Reinforcement learning

• Regular MDP
 • Given:
 • Transition model $P(s' | s, a)$
 • Reward function $R(s)$
 • Find:
 • Policy $\pi(s)$

• Reinforcement learning
 • Transition model and reward function initially unknown
 • Still need to find the right policy
 • “Learn by doing”
Reinforcement learning: Basic scheme

- In each time step:
 - Take some action
 - Observe the outcome of the action: successor state and reward
 - Update some internal representation of the environment and policy
 - If you reach a terminal state, just start over (each pass through the environment is called a trial)

- Why is this called reinforcement learning?
Outline

• Applications of Reinforcement Learning
• Model-Based Reinforcement Learning
 • Estimate $P(s' \mid s, a)$ and $R(s)$
 • Exploration vs. Exploitation
• Model-Free Reinforcement Learning
 • Q-learning
 • Temporal Difference Learning
 • SARSA
• Function approximation; policy learning
Applications of reinforcement learning

Spoken Dialog Systems (Litman et al., 2000)

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GreetS</td>
<td>Welcome to NJFun. Please say an activity name or say 'list activities' for a list of activities I know about.</td>
</tr>
<tr>
<td>GreetU</td>
<td>Welcome to NJFun. How may I help you?</td>
</tr>
<tr>
<td>ReAsk 1 S</td>
<td>I know about amusement parks, aquariums, cruises, historic sites, museums, parks, theaters, wineries, and zoos. Please say an activity name from this list.</td>
</tr>
<tr>
<td>ReAsk 1M</td>
<td>Please tell me the activity type. You can also tell me the location and time.</td>
</tr>
</tbody>
</table>
Applications of reinforcement learning

• Learning a fast gait for Aibos

Policy Gradient Reinforcement Learning for Fast Quadrupedal Locomotion
Nate Kohl and Peter Stone.
Applications of reinforcement learning

• Stanford autonomous helicopter

Pieter Abbeel et al.
Applications of reinforcement learning

- Playing Atari with deep reinforcement learning

Video

V. Mnih et al., *Nature*, February 2015
Applications of reinforcement learning

- End-to-end training of deep visuomotor policies

Fig. 1: Our method learns visuomotor policies that directly use camera image observations (left) to set motor torques on a PR2 robot (right).

[Video]

Sergey Levine et al., Berkeley
Applications of reinforcement learning

- **Active object localization with deep reinforcement learning**

J. Caicedo and S. Lazebnik, ICCV 2015
Learning to Translate in Real Time with Neural Machine Translation

Graham Neubig, Kyunghyun Cho, Jiatao Gu, Victor O. K. Li

Figure 2: Illustration of the proposed framework: at each step, the NMT environment (left) computes a candidate translation. The recurrent agent (right) will the observation including the candidates and send back decisions—READ or WRITE.
Reinforcement learning strategies

• **Model-based**
 - Learn the **model** of the MDP (**transition probabilities and rewards**) and try to **solve the MDP** concurrently

• **Model-free**
 - **Learn how to act** *without* explicitly learning the transition probabilities \(P(s' \mid s, a) \)
 - **Q-learning:** learn an **action-utility function** \(Q(s,a) \) that tells us the value of doing action \(a \) in state \(s \)
Outline

• Applications of Reinforcement Learning

• Model-Based Reinforcement Learning
 • Estimate $P(s'|s, a)$ and $R(s)$
 • Exploration vs. Exploitation

• Model-Free Reinforcement Learning
 • Q-learning
 • Temporal Difference Learning
 • SARSA

• Function approximation; policy learning
Model-based reinforcement learning

• Basic idea:
Try to **learn the model** of the MDP (transition probabilities and rewards) and **learn how to act** (solve the MDP) simultaneously

• Learning the model:
 • Keep track of how many times state \(s' \) **follows state** \(s \) **when you take action** \(a \)
 • **Update the transition probability** \(P(s' \mid s, a) \) according to these relative frequencies
 • Keep track of the rewards \(R(s) \)

• Learning how to act:
 • **Estimate the utilities** \(U(s) \) using Bellman’s equations
 • Choose the **action that maximizes expected future utility:**
 \[
 \pi^*(s) = \arg \max_{a \in A(s)} \sum_{s'} P(s' \mid s, a) U(s')
 \]
Model-based reinforcement learning

• Learning how to act:
 • **Estimate the utilities** $U(s)$ using Bellman’s equations
 • Choose the action that **maximizes expected future utility** given the model of the environment we’ve experienced through our actions so far:

$$
\pi^*(s) = \arg \max_{a \in A(s)} \sum_{s'} P(s'| s, a) U(s')
$$

• Is there any problem with this “greedy” approach?
Exploration vs. exploitation

- **Exploration**: take a new action with unknown consequences
 - Pros:
 - Get a more accurate model of the environment
 - Discover higher-reward states than the ones found so far
 - Cons:
 - When you’re exploring, you’re not maximizing your utility
 - Something bad might happen

- **Exploitation**: go with the best strategy found so far
 - Pros:
 - Maximize reward as reflected in the current utility estimates
 - Avoid bad stuff
 - Cons:
 - Might also prevent you from discovering the true optimal strategy
Incorporating exploration

- **Idea:** explore more in the beginning, become more and more greedy over time

- **Standard (“greedy”) selection of optimal action:**
 \[
 a = \arg \max_{a' \in A(s)} \sum_{s'} P(s'|s,a')U(s')
 \]

- **Modified strategy** with exploration function \(f(u,n) \)
 \(f(u,n) \) trades off **greed** [preference for high utility \(u \)] against **curiosity** [preference for low observed frequencies \(n \)]

 \[
 f(u,n) = \begin{cases}
 R^+ & \text{if } n < N_e \\
 u & \text{otherwise}
 \end{cases}
 \]

 - Set utility of \(a' \) to \(R^+ \) [= optimistic reward estimate] if \(a' \) in state \(s \) explored less than \(N_e \) [a constant] times
 - Set utility to actual observed utility otherwise

 \[
 a = \arg \max_{a' \in A(s)} \left(\sum_{s'} P(s'|s,a')U(s'), N(s,a') \right)
 \]

 - Exploration function
 - Number of times we’ve taken action \(a' \) in state \(s \)
Outline

• Applications of Reinforcement Learning
• Model-Based Reinforcement Learning
 • Estimate $P(s'|s,a)$ and $R(s)$
 • Exploration vs. Exploitation

• Model-Free Reinforcement Learning
 • Q-learning
 • Temporal Difference Learning
 • SARSA

• Function approximation; policy learning
Model-free reinforcement learning

- **Idea**: learn how to act *without* explicitly learning the transition probabilities $P(s' | s, a)$
- **Q-learning**: learn an *action-utility function* $Q(s,a)$ that tells us the value of doing action a in state s
- Relationship between Q-values and utilities:

$$U(s) = \max_a Q(s,a)$$

- Selecting an action: $\pi^*(s) = \arg\max_a Q(s,a)$
- Compare with: $\pi^*(s) = \arg\max_a \sum_{s'} P(s'|s,a)U(s')$

 - With Q-values, don’t need to know the transition model to select the next action
TD Q-learning result

Source: Berkeley CS188
Model-free reinforcement learning

- **Q-learning:** learn an action-utility function $Q(s, a)$ that tells us the value of doing action a in state s

\[U(s) = \max_a Q(s, a) \]

- **Equilibrium constraint** on Q values:

\[Q(s, a) = R(s) + \gamma \sum_{s'} P(s'| s, a) \max_{a'} Q(s', a') \]

- What is the relationship between this constraint and the Bellman equation?

\[U(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'| s, a) U(s') \]
Model-free reinforcement learning

• **Q-learning**: learn an action-utility function $Q(s,a)$ that tells us the value of doing action a in state s

\[U(s) = \max_a Q(s, a) \]

• **Equilibrium constraint** on Q values:

\[
Q(s, a) = R(s) + \gamma \sum_{s'} P(s' | s, a) \max_{a'} Q(s', a')
\]

• Problem: we don’t know (and don’t want to learn) $P(s' | s, a)$
Temporal difference (TD) learning

- **Equilibrium constraint** on Q values:
 \[Q(s, a) = R(s) + \gamma \sum P(s'| s, a) \max_{a'} Q(s', a') \]

- **Temporal difference (TD) update:**
 - Pretend that the currently observed transition \((s, a, s')\) is the *only* possible outcome.
 Call this “local quality” as \(Q^{local}(s, a)\);
 it is computed using \(Q(s, a)\).
 \[Q^{local}(s, a) = R(s) + \gamma \max_{a'} Q(s', a') \]
 - Then interpolate between \(Q(s, a)\) and \(Q^{local}(s, a)\) to compute \(Q^{new}(s, a)\).
 \[Q^{new}(s, a) = (1 - \alpha)Q(s, a) + \alpha Q^{local}(s, a) \]
Temporal difference (TD) learning

• The **interpolated** form:
 \[
 Q_{\text{local}}(s, a) = R(s) + \gamma \max_a Q(s', a') \\
 Q^{\text{new}}(s, a) = (1 - \alpha)Q(s, a) + \alpha Q_{\text{local}}(s, a)
 \]

• The **temporal-difference** form:
 \[
 Q_{\text{local}}(s, a) = R(s) + \gamma \max_a Q(s', a') \\
 Q^{\text{new}}(s, a) = Q(s, a) + \alpha(\max_a Q_{\text{local}}(s, a) - Q(s, a))
 \]

• The **computationally efficient** form
 (all calculations rolled into one):
 \[
 Q^{\text{new}}(s, a) = Q(s, a) + \alpha(R(s) + \gamma \max_a Q(s', a') - Q(s, a))
 \]
Temporal difference (TD) learning

At each time step t

- From current state s, select an action a:
 \[a = \arg \max_{a'} f(Q(s, a'), N(s, a')) \]

- Observe the reward r, next state s'

- Perform the TD update:
 \[Q(s, a) \leftarrow Q(s, a) + \alpha (R(s) + \gamma \max_{a'} Q(s', a') - Q(s, a)) \]
 \[s \leftarrow s' \]
Temporal difference (TD) learning

- At each time step t
 - From current state s, select an action a:
 $$a = \arg\max_{a'} f(Q(s, a'), N(s, a'))$$
 - Observe the reward r, next state s'
 - Perform the TD update:
 $$Q(s, a) \leftarrow Q(s, a) + \alpha (R(s) + \gamma \max_{a'} Q(s', a') - Q(s, a))$$
 $$s \leftarrow s'$$
Temporal difference (TD) learning

• At each time step t
 • From current state s, select an action a:
 $$ a = \arg \max_{a'} f(Q(s, a'), N(s, a')) $$

 Exploration function
 Number of times we’ve taken action a' from state s

• Observe the reward r, next state s'
• Perform the TD update:

$$ Q(s, a) \leftarrow Q(s, a) + \alpha (R(s) + \gamma \max_{a'} Q(s', a') - Q(s, a)) $$

$s \leftarrow s'$

That’s not necessarily the action we will take next time…
SARSA: State-Action-Reward-State-Action
• Initialize: choose an initial state s, initial action a

• At each time step t
 • Observe the reward r, next state s'
 • From next state s', select next action a':
 $$a' = \arg \max_{a'} f(Q(s', a'), N(s', a'))$$

 Exploration function
 Number of times we’ve taken action a' from state s'

• Perform the TD update:
 $$Q(s, a) \leftarrow Q(s, a) + \alpha \left(R(s) + \gamma Q(s', a') - Q(s, a) \right)$$
 $$s \leftarrow s'$$

That is the action we will take next time...
Outline

• Applications of Reinforcement Learning
• Model-Based Reinforcement Learning
 • Estimate $P(s'|s,a)$ and $R(s)$
 • Exploration vs. Exploitation
• Model-Free Reinforcement Learning
 • Q-learning
 • Temporal Difference Learning
• Function approximation; policy learning
Function approximation

• So far, we’ve assumed a lookup table representation for utility function $U(s)$ or action-utility function $Q(s,a)$

• But what if the state space is really large or continuous?

• Alternative idea: approximate the utility function, e.g., as a weighted linear combination of features:

$$U(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

• RL algorithms can be modified to estimate these weights
• More generally, functions can be nonlinear (e.g., neural networks)

• Recall: features for designing evaluation functions in games

• Benefits:
 • Can handle very large state spaces (games), continuous state spaces (robot control)
 • Can generalize to previously unseen states
Other techniques

- **Policy search**: instead of getting the Q-values right, you simply need to get their ordering right
 - Write down the policy as a function of some parameters and adjust the parameters to improve the expected reward
- **Learning from imitation**: instead of an explicit reward function, you have expert demonstrations of the task to learn from