CS440/ECE448 Lecture 21:
Markov Decision Processes

Slides by Svetlana Lazebnik, 11/2016
Modified by Mark Hasegawa-Johnson, 3/2019

Markov Decision Processes

* In HMMs, we see a sequence of observations
and try to reason about the underlying state sequence

* There are no actions involved

e But what if we have to take an action at each step
that, in turn, will affect the state of the world?

Markov Decision Processes (MDPs)

* Components that define the MDP. Depending on the problem
statement, you either know these, or you learn them from data:

 States s, beginning with initial state s,

* Actions a
* Each state s has actions A(s) available from it
* Transition model P(s’ | s, a)

* Markov assumption: the probability of going to s’ from s depends only
on s and a and not on any other past actions or states

 Reward function R(s)

* Policy — the “solution” to the MDP:
* 7(s) € A(s): the action that an agent takes in any given state

Overview

* First, we will look at how to “solve” MDPs, or find the optimal policy
when the transition model and the reward function are known

* Second, we will consider reinforcement learning, where we don’t
know the rules of the environment or the consequences of our
actions

Game show

* A series of questions with increasing level of difficulty
and increasing payoff

* Decision: at each step, take your earnings and quit, or
go for the next question
* If you answer wrong, you lose everything

$100 $1,000 $10,000 $50,000
guestion guestion guestion guestion
Correct:
Correct Correct Correct $61,100
> > > >
1/100 3/4 1/2 1/10
99/100 1/4 1/2 9/10
Incorrect: Incorrect: Incorrect: Incorrect:
S0 S0 S0 SO
Quit: Quit: Quit:

$100 $1,100 $11,100

Game show

* Consider the $50,000 question
* Probability of guessing correctly: 1/10
e Quit or go for the question?

* What is the expected payoff for continuing?
0.1 *61,100+0.9*0=6,110

e What is the optimal decision?

$100 $1,000 $10,000 $50,000
question question question question
Correct:
Correct s Correct Correct $61,100
> > >
Q1 1/100 | 34 | @B 1/2° @8 1/10
99/100 1/4 1/2 9/10
Incorrect: Incorrect: Incorrect: Incorrect:
SO SO SO S0
Quit: Quit: Quit:

$100 $1,100 $11,100

Game show

 What should we do in Q37
 Payoff for quitting: $1,100
* Payoff for continuing: 0.5 * $11,100 = $5,550

* What about Q27
* $100 for quitting vs. $4,162 for continuing

e What about Q17

U =S3,746 U=54,162 U =S$5,550
$100 $1,000 $10,000
guestion guestion question
Correct Correct Correct
> >
1/100 3/4 1/2
99/100 1/4 1/2
Incorrect: Incorrect: Incorrect:
SO SO SO
Quit: Quit:

$100 $1,100

U=511,100

$50,000
guestion

Correct:
$61,100

jl 1/10>
9/10

Incorrect:

S0

Quit:
$11,100

Transition model:

Grid world

0.1

R(s) =-0.04 for every
non-terminal state

Source: P. Abbeel and D. Klein

Goal: Policy

Source: P. Abbeel and D. Klein

Grid world

1 START

Transition model:

0.8

0.1 0.1

R(s) =-0.04 for every
non-terminal state

Grid world

Optimal policy when
R(s) = -0.04 for every
non-terminal state

Grid world

* Optimal policies for other values of R(s):

- | | | |
A - | =] A b =
R(s) < -1.6284 —-04278 < R(s) <—-0.0850

A - (3| |4 = |E

bl={=1t] [HIHH]

-0.0221 < R(s) <0 R(s)>0

Solving MDPs

* MDP components:
* States s
* Actions a
* Transition model P(s’ | s, a)
 Reward function R(s)
* The solution:

* Policy mt(s): mapping from states to actions
* How to find the optimal policy?

Maximizing expected utility

* The optimal policy 1t(s) should maximize the expected
utility over all possible state sequences produced by
following that policy:

P(sequence|sy, a = n(so))U (sequence)

state sequences
starting from sg

 How to define the utility of a state sequence?
e Sum of rewards of individual states
* Problem: infinite state sequences

Utilities of state sequences

* Normally, we would define the utility of a state sequence as the
sum of the rewards of the individual states

* Problem: infinite state sequences

* Solution: discount the individual state rewards by a factor y
between 0 and 1:

U([Sg,8,5855--.]) = R(SO)-I-]/R(S1)+]/2R(S2)+...

i tR(S)— s (0<y<1)

=0 —

e Earlier rewards count more than later rewards
* Makes sure the total utility stays bounded
* Helps algorithms converge

Utilities of states

* Expected utility obtained by policy & starting in state s:

U™(s) = z P (Sequence|s, a = n(s))U (sequence)

state sequences
starting froms

* The “true” utility of a state, denoted U(s), is the best possible
expected sum of discounted rewards

* if the agent executes the best possible policy starting in state s
* Reminiscent of minimax values of states...

Finding the utilities of states

Max node S * If state s’ has utility U(s’), then
. what is the expected utility of
AN taking action a in state s?
el 4 A ZP(S'| s,a)U(s')
Chance node S, d s'
- /p(s' I's, a) S How do we choose the optimal
» A action?
b *
A s 7 (s)=arg maXZP(S'| s,a)U(s")
acA(s) 5!

e What is the recursive expression for U(s) in terms of the utilities
of its successor states?

U(s)=R(s)+ymax, ZP(S'| s,a)U(s'")

The Bellman equation

e Recursive relationship between the utilities of
successive states:

U(s)=R(s)+y 611161%3 ;P(S'| s,a)U(s")

Receive reward R(s)

a
A s
End up here with P(s’ | s, a)

Get utility U(s’)
(discounted by v)

The Bellman equation

e Recursive relationship between the utilities of
successive states:

U(s) = R(s)+ y max ZP(S'| s,a)U(s")

acA(s)

Sl

* For N states, we get N equations in N unknowns
* Solving them solves the MDP

Nonlinear equations -> no closed-form solution, need to use
an iterative solution method (is there a globally optimum
solution?)

We could try to solve them through expectiminimax search,
but that would run into trouble with infinite sequences

Instead, we solve them algebraically
Two methods: value iteration and policy iteration

Method 1: Value iteration

e Start out with every U(s) =0

* |terate until convergence

* During the ith iteration, update the utility of each state
according to this rule:

U. (s) < R(s)+y max ZP(S'| s,a)U.(s')

acA(s) =

* In the limit of infinitely many iterations,
this is guaranteed to find the correct utility values

* Error decreases exponentially, so in practice, don’t need an
infinite number of iterations...

Value iteration

* What effect does the update have?
U, (5) <= R(s)+y max > P(s'| s, @)U, (s')

acA(s) =

1 START

1 2 3 4

Value iteration demo

http://www.cs.ubc.ca/~poole/demos/mdp/vi.html

Value iteration

Input (non-terminal R=-0.04)
1 43)
-------------------------------------- (33)
3 »n 0.8 - :’/ e (1’1)
‘g 0.6 1! .. 3.,D)
5 P
s 04 '.' R 4,1
2 =1 =
= 0271 § J
U
1 START N
024 °
0 5 10 15 20 25 30
1 2 3 4 L
Number of iterations
Utilities with discount factor 1 Final policy
3 | 0812 | 0868 | 0.918 3
2 | o762 0660 | [=1] 5
1 0.705 | 0.655 | 0.611 0.388 1
1 2 3 4 1 2 3 4

Method 2: Policy iteration

* Start with some initial policy y and alternate between the following steps:
* Policy evaluation: calculate U™i(s) for every state s
* Policy improvement: calculate a new policy &t;,; based on the updated utilities

* Notice it’s kind of like hill-climbing in the N-queens problem.
* Policy evaluation: Find ways in which the current policy is suboptimal
* Policy improvement: Fix those problems

* Unlike Value lteration, this is guaranteed to converge in a finite number of
steps, as long as the state space and action set are both finite.

Method 2, Step 1: Policy evaluation

 Given a fixed policy &, calculate U™(s) for every state s

U”(s)=R(s)+ Q/ZP(S'\ s, 7(sHU” (s")

* 7t(s) is fixed, therefore P(s’|s, m(s)) is an s’Xs matrix,
therefore we can solve a linear equation to get U™(s)!

* Why is this “Policy Evaluation” formula so much
easier to solve than the original Bellman equation?

U(s)=R(s)+y max ZP(S" s,a)U(s'")

acA(s)

S!

Method 2, Step 2: Policy improvement

* Given U™(s) for every state s, find an improved 7t(s)

7' (s)=argmax) P(s'|s,a)U”" (s")

acA(s) g

Summary

« MDP defined by states, actions, transition model, reward function

* The “solution” to an MDP is the policy:
what do you do when you’re in any given state

* The Bellman equation tells the utility of any given state, and incidentally,
also tells you the optimum policy.
The Bellman equation is N nonlinear equations in N unknowns (the policy),
therefore it can’t be solved in closed form.

e Value iteration:

* At the beginning of the (i+1)’st iteration, each state’s value is based on looking ahead i
steps in time

e ... so finding the best action = optimize based on (i+1)-step lookahead

* Policy iteration:
* Find the utilities that result from the current policy,
* Improve the current policy

