
CS440/ECE448 Artificial Intelligence

Lecture 25: 
Natural Language Processing 

with Neural Nets
Julia Hockenmaier

April 2019



Today’s lecture

• A very quick intro to natural language processing (NLP)
• What is NLP? Why is NLP hard?

• How are neural networks (“deep learning”) being used in NLP
• And why do they work so well? 



Recap: 
Neural Nets/Deep Learning



What is “deep learning”? 

• Neural networks, typically with several hidden layers 
• (depth = # of hidden layers)
• Single-layer neural nets are linear classifiers
• Multi-layer neural nets are more expressive 

• Very impressive performance gains in computer vision 
(ImageNet) and speech recognition over the last several years.
• Neural nets have been around for decades. 
• Why have they suddenly made a comeback?
• Fast computers (GPUs!) and (very) large datasets have made it possible 

to train these very complex models.  

4



Single-layer feedforward nets

5

Input layer: vector x

Output unit: scalar y

Input layer: vector x

Output layer: vector y

For binary
classification tasks: 

Single output unit
Return 1 if y > 0.5
Return 0 otherwise

For multiclass
classification tasks:

K output units (a vector)
Each output unit yi

corresponds to a class i
Return argmaxi(yi) where
yi = P(i)  = softmax(zi) 

= exp(zi) ⁄ ∑k=0..K exp(zk)



Input layer: vector x

Hidden layer: vector h1

Multi-layer feedforward networks
We can generalize this to multi-layer feedforward nets

6

Hidden layer: vector hn

Output layer: vector y

…    …    …
…    …    … 
…    …    …. 



Multiclass models: softmax(yi)
Multiclass classification = predict one of K classes.

Return the class i with the highest score: argmaxi(yi)

In neural networks, this is typically done by using the softmax
function, which maps real-valued vectors in RK to distributions
over the K outputs
Given a vector z = (z0…zK) of activations zi for each K classes
Probability of class i: P(i) = softmax(zi) = exp(zi) ⁄ ∑k=0..K exp(zk)

(NB: This is just logistic regression)



Nonlinear activation functions

Sigmoid (logistic function): σ(x) = 1/(1 + e−x) 
Useful for output units (probabilities)  [0,1] range

Hyperbolic tangent: tanh(x) = (e2x −1)/(e2x+1) 
Useful for internal units: [-1,1] range

Hard tanh (approximates tanh)
htanh(x) = −1 for x < −1, 1 for x > 1, x otherwise

Rectified Linear Unit: ReLU(x) = max(0, x)
Useful for internal units 

8



What is Natural Language
Processing? 
… and why is it challenging?



What is Natural Language?
• Any human language: English, Chinese, Arabic, Inuktitut,…

NLP typically assumes written language (this could be transcripts of spoken language). 
Speech understanding and generation requires additional tools (signal processing etc.)

• Consists of a vocabulary (set of words) and a grammar
to form phrases and sentences from these words.

NLP (and modern linguistics) is largely not concerned with ”prescriptive” grammar 
(which is what you may have learned in school), but with formal (computational) 
models of grammar, and with how people actually use language

• Used by people to communicate
• Texts written by a single person: articles, books, tweets, etc.
• Dialogues: communications between two or more people



What is Natural Language Processing?
Any processing of (written) natural languages by computers:
• Natural Language Understanding (NLU)

• Translate from text to a semantic meaning representation
• May (should?) require reasoning over semantic representations

• Natural Language Generation (NLG)
• Produce text (e.g. from a semantic representation)
• Decode what to say as well as how to say it.

• Dialogue Systems:
• Require both NLU and NLG
• Often task-driven (e.g. to book a flight, get customer service, etc.)

• Machine Translation:
• Translate from one human language to another
• Typically done without intermediate semantic representations



What do we mean by “meaning”?
Lexical semantics: the (literal) meaning of words 

Nouns (mostly) describe entities, verbs actions, events, states, adjectives and adverbs 
properties, prepositions relations, etc. 

Compositional semantics: the (literal) meaning of sentences
Principle of compositionality: 
The meaning of a phrase or sentence depends on the meanings of its parts 
and on how these parts are put together.
Declarative sentences describe events, entities or facts, 
questions request information from the listener, 
commands request actions from the listener, etc.

Pragmatics studies how (non-literal) meaning depends on 
context, speaker intent, etc. 



How do we represent “meaning”?

A) Symbolic meaning representation languages:
Often based on (predicate) logic (or inspired by it)
May focus on different aspects of meaning, depending on the application
Have to be explicitly defined and specified
Can be verified by humans (useful for development/explainability)



NLU: How do we get to that “meaning”?

A) The traditional NLP pipeline assumes a sequence of 
intermediate symbolic representations, 
produced by models whose output can be reused by any system

Map raw text to part-of-speech tags, 
then map POS-tagged text to syntactic parse trees,
then map syntactically parsed text to semantic parses, etc.



Components of the NLP pipeline

All steps (except tokenization) return a symbolic representation
Tokenization: Identify word and sentence boundaries 
POS tagging: Label each word as noun, verb, etc. 
Named Entity Recognition (NER): Identify all named mentions of 
people, places, organizations, dates etc. as such
Coreference Resolution (Coref): Identify which mentions in a 
document refer to the same entity
(Syntactic) Parsing: Identify the grammatical structure of each sentence
Semantic Parsing: Identify the meaning of each sentence
Discourse Parsing: Identify the (rhetorical) relations between 
sentences/phrases 



Why is NLU difficult?

• Natural languages are infinite…
… because their vocabularies have a power law distribution (Zipf’s Law)
… and because their grammars allow recursive structures

• Natural languages are highly ambiguous…
… because many words have multiple senses
… and because there is a combinatorial explosion of sentence meanings
• Much of the meaning is not expressed explicitly…

… because listeners/readers have commonsense/world knowledge 
… and because they can draw inferences from what is and isn’t said.  



Why is NLU difficult?

• Natural languages are infinite…
… so any input will contain new/unknown words/constructions

• Natural languages are highly ambiguous…
… so recovering the correct structure/meaning is often very difficult

• Much of the meaning is not expressed explicitly…
… so a symbolic meaning representation of the explicit meaning 
may not be sufficient.  



Why are NLG and MT difficult?
• The generated text (or translation) has to be fluent

Sentences should be grammatical. Texts need to be coherent/cohesive.
This requires capturing non-local dependencies 
between words that are far apart in the string.

• The text (or translation) has to convey the intended meaning.
Translations have to be faithful to the original.
Generated text should not be misunderstood by the human reader
But there are many different ways to express the same information

• NLG and MT are difficult to evaluate automatically
Automated metrics exist, but correlate poorly with human judgments



NLP research questions redux… 
…and answers from traditional NLP
• How do you represent (or predict) words?

• Each word is its own atomic symbol. 
All unknown words are mapped to the same UNK token.

• We capture lexical semantics through an ontology (WordNet) or sparse vectors
• How do you represent (or predict) word sequences?

• Through an n-gram language model (with fixed n=3,4,5,…), or a grammar

• How do you represent (or predict) structures?
• Representations are symbolic 
• Predictions are made by statistical models/classifiers

19



Neural Approaches to NLP



Challenges in using NNs for NLP
NLP input (and output) consists of variable length sequences 
of discrete symbols (sentences, documents, …)
But the input to neural nets typically consists of
fixed-length continuous vectors
Solutions
1) Learn a mapping (embedding) from discrete symbols (words) 
to dense continuous vectors that can be used as input to NNs
2) Use recurrent neural nets to handle variable length inputs 
and outputs

21



Added benefits of these solutions

Benefits of word embeddings: 
• Words that are similar have similar word vectors
• We have a much better handle on lexical semantics
• Because we can train these embeddings on massive amounts of raw 

text, we now have a much better way to handle and generalize to rare 
and unseen words.

Benefits of recurrent nets:
• We do not need to learn and store explicit n-gram models
• RNNs are much better at capturing non-local dependencies
• RNNs need far fewer parameters than n-gram models with large n.



How does NLP use NNs?
• Word embeddings (word2vec, Glove, etc.)

• Train a NN to predict a word from its context (or the context from a word).
• This gives a dense vector representation of each word

• Neural language models:
• Use recurrent neural networks (RNNs) to predict word sequences

More advanced: use LSTMs (special case of RNNs)
• Sequence-to-sequence (seq2seq) models:

• From machine translation: use one RNN to encode source string, and another 
RNN to decode this into a target string.

• Also used for automatic image captioning, etc.
• Convolutional neural networks (CNNs)

• Used for text classification

23



How do we represent “meaning”?
A) Symbolic meaning representation languages:

Often based on (predicate) logic (or inspired by it)
May focus on different aspects of meaning, depending on the application
Have to be explicitly defined and specified
Can be verified by humans (useful for development/explainability)

B) Continuous (vector-based) meaning representations: 
Non-neural approaches: sparse vectors with a very large number of 
dimensions (10K+) each of which has an explicit interpretation
Neural approaches: dense vectors with far fewer dimensions (~300) 
without explicit interpretation
Are automatically learned from data.
Can typically not be verified by humans.



NLU: How do we get to that “meaning”?
A) The traditional NLP pipeline assumes a sequence of 
intermediate symbolic representations, 
produced by models whose output can be reused by any system

Map raw text to part-of-speech tags, 
then map POS-tagged text to syntactic parse trees,
then map syntactically parsed text to semantic parses, etc.

B) Many current neural models map directly from text to the output 
required for the task.

Map each word in a text to a vector representation 
Train the neural model to perform the task directly from these vectors
Intermediate representations (activations of hidden layers) may be used by 
other neural models, but are difficult to interpret by humans



NLP research questions redux …
…and answers from neural NLP
• How do you represent (or predict) words?

• Each word is a dense vector (embedding) that captures a lot of syntactic and 
semantic  information implicitly.

• Character embeddings allow us us handle unseen words more robustly

• How do you represent (or predict) word sequences?
• Through a recurrent neural net that does not need to truncate history 

to a fixed length

• How do you represent (or predict) structures?
• Input is typically assumed to be raw text (mapped to embeddings)
• Output representations may still be symbolic 
• Internal representations are dense vectors (activations), 

without explicit interpretation

26



Language models



Traditional Language Models
A language model defines a distribution P(w) over the strings 
w = w1w2..wi… in a language
Typically we factor P(w) such that we compute the probability 
word by word: P(w) = P(w1) P(w2 | w1)… P(wi | w1…wi−1)

Standard n-gram models make the Markov assumption that wi depends 
(only) on the preceding n−1 words: P(wi | w1…wi−1) :=  P(wi | wi−n+1…wi−1)

We know that this independence assumption is invalid 
(there are many long-range dependencies), but it is computationally and statistically 
necessary (we can’t store or estimate larger models)

28



Neural Language Models

A neural LM defines a distribution over the V words in the 
vocabulary, conditioned on the preceding words.

• Output layer: V units (one per word in the vocabulary) 
with softmax to get a distribution
• Input: Represent each preceding word by its 

d-dimensional embedding. 
• Fixed-length history (n-gram): use preceding n−1 words
• Variable-length history: use a recurrent neural net

29



Recurrent neural networks (RNNs)

Basic RNN: Modify the standard feedforward architecture 
(which predicts a string w0…wn one word at a time) such that the 
output of the current step (wi) is given as additional input to the 
next time step (when predicting the output for wi+1).
• “Output” — typically (the last) hidden layer.

30

input

output

hidden

input

output

hidden

Feedforward Net Recurrent Net



Basic RNNs

Each time step corresponds to a feedforward net where the 
hidden layer gets its input not just from the layer below but also 
from the activations of the hidden layer at the previous time step

31

input

output

hidden



Basic RNNs

Each time step corresponds to a feedforward net where the 
hidden layer gets its input not just from the layer below but also 
from the activations of the hidden layer at the previous time step

32



A basic RNN unrolled in time

33



RNNs for generation

To generate a string w0w1…wn wn+1, give w0 as first input, and 
then pick the next word according to the computed probability 

Feed this word in as input into the next layer. 

34

!(#$|#&. . . #$())

input

output

hidden



Stacked RNNs

We can create an RNN that has “vertical” depth 
(at each time step) by stacking multiple RNNs

35



Bidirectional RNNs

• Unless we need to generate a sequence, 
we can run two RNNs over the input sequence 
— one going forward, and one going backward. 
• Their hidden states will capture different context information.

36



RNNs for sequence classification

• If we just want to assign one label to the sequence, 
we don’t need to produce output at each time step,
so we can use a simpler architecture.

• We can use the hidden state of the last word
in the sequence as input to a feedforward net:

37



DecoderEncoder

Encoder-Decoder (seq2seq) model
• Task: Read an input sequence and return an output sequence

• Machine translation: translate source into target language
• Dialog system/chatbot: generate a response

• Reading the input sequence: RNN Encoder
• Generating the output sequence: RNN Decoder

38

input

hidden

output



Neural Word Embeddings



Word Embeddings (e.g. word2vec)
Main idea: 
If you use a feedforward network to predict the probability 
of words that appear near an input word, the hidden layer 
of that network provides a dense vector representation of 
the input word. 
Words that appear in similar contexts (that have high 
distributional similarity) will have very similar vector 
representations. 
These models can be trained on large amounts of raw text 
(and pretrained embeddings can be downloaded)

40



Analogy: Embeddings capture relational 
meaning!
vector(‘king’) - vector(‘man’) + vector(‘woman’)  = vector(‘queen’)
vector(‘Paris’) - vector(‘France’) + vector(‘Italy’)  = vector(‘Rome’)

41



Embeddings you can use
Static embeddings:

Word2vec (Mikolov et al.)
https://code.google.com/archive/p/word2vec/
Fasttext http://www.fasttext.cc/
Glove (Pennington et al.)
http://nlp.stanford.edu/projects/glove/

More recent developments: 
RNN-based embeddings that depend on current word context

BERT (Devlin et al.)
https://github.com/google-research/bert

ELMO https://allennlp.org/elmo (Peters et al.)
42

https://code.google.com/archive/p/word2vec/
http://www.fasttext.cc/
http://nlp.stanford.edu/projects/glove/
https://github.com/google-research/bert
https://allennlp.org/elmo


Summary



Today’s lecture (I)

NLP is difficult because…
… natural languages have very large (infinite) vocabularies
… natural language sentences/documents have variable length
… natural language is highly ambiguous

The traditional NLP (NLU) pipeline consists of a sequence of
models that predict symbolic features for the next model

… but that is quite brittle: mistakes get propagated through the pipeline
Traditional statistical NLG relies on fixed order n-gram models

… but these are very large, and don’t capture long-range dependencies



Today’s lecture (II)

To use neural nets for NLP requires…
… the use of word embeddings that map words to dense vectors
… more complex architectures (e.g. RNNs, but also CNNs)

Word embeddings help us handle the long tail of rare and
unknown words in the input

Other people have trained them for us on massive amounts of text
RNNs help us capture long-range dependencies between 
words that are far apart in the sentence. 

No need to make fixed-order Markov assumptions



Word representations as by-product of 
neural LMs
• Output embeddings: the weights that connect the last hidden 

layer h to the i-th ouput is a dim(h)-dimensional vector that is 
associated with the i-th vocabulary item w ∈ V

h is a dense (non-linear) representation of the context Words 
that are similar appear in similar contexts.
• Hence their columns in W2 should be similar. 
• Input embeddings: each row in the embedding matrix is a 

representation of a word. 

77

hidden layer h

output layer 


