disclosure



AI, bias, and fairness
• Concerns
• AI will inadvertently absorb biases from data
• Making important decisions based on biased data will 

exacerbate bias: especially for law enforcement, 
employment, loans, health insurance, etc.

• Even well-intentioned applications can create negative side 
effects: filter bubbles, targeted advertising

• Outcomes cannot be appealed because AI systems are 
opaque and proprietary

• Potential solutions
• Regulation and transparency: e.g., right to explanation
• More inclusivity among AI technologists: AI4ALL

https://en.wikipedia.org/wiki/Right_to_explanation
http://ai-4-all.org/


AI ethics

• We should be aware of all these issues when developing AI 
technologies!
• Privacy violations
• Potential for deception, misuse and manipulation
• Exacerbating bias and unfair outcomes
• Lack of transparency and due process
• Threats to human rights and dignity
• Weaponization
• Unintended consequences


