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Probabilistic reasoning over time

• So far, we’ve mostly dealt with episodic environments
• Exceptions: games with multiple moves, planning

• In particular, the Bayesian networks we’ve seen so far 
describe static situations
• Each random variable gets a single fixed value in a single 

problem instance
• Now we consider the problem of describing 

probabilistic environments that evolve over time
• Examples: robot localization, human activity detection, 

tracking, speech recognition, machine translation, 



Hidden Markov Models

• At each time slice t, the state of the world is 
described by an unobservable (hidden) variable Xt
and an observable evidence variable Et

• Transition model: distribution over the current state 
given the whole past history:
P(Xt | X0, …, Xt-1) = P(Xt | X0:t-1) 
• Observation model: P(Et | X0:t, E1:t-1) 
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Hidden Markov Models
• Markov assumption (first order)
• The current state is conditionally independent of all the other 

states given the state in the previous time step
• What does P(Xt | X0:t-1) simplify to?

P(Xt | X0:t-1) = P(Xt | Xt-1) 

• Markov assumption for observations
• The evidence at time t depends only on the state at time t
• What does P(Et | X0:t, E1:t-1)  simplify to?

P(Et | X0:t, E1:t-1)  = P(Et | Xt) 
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An alternative visualization

Rt = T Rt = F

Rt-1 = T 0.7 0.3

Rt-1 = F 0.3 0.7

Ut = T Ut = F

Rt = T 0.9 0.1
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Another example

• States: X = {home, office, cafe}
• Observations: E = {sms, facebook, email}

Slide credit: Andy White



The Joint Distribution

• Transition model: P(Xt | X0:t-1) = P(Xt | Xt-1) 
• Observation model: P(Et | X0:t, E1:t-1)  = P(Et | Xt) 
• How do we compute the full joint P(X0:t, E1:t)?
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Review: Bayes net inference

• Inference: 

• Trees: Sum-Product Algorithm (Textbook: “Variable Elimination” Algorithm)

• Other Nets: Junction Tree Algorithm (Textbook: ”Join Tree” Algorithm)

• In General: NP-Complete, because clique size = graph size in general

• Parameter learning

• Fully observed: Count # times each event occurs

• Partially observed: Expectation-Maximization algorithm

• Estimate Probability of each event at each time

• E[# times event occurs] = sum_t(Probability event occurs at time t)



Sum-Product Algorithm for HMMs (Forward algorithm)
• An HMM is a tree!
• Let’s say we want to find P(X3|E1,E2,E3) =	P(X3,E1,E2,E3)/P(E1,E2,E3)	
P(X3,E1,E2,E3)	=	∑X0 ∑	X1	∑	X2	P(X0,X1,X2 X3,E1,E2,E3)
=	∑X0 ∑	X1	∑	X2	P(X0)P(X1|	X0)P(E1|	X1)P(X2|	X1)P(E2|	X2) P(X3|	X2)P(E3|	X3)

Let’s	rearrange	the	sums:
=	[ ∑	X2	[	∑	X1	[∑X0 P(X0)P(X1|	X0)] P(E1|	X1)P(X2|	X1)] P(E2|	X2)	P(X3|	X2) ] P(E3|	X3)

Let’s	compute	F1 = [∑X0 P(X0)P(X1|	X0)] for	any	value	of	X1	 (so	we	marginalize	out	X0)
=	[ ∑	X2	[	∑	X1	F1 P(E1|	X1)P(X2|	X1)] P(E2|	X2)	P(X3|	X2)	] P(E3|	X3)

Now	let’s	compute	F2 = [	∑	X1	F1 P(E1|	X1)P(X2|	X1)] for	any	value	of	X2	(so	we	marginalize	out	X1)
=	[ ∑	X2	F2 P(E2|	X2)	P(X3|	X2)	] P(E3|	X3)

And	F3 =	[ ∑	X2	F2 P(E2|	X2)	P(X3|	X2)	]	(so	we	marginalize	out	X2)
=>	P(X3,E1,E2,E3)	= F3 P(E3|	X3)
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HMM inference tasks
• Filtering: what is the distribution over the current state Xt given all 

the evidence so far, e1:t ?
• The forward algorithm = sum-product algorithm for Xt given e1:t
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HMM inference tasks
• Filtering: what is the distribution over the current state Xt given all 

the evidence so far, e1:t ?
• Smoothing: what is the distribution of some state Xk given the 

entire observation sequence e1:t?
• The forward-backward algorithm = sum-product algorithm for Xk given e1:t, 

when 1 < k < t
• Xk = query variable, unknown, need to consider all its possible values
• E1:t = evidence variables, known, only need to consider the given values
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HMM inference tasks
• Filtering: what is the distribution over the current state Xt given all 

the evidence so far, e1:t ?
• Smoothing: what is the distribution of some state Xk given the 

entire observation sequence e1:t?
• Evaluation: compute the probability of a given observation 

sequence e1:t
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HMM inference tasks
• Filtering: what is the distribution over the current state Xt given all 

the evidence so far, e1:t

• Smoothing: what is the distribution of some state Xk given the 
entire observation sequence e1:t?
• Evaluation: compute the probability of a given observation 

sequence e1:t

• Decoding: what is the most likely state sequence X0:t given the 
observation sequence e1:t?
• The Viterbi algorithm
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HMM Learning and Inference
• Inference tasks
• Filtering: what is the distribution over the current state Xt

given all the evidence so far, e1:t
• Smoothing: what is the distribution of some state Xk given the 

entire observation sequence e1:t?
• Evaluation: compute the probability of a given observation 

sequence e1:t
• Decoding: what is the most likely state sequence X0:t given the 

observation sequence e1:t?
• Learning
• Given a training sample of sequences, learn the model 

parameters (transition and emission probabilities)
• EM algorithm



Applications of HMMs
• Speech recognition HMMs:

• Observations are acoustic signals 
(continuous valued)

• States are specific positions in specific words 
(so, tens of thousands)

• Machine translation HMMs:
• Observations are words (tens of thousands)
• States are translation options

• Robot tracking:
• Observations are range readings 

(continuous)
• States are positions on a map (continuous)

Source: Tamara Berg



Application of HMMs: Speech recognition

• “Noisy channel” model of speech



Speech feature extraction
Acoustic wave form
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Phonetic model
• Phones: speech sounds
• Phonemes: groups of speech sounds that have a 

unique meaning/function in a language (e.g., there 
are several different ways to pronounce “t”)



Phonetic model



HMM models for phones
HMM states in most speech recognition systems 
correspond to subsegments of triphones
• Triphone: the /b/ in “about” (ax-b+aw) sounds different 

from the /b/ in “Abdul” (ae-b+d).  There are around 60 
phones and as many as 603 context-dependent triphones.
• Subsegments: /b/ has three subsegments: the closure, the 

silence, and the release.  There are 3×60% subsegments of 
triphones.



HMM models for words



Putting words together

• Given a sequence of acoustic features, how do we 
find the corresponding word sequence? 



The Viterbi Algorithm
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Decoding with the Viterbi algorithm



For more information

• CS 447: Natural Language Processing
• ECE 417: Multimedia Signal Processing
• ECE 594: Mathematical Models of Language
• Linguistics 506: Computational Linguistics
• D. Jurafsky and J. Martin, “Speech and Language Processing,” 2nd ed., 

Prentice Hall, 2008


