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Bayes’ Rule
• The product rule gives us two ways to factor 

a joint probability:
! ", $ = ! $ " ! " = ! " $ ! $

• Therefore,  

! " $ = ! $ " !(")
!($)

• Why is this useful?
• “A” is something we care about, but P(A|B) is really really hard to measure 

(example: the sun exploded)
• “B” is something less interesting, but P(B|A) is easy to measure (example: the 

amount of light falling on a solar cell)
• Bayes’ rule tells us how to compute the probability we want (P(A|B)) from 

probabilities that are much, much easier to measure (P(B|A)).

Rev. Thomas Bayes
(1702-1761)



The More Useful Version
of Bayes’ Rule

! " # = ! # " !(")
!(#)

• Remember, ' (|* is easy to measure 
(the probability that light hits our solar cell, if the sun still exists and it’s daytime).  

• Let’s assume we also know ' * (the probability the sun still exists).  

• But suppose we don’t really know ' ( (what is the probability light hits our solar 
cell, if we don’t really know whether the sun still exists or not?)

• However, we can compute ' ( = ' ( * ' * + ' ( ¬* ' ¬*

! " # = ! # " !(")
! # " ! " + ! # ¬" ! ¬"

Rev. Thomas Bayes
(1702-1761)

This version is what you 
memorize.

This version is what you 
actually use.



The Bayesian Decision: Loss Function
• The query variable, Y, is a random variable.  
• Assume its pmf, P(Y=y) is known.
• Furthermore, the true value of Y has already been determined 

--- we just don’t know what it is!

• The agent must act by saying “I believe that Y=a”.

• The agent has a post-hoc loss function !(#, %)
• !(#, %) is the incurred loss if the true value is Y=y, but the agent says “a”

• The a priori loss function !(', %) is a binary random variable
• ((!(', %) = 0) = ((' = %)
• ((!(', %) = 1) = ((' ≠ %)



The Bayesian Decision
• The observation, E, is another random variable.  

• Suppose the joint probability !(# = %, ' = () is known.

• The agent is allowed to observe the true value of E=e 
before it guesses the value of Y.
• Suppose that the observed value of E is E=e. 

Suppose the agent guesses that Y=a.  

• Then its loss, L(Y,a), is a conditional random variable:
!(*(#, +) = 0|' = () = !(# = +|' = ()
! * #, + = 1 ' = ( = ! # ≠ + ' = (

= ∑123 !(# = %|' = ()



The action, “a”, should be the value of C that has the highest posterior 
probability given the observation X=x:

! ∗= argmax! ) * = ! + = , = argmax!
) + = , * = ! )(* = !)

)(+ = ,)
= argmax! ) + = , * = ! )(* = !)

MAP decision

Maximum Likelihood (ML) decision:
! ∗

/0 = argmax a)(+ = ,|* = !)

Maximum A Posterior (MAP) decision: 
a* MAP = argmax! ) * = ! + = , = argmax!) + = , * = ! )(* = !)

likelihood priorposterior



The Bayesian Terms
• !(# = %) is called the “prior” (a priori, in Latin) because it represents 

your belief about the query variable before you see any observation.
• ! # = % ' = ( is called the “posterior” (a posteriori, in Latin), 

because it represents your belief about the query variable after you 
see the observation.
• ! ' = ( # = % is called the “likelihood” because it tells you how 

much the observation, E=e, is like the observations you expect if Y=y.
• !(' = () is called the “evidence distribution” because E is the 

evidence variable, and !(' = () is its marginal distribution.

! % ( = ! ( % !(%)
!(()



Naïve Bayes model

Suppose we have many different types of observations 
(symptoms, features) E1, …, En that we want to use to obtain 
evidence about an underlying hypothesis Y

MAP decision:
! = argmax ( ) = ! *+ = ,+,… , */ = ,/

= argmax ( ) = ! ( *+ = ,+,… , */ = ,/ ) = !

≈ argmax ( ) = ! ( 1+ ! ( 12 ! …( 1/ !



Parameter estimation
• Model parameters: feature likelihoods p(word | class) and priors

p(class) 
• How do we obtain the values of these parameters?

spam:  0.33
¬spam:  0.67 

P(word | ¬spam)P(word | spam)prior



Bayesian Learning
• The “bag of words model” has the following parameters:
• !"# ≡ %(' = )|+ = ,)
• ." ≡ %(+ = ,)

• Each document is a sequence of words, /0 = ['20, … ,'50].
• If we assume that each word is conditionally independent given the 

class (the naïve Bayes a.k.a. bag-of-words assumption), then we get:

% 7, 8 = 9
0:2

;
% /0 +0 %(+0)

=9
0:2

;
%(+0 = ,0)9

<:2

5
%('<0 = )<0|+0 = ,0) =9

0:2

;
."=9

<:2

5
!"=#>=



Parameter estimation
• ML (Maximum Likelihood) parameter estimate:

• Laplacian Smoothing estimate
• How can you estimate the probability of a word you never saw in the training 

set?  (Hint: what happens if you give it probability 0, then it actually occurs in 
a test document?)

• Laplacian smoothing: pretend you have seen every vocabulary word one 
more time than you actually did

P(word | class) =
# of occurrences of this word in docs from this class + 1

total # of words in docs from this class + V

(V: total number of unique words)

P(word | class) =
# of occurrences of this word in docs from this class

total # of words in docs from this class



CS440/ECE448 Lecture 16: 
Linear Classifiers

Mark Hasegawa-Johnson, 3/2019
and Julia Hockenmaier 3/2019

Including Slides by 
Svetlana Lazebnik, 10/2016



Learning P(C = c)

• This is the probability that a randomly chosen document 
from our data has class label c.
• P( C ) is a categorical random variable over k outcomes c1…ck
• How do we set the parameters of this distribution?
• Given our training data of labeled documents, 

We can simply set P(C = ci) to the fraction of documents 
that have class label ci
• This is a maximum likelihood estimate:

Among all categorical distributions over k outcomes, 
this assigns the highest probability (likelihood) to the training data



Documents as random variable

• We assume a fixed vocabulary V of M word types: V = {apple, …, zebra}.
• A document di = “The lazy fox…” is a sequence of n word tokens 

di = wi1…wiN
The same word type may appear multiple times in di.
• Choice 1: We model di as a set of word types:
∀ vj ∈ V: what’s the probability that vj occurs/doesn’t occur in di?
We treat P(vj) as a Bernoulli random variable  

• Choice 2: We model di as a sequence of word tokens:
∀nn=1…N:  what’s the probability that win = vj (rather than any other vj’)
We treat P(win) as a categorical random variable (over V)



Linear Classifiers in General
Consider the classifier  

! = 1 if &' + ∑*+,- .'*/'* > 0

! = 0 if &' + 2
*+,

-
.'*/'* < 0

This is called a “linear classifier” because the boundary between the two classes is a line.  
Here is an example of such a classifier, with its boundary plotted as a line in the two-dimensional 
space /, by /4:

/,

/4
! = 1

! = 0



Linear Classifiers in General
Consider the classifier  

! = argmax( )( + +
,-.

/
0(,1(,

• This is called a “multi-class linear 
classifier.” 
• The regions ! = 0, ! = 1, ! = 2

etc. are called “Voronoi regions.”  
• They are regions with piece-wise 

linear boundaries. Here is an 
example from Wikipedia of 
Voronoi regions plotted in the two-
dimensional space 1. by 15:

1.

15

! = 0

! = 1 ! = 2 ! = 3

! = 4
! = 5 ! = 6

! = 7

……
…

…

…

…



Linear Classifiers in General
When the features are binary 
(!" ∈ {0,1}), many (but not all!) binary 
functions can be re-written as linear 
functions.  For example, the function

) = (!, ∨ !.)
can be re-written as 

y=1 iff !, + !. − 0.5 > 0

!,

!.

Similarly, the function
) = (!, ∧ !.)

can be re-written as 
y=1 iff !, + !. − 1.5 > 0

!,

!.



Perceptron

x1

x2

xD

w1

w2

w3

x3

wD

Input

Weights

.

.

.

Output: sgn(w×x + b)

Can incorporate bias as 
component of the weight 
vector by always including a 
feature with value set to 1

Perceptron model: 
action potential = 
signum(affine function of the 
features)

y = sgn(α1f1 + α2f2 + … + αVfV + β) = 
sgn(!"$⃗)

Where ! = ['(, … , '+, ,]"
and $⃗ = [$(, … , $+, 1]"



Perceptron
For each training instance ! with label " ∈ {−1,1}:
• Classify with current weights: "’ = sgn(/02⃗)
• Notice "′ ∈ {−1,1} too.

• Update weights:   
• if " = "’ then do nothing
• if " ≠ "’ then / = /+ η y 2⃗
• η (eta) is a “learning rate.”  More about that later.



Perceptron: Proof of Convergence
• If the data are linearly separable (if there exists a ! vector 

such that the true label is given by "’ = sgn(!)+⃗)), then 
the perceptron algorithm is guarantee to converge, even 
with a constant learning rate, even η=1.
• In fact, training a perceptron is often the fastest way to 

find out if the data are linearly separable.  If ! converges, 
then the data are separable; if ! diverges toward infinity, 
then no.
• If the data are not linearly separable, then perceptron 

converges iff the learning rate decreases, e.g., η=1/n for 
the n’th training sample.



Lecture 17: More on binary vs. multi-class 
classifiers 

(Polychotomizers: One-Hot Vectors, Softmax, and Cross-Entropy)
Mark Hasegawa-Johnson, 3/9/2019. CC-BY 3.0: You are free to share and adapt these slides if you cite the original.

Modified by Julia Hockenmaier



The supervised learning task

Given a labeled training data set 
of N items xn∈X with labels yn ∈Y

D train = {(x1, y1),…, (xN, yN)} 
(yn is determined by some unknown target function f(x))

Return a model g: X ⟼Y that is a good approximation of f(x)
(g should assign correct labels y to unseen x ∉Dtrain)



Classifiers in vector spaces

Binary classification: 
We assume f separates the positive and negative 
examples: 

Assign y = 1 to all x where f(x) > 0
Assign y = 0 (or -1) to all x where f(x) < 0

x1

x2
f(x) = 0

f(x) < 0

f(x) > 0



Linear classifiers

Many learning algorithms restrict the hypothesis space 
to linear classifiers:   
f(x) = w0 + wx

x1

x2

f(x) = 0

f(x) < 0

f(x) > 0



Linear Separability

• Not all data sets are linearly separable: 

• Sometimes, feature transformations help:
x1

x2

x1

x1

x1
2

x1

|x2- x1|



Linear classifiers: f(x) = w0 + wx

Linear classifiers are defined over vector spaces
Every hypothesis f(x) is a hyperplane:

f(x) = w0 + wx
f(x) is also called the decision boundary

Assign ŷ = +1 to all x where f(x) > 0
Assign ŷ = -1 to all x where f(x) < 0

ŷ = sgn(f(x))

x1

x2

f(x) = 0

f(x) < 0

f(x) > 0



With a separate bias term w0:     f(x) = w·x + w0

The instance space X is a d-dimensional vector space 
(each x∈X has d elements)
The decision boundary f(x) = 0 is a (d−1)-dimensional 
hyperplane in the instance space.
The weight vector w is orthogonal (normal) 
to the decision boundary f(x) = 0:

For any two points xA and xB on the decision boundary f(xA) = f(xB) = 0
For any vector (xB − xA) on the decision boundary: w(xB − xA) = f(xB)−w0−f(xA)+w0= 0

The bias term w0 determines the distance of the decision 
boundary from the origin:

For x with f(x) = 0, the distance to the origin is

CS446 Machine Learning 29

w ⋅x
w

= −
w0
w

= −
w0

wi
2

i=1

d
∑



Canonical representation: 
getting rid of the bias term
With w = (w1, …, wN)T and x = (x1, …, xN)T:

f(x) = w0 + wx
= w0 + ∑i=1…N wixi

w0 is called the bias term.

The canonical representation redefines w, x as 
w = (w0, w1, …, wN)T

and x = (1,    x1, …, xN)T

=> f(x) = w·x

CS446 Machine Learning 30



Batch versus online training

Batch learning:
The learner sees the complete training data, and only changes its 
hypothesis when it has seen the entire training data set. 
Online training:
The learner sees the training data one example at a time, 
and can change its hypothesis with every new example
Compromise: Minibatch learning (commonly used in practice)
The learner sees small sets of training examples at a time, 
and changes its hypothesis with every such minibatch of examples



Multi-class perceptrons

• One-vs-others framework: Need to keep a weight vector wc for each 
class c
• Decision rule: y = argmaxc wc× f
• Update rule: suppose example from class c gets misclassified as c’
• Update for c: wc ß wc + ηf
• Update for c’: wc’ ß wc’ – ηf
• Update for all classes other than c and c’: no change



Review: Multi-class perceptrons

• One-vs-others framework: Need to keep a weight vector wc for each 
class c
• Decision rule: y = argmaxc wc× f

Inputs
Perceptrons w/ 

weights wc

Max



Differentiable Perceptron
• Also known as a “one-layer feedforward neural network,” also known 

as “logistic regression.”  Has been re-invented many times by many 
different people.
• Basic idea: replace the non-differentiable decision function

!’ = sign()*,⃗)
with a differentiable decision function

!’ = tanh()*,⃗)



Differential Perceptron
The weights get updated according 

to

! = ! − $∇&'



Differentiable Multi-class perceptrons
Same idea works for multi-class perceptrons.  We replace the non-
differentiable decision rule c = argmaxc wc× f with the differentiable 
decision rule c = softmaxc wc× f, where the softmax function is defined 
as

Inputs
Perceptrons w/ 

weights wc

Softmax

Softmax:

! " $⃗ = &'()*⃗
∑,-.# 0123343 &'5)*⃗



Differentiable Multi-Class Perceptron
• Then we can define the loss to be:

! "#, … , "&, (⃗#, … , (⃗& = −+
,-#

&
ln 0 1 = ",|(⃗,

• And because the probability term on the inside is differentiable, we 
can reduce the loss using gradient descent:

3 = 3 − 4∇6!



Training a Softmax Neural Network
All of that differentiation is useful 
because we want to train the neural 
network to represent a training 
database as well as possible.  If we 
can define the training error to be 
some function L, then we want to 
update the weights according to

!"# = !"# − &
'(

'!"#

So what is L?



Training: Maximize the probability of the training data 
Remember, the whole point of that denominator in 
the softmax function is that it allows us to use 
softmax as

!"#$ = Es8mated value of & class + -⃗#)

Suppose we decide to estimate the network 
weights /01 in order to maximize the probability 
of the training database, in the sense of

/01= argmax
6

& training labels training feature vectors)



Training: Maximize the probability of the training data 
Remember, the whole point of that denominator in 
the softmax function is that it allows us to use 
softmax as

!"#$ = Es8mated value of & class + -⃗#)

If we assume the training tokens are independent, 
this is:

/01
= argmax

6
7
#89

:
& reference label of the BCDtoken BCDfeature vector)



Training: Maximize the probability of the training data 
Remember, the whole point of that denominator in 
the softmax function is that it allows us to use 
softmax as

!"#$ = Es8mated value of & class + -⃗#)

OK.  We need to create some notation to mean 
“the reference label for the /01 token.”  Let’s call it 
+(/).  

345 = argmax
:

;
#<=

>
& class +(/) -⃗)



Training: Maximize the probability of the training data 
Wow, Cool!!  So we can maximize the probability of 
the training data by just picking the softmax output 
corresponding to the correct class !(#), for each 
token, and then multiplying them all together:

%&' = argmax
.

/
012

3
450,7(0)

So, hey, let’s take the logarithm, to get rid of that 
nasty product operation.

%&' = argmax
.

8
012

3
ln 450,7(0)



Training: Minimizing the negative log probability
So, to maximize the probability of the training data 
given the model, we need:

!"# = argmax
*

+
,-.

/
ln 23,,5(,)

If we just multiply by (-1), that will turn the max 
into a min.  It’s kind of a stupid thing to do---who 
cares whether you’re minimizing 8 or maximizing 
− 8, same thing, right?  But it’s standard, so what 
the heck.

!"# = argmin
*

8

8 =+
,-.

/
− ln 23,,5(,)



Training: Minimizing the negative log probability
Softmax neural networks are almost always trained 
in order to minimize the negative log probability of 
the training data:

!"# = argmin
+

,

, =-
./0

1
− ln 45.,7(.)

This loss function, defined above, is called the 
cross-entropy loss.  The reasons for that name are 
very cool, and very far beyond the scope of this 
course.  Take CS 446 (Machine Learning) and/or 
ECE 563 (Information Theory) to learn more.



Summary: Training Algorithms You Know
1. Naïve Bayes with Laplace Smoothing:

! "# = % class * = #tokens of class * with "# = % + 1
#tokens of class * + #possible values of "#

2. Multi-Class Perceptron:  If token "⃗< of class j is misclassified as class m, then
=> = => + ?"⃗<
=@ = =@ − ?"⃗<

3. Softmax Neural Net: for all weight vectors (correct or incorrect),
=@ = =@ − ?∇CDE

= =@ − ? FG<@ − G<@ "⃗<



Summary: Perceptron versus Softmax
Softmax Neural Net: for all weight vectors (correct or incorrect),

!" = !" − % &'(" − '(" *⃗(
Notice that, if the network were adjusted so that 

&'(" = +1 network thinks the correct class is :
0 otherwise

Then we’d have

&'(" − '(" = <
−2 correct class is :, but network is wrong
2 network guesses :, but itBs wrong
0 otherwise



Summary: Perceptron versus Softmax
Softmax Neural Net: for all weight vectors (correct or incorrect),

!" = !" − % &'(" − '(" *⃗(
Notice that, if the network were adjusted so that 

&'(" = +1 network thinks the correct class is :
0 otherwise

Then we get the perceptron update rule back again (multiplied by 2, which 
doesn’t matter):

!" =
!" + 2%*⃗( correct class is :, but network is wrong
!" − 2%*⃗( network guesses :, but itBs wrong

!" otherwise



Summary: Perceptron versus Softmax
So the key difference between perceptron and softmax is that, for a 
perceptron, 

!"#$ = &1 network thinks the correct class is 5
0 otherwise

Whereas, for a softmax,

0 ≤ !"#$ ≤ 1, 9
$:;

<
!"#$ = 1



Summary: Perceptron versus Softmax
…or, to put it another way, for a perceptron, 

!"#$ = &1 if * = argmax
01ℓ13

4ℓ 5 7⃗#
0 otherwise

Whereas, for a softmax network,
!"#$ = softmax

$
4ℓ 5 7⃗#

Inputs
Perceptrons w/ 

weights 4ℓ

Argmax or Softmax



CS 440/ECE448 Lecture 19:
Bayes Net Inference

Mark Hasegawa-Johnson, 3/2019 modified by Julia 
Hockenmaier 3/2019
Including slides by Svetlana Lazebnik, 11/2016



Bayesian Inference with Hidden Variables
• A general scenario:

- Query variables: X
- Evidence (observed) variables and their values: E = e
- Hidden (unobserved) variables: Y

• Inference problem: answer questions about the query 
variables given the evidence variables
- This can be done using the posterior distribution P(X | E = e)
- In turn, the posterior needs to be derived from the full joint P(X, E, Y)

• Bayesian networks are a tool for representing joint 
probability distributions efficiently

åµ==
y

yeX
e
eXeEX ),,(
)(
),()|( P

P
PP



Bayesian networks

• Nodes: random variables
• Edges: dependencies

• An edge from one variable (parent) to 
another (child) indicates direct influence 
(conditional probabilities)

• Edges must form a directed, acyclic graph
• Each node is conditioned on its parents: 

P(X | Parents(X))
These conditional distributions are the 
parameters of the network

• Each node is conditionally independent 
of its non-descendants given its parent

We have four random variables
Weather is independent of cavity, 
toothache and catch
Toothache and catch both depend on 
cavity.



Conditional independence and the 
joint distribution

• Key property: each node is conditionally independent of 
its non-descendants given its parents
• Suppose the nodes X1, …, Xn are sorted in topological order 

of the graph (i.e. if Xi is a parent of Xj, i < j)
• To get the joint distribution P(X1, …, Xn), 

use chain rule (step 1 below) and then 
take advantage of independencies (step 2)

( )Õ
=

-=
n

i
iin XXXPXXP

1
111 ,,|),,( !!

( )Õ
=

=
n

i
ii XParentsXP

1

)(|



The joint probability distribution

P(j, m, a, ¬b,¬e) = P(¬b) P(¬e) P(a|¬b,¬e) P(j|a) P(m|a)

( )Õ
=

=
n

i
iin XParentsXPXXP

1
1 )(|),,( !



Example: N independent 
coin flips

• Complete independence: no interactions:
P(X1) P(X2) P(X3)

X1 X2 Xn
…



Conditional probability distributions
• To specify the full joint distribution, we need to specify a 
conditional distribution for each node given its parents: 
P (X | Parents(X))

Z1 Z2 Zn

X

…

P (X | Z1, …, Zn)



Naïve Bayes document model

• Random variables:
• X: document class
• W1, …, Wn: words in the document

• Dependencies: P(X) P(W1 | X) … P(Wn | X)

W1 W2 Wn
…

X



Independence
• By saying that !" and !# are independent, we mean that 

P(!#, !") = P(!")P(!#)
• !" and !# are independent if and only if they have no common 

ancestors
• Example: independent coin flips

• Another example: Weather is independent of all other variables in this 
model.

X1 X2 Xn
…



Conditional independence
• By saying that !" and !# are conditionally independent given $, we 

mean that 
P !",!# $ = P(!"|$)P(!#|$)

• !" and !# are conditionally independent given $ if and only if they 
have no common ancestors other than the ancestors of $. 
• Example: naïve Bayes model:

W1 W2 Wn
…

X



Common cause: Conditionally 
Independent

Common effect: Independent

Are X and Z independent? No
! ", $ =&

'
! " ( ! $ ( !(()

! " ! $ = &
'
! " ( !(() &

'
! $ ( !(()

Are they conditionally independent given Y? Yes
! ", $ ( = !("|()!($|()

Are X and Z independent? Yes
!($, ") = !($)!(")

Are they conditionally independent given Y? No

! ", $ ( = ! ( $, " ! $ !(")
!(()

≠ ! "|( ! $|(

Conditional independence ≠ Independence



Constructing a Bayes Network: Two Methods
1. “Structure Learning” a.k.a. “Analysis of Causality:”

1. Suppose you know the variables, but you don’t know which variables depend on 

which others.  You can learn this from data.

2. This is an exciting new area of research in statistics, where it goes by the name of 

“analysis of causality.”

3. … but it’s almost always harder than method #2.  You should know how to do this 

in very simple examples (like the Los Angeles burglar alarm), but you don’t need to 

know how to do this in the general case.

2. “Hire an Expert:” 

1. Find somebody who knows how to solve the problem.  

2. Get her to tell you what are the important variables, and which variables depend 

on which others.

3. THIS IS ALMOST ALWAYS THE BEST WAY.



Bayes Network Inference & Learning
Bayes net is a memory-efficient model of dependencies among a set 
of random variables.

Inference problem: answer questions about the query variables X 
given the evidence variables and their values E=e as well as some 
unobserved (hidden) variables Y.

• We want to know the posterior distribution P(X | E = e)
• The posterior can be derived from the full joint P(X, E, Y)
• How do we make this computationally efficient?

Learning problem: given some training examples, how do we 
estimate the parameters of the model?

• Parameters = p(variable|parents), for each variable in the net



Bayes Net Inference: 
The Hard Way

1. P(B,	E,	A,	J,	M)	=	P(B)	P(E)	P(A|B,E)	P(J|A)	P(M|A)
2. P B, J = ∑1∑2∑3P(B, E, A, J, M)

Exponential complexity (#P-hard, actually): N variables, each of which has 
K possible values ⇒ 5{78} time complexity



Is there an easier way?

• Tree-structured Bayes nets: the sum-product algorithm
• Quadratic complexity, !{#$%}

• Polytrees: the junction tree algorithm
• Pseudo-polynomial complexity, !{#$'}, for M<N

• Arbitrary Bayes nets: #P complete, ({)*}
• The SAT problem is a Bayes net!



The Sum-Product Algorithm (Belief Propagation)

• Find the only undirected path from the 
evidence variable to the query variable
(E-D-B-F-G-I-H)
• Find the directed root of this path P(F)
• Find the joint probabilities of root and 

evidence: P(F=0,E=1) and P(F=1,E=1)
• Find the joint probabilities of query and 

evidence: P(H=0,E=1) and P(H=1,E=1)
• Find the conditional probability P(H=1|E=1)



The Sum-Product Algorithm

Starting with the root P(F), we find P(F,E) by 
alternating product steps and sum steps:
1. Product: P(B,D,F)=P(F)P(B|F)P(D|B)
2. Sum: * +, , = ∑./01 *(2, +, ,)
3. Product: P(D,E,F)=P(D,F)P(E|D)
4. Sum: * 4, , = ∑5/01 *(+, 4, ,)

The Sum-Product Algorithm (Belief Propagation)



The Sum-Product Algorithm

Starting with the root P(E,F), we find P(E,H) 
by alternating product steps and sum steps:
1. Product: P(E,F,G)=P(E,F)P(G|F)
2. Sum: * +, , = ∑./01 *(+, 2, ,)
3. Product: P(E,G,I)=P(E,G)P(I|G)
4. Sum: * +, 4 = ∑5/01 *(+, ,, 4)
5. Product: P(E,H,I)=P(E,I)P(I|G)
6. Sum: * +,7 = ∑8/01 *(+, 7, 4)

The Sum-Product Algorithm (Belief Propagation)



• Each product step generates a table 
with 3 variables
• Each sum step reduces that to a table 

with 2 variables
• If each variable has K values, and if there 

are !{#} variables on the path from 
evidence to query, then time complexity is 
!{#%&}

Time Complexity of Belief Propagation



2. The Junction Tree Algorithm

a. Moralize the graph (identify each variable’s Markov blanket)
b. Triangulate the graph (eliminate undirected cycles)
c. Create the junction tree (form cliques)
d. Run the sum-product algorithm on the junction tree



2.a. Markov Blanket

The Markov Blanket of variable F 
includes only its immediate family 
members:

• Its parent, D
• Its child, G
• The other parent of its child, E

Because P(F|A,B,C,D,E,G,H) 
= P(F|D,E,G)

A

B

C D

E F
G

H



2.a. Moralization

“Moralization” = 
1. If two variables have a child 

together, force them to get 
married.

2. Get rid of the arrows (not 
necessary any more).

Result: Markov blanket = the set of 
variables to which a variable is 
connected.

A

B

C D

E F
G

H



2.b. Triangulation

Triangulation = draw edges so that 
there is no unbroken cycle of length > 3.

There are usually many different ways to 
do this.  For example, here’s one:

A

B

C D

E F
G

H



2.c. Form Cliques

Clique = a group of variables, all of 
whom are members of each other’s 
immediate family.

Junction Tree = a tree in which
• Each node is a clique from the 

original graph,
• Each edge is an “intersection set,”

naming the variables that overlap 
between the two cliques.

A

B

C D

E F
G

H

AB

BCD

CDF

CEF

EFG

GH

B

CD

CF

EF

G



2.d. Sum-Product
Suppose we need P(B,G):
1. Product: P(B,C,D,F)=P(B)P(C|B)P(D|B)P(F|D)
2. Sum:  + ,, -, . = ∑0 +(,, -, 1, .)
3. Product: P(B,C,E,F)=P(B,C,F)P(E|C)
4. Sum: + ,, 3, . = ∑4 +(,, -, 3, .)
5. Product: P(B,E,F,G)	=	P(B,E,F)P(G|E,F)
6. Sum: + ,, 7 = ∑8 ∑9 +(,, 3, ., 7)

Complexity: :{<=>}, where N=# cliques,
K = # values for each variable, 
M = 1 + # variables in the largest clique

B

C D

E F
G



Junction Tree: Sample Test Question

Consider the burglar alarm 
example.
a. Moralize this graph
b. Is it already triangulated?  If 

not, triangulate it.
c. Draw the junction tree



Solution

B E
A

J M



Solution

a. Moralize this graphB E
A

J M



Solution

b. Is it already triangulated?

Answer: yes.  There is no 
unbroken cycle of length > 3.

B E
A

J M



Solution

c. Draw the junction tree

ABE

AJ AM
A A



Time Complexity of Bayes Net Inference

• Tree-structured Bayes nets: the sum-product algorithm
• Quadratic complexity, !{#$%}

• Polytrees: the junction tree algorithm
• Pseudo-polynomial complexity, !{#$'}, for M<N

• Arbitrary Bayes nets: #P complete, ({)*}
• The SAT problem is a Bayes net!



Parameter learning
• Inference problem: given values of evidence variables 

E = e, answer questions about query variables X using 
the posterior P(X | E = e)

• Learning problem: estimate the parameters of the 
probabilistic model P(X | E) given a training sample
{(x1,e1), …, (xn,en)}



Parameter learning
• Suppose we know the network structure (but not the 

parameters), and have a training set of complete
observations
• Example:

! " = $ % = $ = #samples with " = $, % = $
# samples with % = $ = 1

4 Sample C S R W
1 T F T T
2 F T F T
3 T F F F
4 T T T T
5 F T F T
6 T F T F
… … … …. …

Training set



Parameter learning: missing data
• Suppose we know the network structure (but not the 

parameters), and have a training set, but the training set 
is missing some observations.

?

?
?

?
?

?
?
?
?

Training set
Sample C S R W

1 ? F T T
2 ? T F T
3 ? F F F
4 ? T T T
5 ? T F T
6 ? F T F
… … … …. …



Missing data: the EM algorithm
• The EM algorithm starts (“Expectation Maximization”) 

starts with an initial guess for each parameter value.
• We try to improve the initial guess, using the algorithm on the 

next two slides:
• E-step 
• M-step

0.5?

0.5?
0.5?

0.5?
0.5?

0.5?
0.5?
0.5?
0.5?

Training set
Sample C S R W

1 ? F T T

2 ? T F T

3 ? F F F

4 ? T T T

5 ? T F T

6 ? F T F

… … … …. …



Missing data: the EM algorithm
• E-Step (Expectation): Given the model parameters, replace each of the missing 

numbers with a probability (a number between 0 and 1) using

! " = 1 %, ',( = !(" = 1, %, ',()
! " = 1, %, ',( + !(" = 0, %, ',()

0.5?

0.5?
0.5?

0.5?
0.5?

0.5?
0.5?
0.5?
0.5?

Training set
Sample C S R W

1 0.5? F T T

2 0.5? T F T

3 0.5? F F F

4 0.5? T T T

5 0.5? T F T

6 0.5? F T F

… … … …. …



Missing data: the EM algorithm
• M-Step (Maximization): Given the missing data estimates, replace each of the 

missing model parameters using

! Variable = T Parents = value = 1[# times Variable = 5, Parents = value]
1[#times Parents = value]

0.5

0.5
0.5

0.5
0.5

1.0
1.0
0.5
0.0

Training set
Sample C S R W

1 0.5? F T T

2 0.5? T F T

3 0.5? F F F

4 0.5? T T T

5 0.5? T F T

6 0.5? F T F

… … … …. …
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Hidden Markov Models

• At each time slice t, the state of the world is 
described by an unobservable (hidden) variable Xt
and an observable evidence variable Et

• Transition model: distribution over the current state 
given the whole past history:
P(Xt | X0, …, Xt-1) = P(Xt | X0:t-1) 
• Observation model: P(Et | X0:t, E1:t-1) 

X0

E1

X1

Et-1

Xt-1

Et

Xt…
E2

X2



Hidden Markov Models
• Markov assumption (first order)
• The current state is conditionally independent of all the other 

states given the state in the previous time step
• What does P(Xt | X0:t-1) simplify to?

P(Xt | X0:t-1) = P(Xt | Xt-1) 

• Markov assumption for observations
• The evidence at time t depends only on the state at time t
• What does P(Et | X0:t, E1:t-1)  simplify to?

P(Et | X0:t, E1:t-1)  = P(Et | Xt) 

X0

E1

X1

Et-1

Xt-1

Et

Xt…
E2

X2



The Joint Distribution

• Transition model: P(Xt | X0:t-1) = P(Xt | Xt-1) 
• Observation model: P(Et | X0:t, E1:t-1)  = P(Et | Xt) 
• How do we compute the full joint P(X0:t, E1:t)?

X0

E1

X1

Et-1

Xt-1

Et

Xt…
E2

X2

Õ
=

-=
t

i
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1
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HMM inference tasks
• Filtering: what is the distribution over the current state Xt given all 

the evidence so far, e1:t ?
• The forward algorithm = sum-product algorithm for Xt given e1:t

X0

E1

X1

Et-1

Xt-1

Et

Xt…
Ek

Xk

Query 
variable

Evidence variables

…



HMM inference tasks
• Filtering: what is the distribution over the current state Xt given all 

the evidence so far, e1:t ?
• Smoothing: what is the distribution of some state Xk given the 

entire observation sequence e1:t?
• The forward-backward algorithm = sum-product algorithm for Xk given e1:t, 

when 1 < k < t
• Xk = query variable, unknown, need to consider all its possible values
• E1:t = evidence variables, known, only need to consider the given values

X0

E1

X1

Et-1

Xt-1

Et

…
Ek

Xk… Xt



HMM inference tasks
• Filtering: what is the distribution over the current state Xt given all 

the evidence so far, e1:t ?
• Smoothing: what is the distribution of some state Xk given the 

entire observation sequence e1:t?
• Evaluation: compute the probability of a given observation 

sequence e1:t

X0

E1

X1

Et-1

Xt-1

Et

…
Ek

Xk… Xt



HMM inference tasks
• Filtering: what is the distribution over the current state Xt given all 

the evidence so far, e1:t

• Smoothing: what is the distribution of some state Xk given the 
entire observation sequence e1:t?
• Evaluation: compute the probability of a given observation 

sequence e1:t

• Decoding: what is the most likely state sequence X0:t given the 
observation sequence e1:t?
• The Viterbi algorithm

X0

E1

X1

Et-1

Xt-1

Et

…
Ek

Xk… Xt



HMM Learning and Inference
• Inference tasks
• Filtering: what is the distribution over the current state Xt

given all the evidence so far, e1:t
• Smoothing: what is the distribution of some state Xk given the 

entire observation sequence e1:t?
• Evaluation: compute the probability of a given observation 

sequence e1:t
• Decoding: what is the most likely state sequence X0:t given the 

observation sequence e1:t?
• Learning
• Given a training sample of sequences, learn the model 

parameters (transition and emission probabilities)
• EM algorithm


