CS440/ECE448 Lecture 20: Hidden Markov Models

Slides by Svetlana Lazebnik, 11/2016

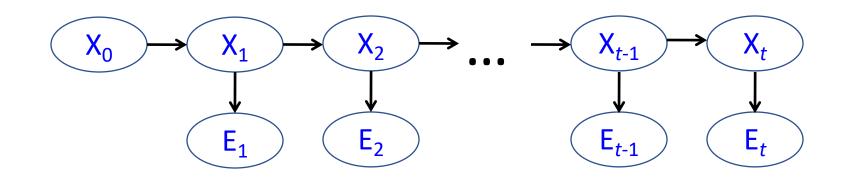


Probabilistic reasoning over time

- So far, we've mostly dealt with *episodic* environments
 - Exceptions: games with multiple moves, planning
- In particular, the Bayesian networks we've seen so far describe static situations
 - Each random variable gets a single fixed value in a single problem instance
- Now we consider the problem of describing probabilistic environments that evolve over time
 - Examples: robot localization, human activity detection, tracking, speech recognition, machine translation,

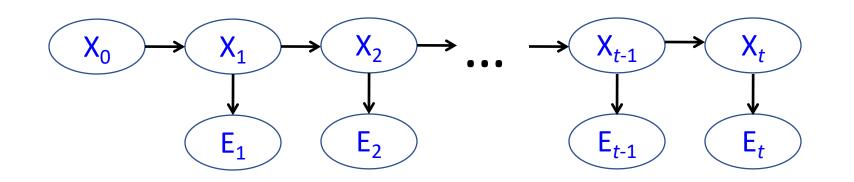
Hidden Markov Models

- At each time slice t, the state of the world is described by an unobservable (hidden) variable X_t and an observable evidence variable E_t
- Transition model: distribution over the current state given the whole past history:
 P(X_t | X₀, ..., X_{t-1}) = P(X_t | X_{0:t-1})
- Observation model: $P(E_t | X_{0:t}, E_{1:t-1})$

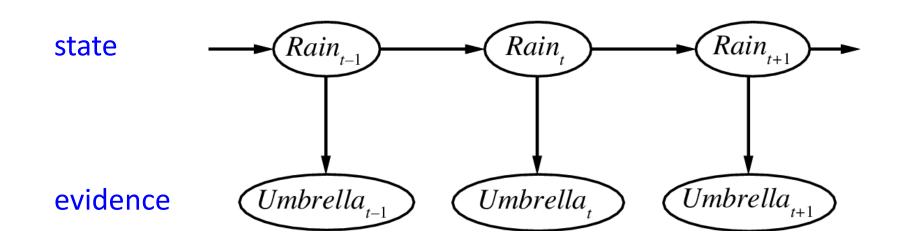


Hidden Markov Models

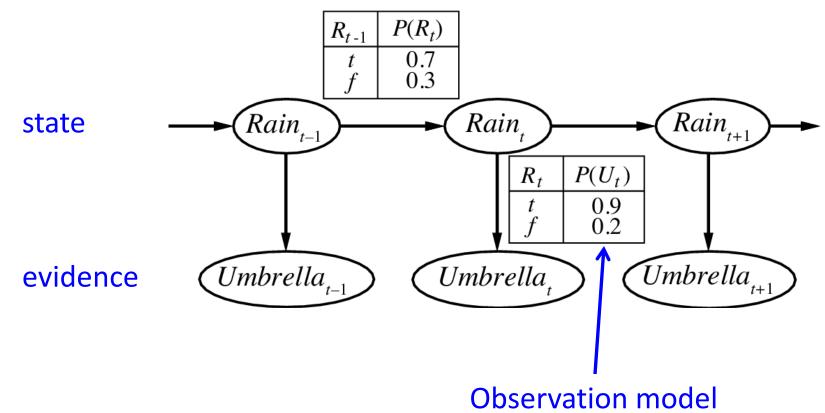
- Markov assumption (first order)
 - The current state is conditionally independent of all the other states given the state in the previous time step
 - What does P(X_t | X_{0:t-1}) simplify to?
 P(X_t | X_{0:t-1}) = P(X_t | X_{t-1})
- Markov assumption for observations
 - The evidence at time t depends only on the state at time t
 - What does $P(E_t | X_{0:t}, E_{1:t-1})$ simplify to? $P(E_t | X_{0:t}, E_{1:t-1}) = P(E_t | X_t)$



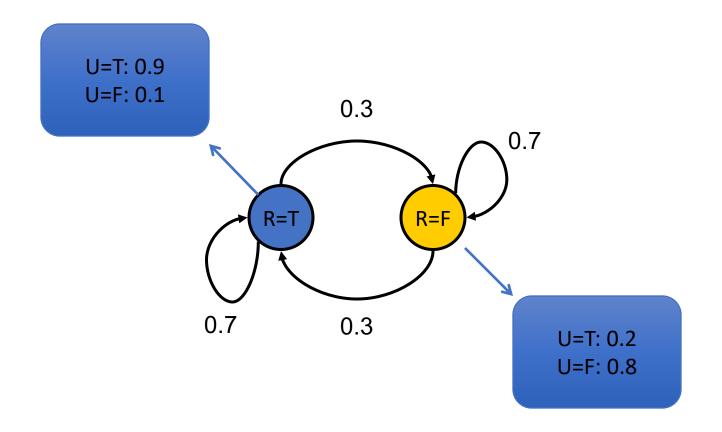
Example



Example



An alternative visualization



Transition
probabilities

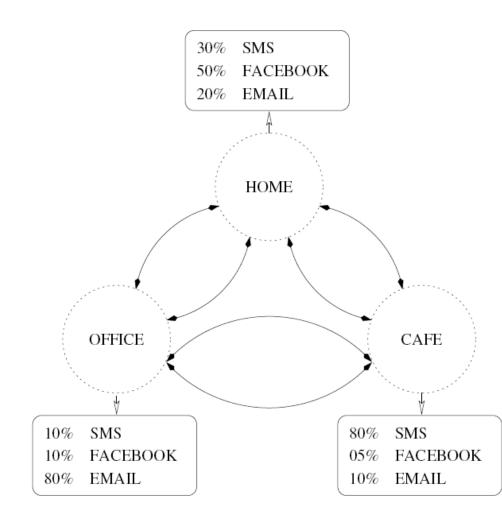
	R _t = T	$R_t = F$
$R_{t-1} = T$	0.7	0.3
$R_{t-1} = F$	0.3	0.7

Observation (emission) probabilities

	U _t = T	U _t = F
R _t = T	0.9	0.1
$R_t = F$	0.2	0.8

Another example

- **States:** X = {home, office, cafe}
- **Observations:** E = {sms, facebook, email}



Transition Probabilities

	home	office	cafe
home	0.2	0.6	0.2
office	0.5	0.2	0.3
cafe	0.2	0.8	0.0

Emission Probabilities

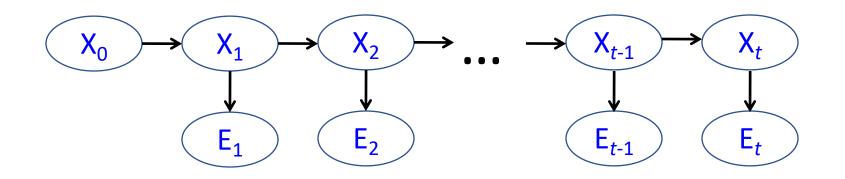
	sms	facebook	email
home	0.3	0.5	0.2
office	0.1	0.1	0.8
cafe	0.8	0.1	0.1

Slide credit: Andy White

The Joint Distribution

- Transition model: $P(X_t | X_{0:t-1}) = P(X_t | X_{t-1})$
- Observation model: $P(E_t | X_{0:t}, E_{1:t-1}) = P(E_t | X_t)$
- How do we compute the full joint P(X_{0:t}, E_{1:t})?

$$P(X_{0:t}, E_{1:t}) = P(X_0) \prod_{i=1}^{t} P(X_i | X_{i-1}) P(E_i | X_i)$$



Review: Bayes net inference

- Inference:
 - Trees: Sum-Product Algorithm (Textbook: "Variable Elimination" Algorithm)
 - Other Nets: Junction Tree Algorithm (Textbook: "Join Tree" Algorithm)
 - In General: NP-Complete, because clique size = graph size in general
- Parameter learning
 - Fully observed: Count # times each event occurs
 - Partially observed: Expectation-Maximization algorithm
 - Estimate Probability of each event at each time
 - E[# times event occurs] = sum_t(Probability event occurs at time t)

Sum-Product Algorithm for HMMs (Forward algorithm)

• An HMM is a tree!

• Let's say we want to find $P(X_3|E_1,E_2,E_3) = P(X_3,E_1,E_2,E_3)/P(E_1,E_2,E_3)$

 $P(X_3, E_1, E_2, E_3) = \sum_{X_0} \sum_{X_1} \sum_{X_2} P(X_0, X_1, X_2, X_3, E_1, E_2, E_3)$

 $= \sum_{X_0} \sum_{X_1} \sum_{X_2} P(X_0) P(X_1 | X_0) P(E_1 | X_1) P(X_2 | X_1) P(E_2 | X_2) P(X_3 | X_2) P(E_3 | X_3)$

Let's rearrange the sums:

 $= \left[\sum_{X_2} \left[\sum_{X_1} \left[\sum_{X_0} P(X_0) P(X_1 | X_0) \right] P(E_1 | X_1) P(X_2 | X_1) \right] P(E_2 | X_2) P(X_3 | X_2) \right] P(E_3 | X_3)$

Let's compute $F_1 = [\sum_{X_0} P(X_0)P(X_1 | X_0)]$ for any value of X_1 (so we marginalize out X_0)

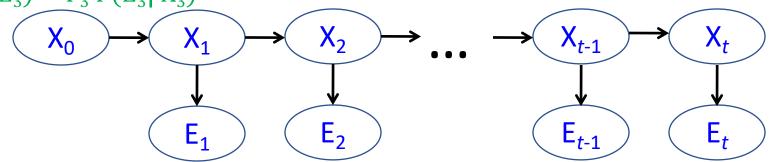
 $= \left[\sum_{X_2} \left[\sum_{X_1} F_1 P(E_1 | X_1) P(X_2 | X_1) \right] P(E_2 | X_2) P(X_3 | X_2) \right] P(E_3 | X_3)$

Now let's compute $F_2 = [\sum_{X_1} F_1 P(E_1 | X_1) P(X_2 | X_1)]$ for any value of X_2 (so we marginalize out X_1)

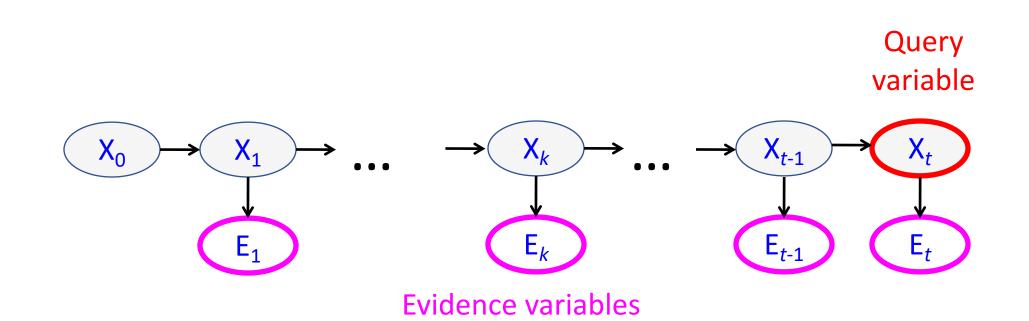
 $= \left[\sum_{X_2} F_2 P(E_2 | X_2) P(X_3 | X_2) \right] P(E_3 | X_3)$

And $F_3 = \left[\sum_{X_2} F_2 P(E_2 | X_2) P(X_3 | X_2)\right]$ (so we marginalize out X_2)

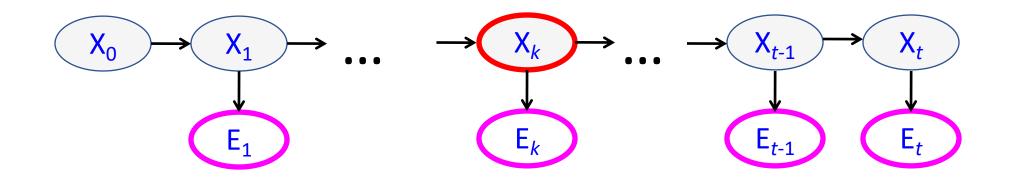
 $=> P(X_3, E_1, E_2, E_3) = F_3 P(E_3 | X_3)$



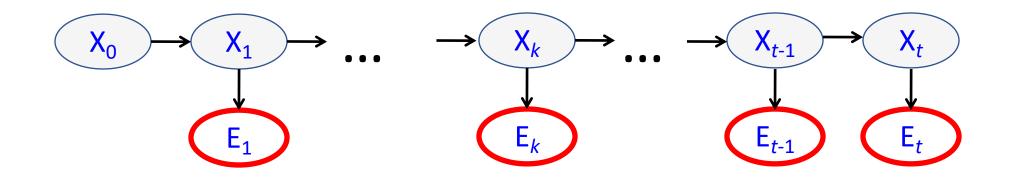
- Filtering: what is the distribution over the current state X_t given all the evidence so far, e_{1:t} ?
 - The forward algorithm = sum-product algorithm for Xt given e1:t



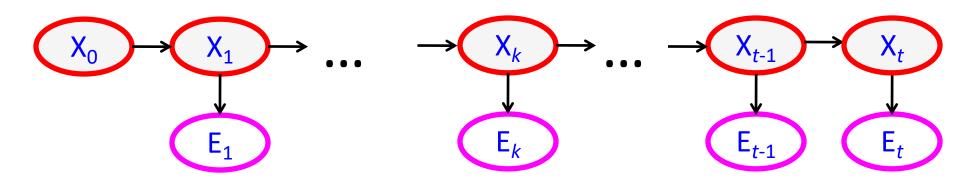
- Filtering: what is the distribution over the current state X_t given all the evidence so far, e_{1:t} ?
- Smoothing: what is the distribution of some state X_k given the entire observation sequence e_{1:t}?
 - The forward-backward algorithm = sum-product algorithm for Xk given e1:t, when 1 < k < t
 - Xk = query variable, unknown, need to consider all its possible values
 - E1:t = evidence variables, known, only need to consider the given values



- Filtering: what is the distribution over the current state X_t given all the evidence so far, e_{1:t}?
- **Smoothing:** what is the distribution of some state X_k given the entire observation sequence $e_{1:t}$?
- Evaluation: compute the probability of a given observation sequence e_{1:t}



- Filtering: what is the distribution over the current state X_t given all the evidence so far, e_{1:t}
- **Smoothing:** what is the distribution of some state X_k given the entire observation sequence **e**_{1:t}?
- Evaluation: compute the probability of a given observation sequence e_{1:t}
- **Decoding:** what is the most likely state sequence **X**_{0:t} given the observation sequence **e**_{1:t}?
 - The Viterbi algorithm



HMM Learning and Inference

- Inference tasks
 - Filtering: what is the distribution over the current state X_t given all the evidence so far, e_{1:t}
 - **Smoothing:** what is the distribution of some state X_k given the entire observation sequence **e**_{1:t}?
 - Evaluation: compute the probability of a given observation sequence e_{1:t}
 - Decoding: what is the most likely state sequence X_{0:t} given the observation sequence e_{1:t}?
- Learning
 - Given a training sample of sequences, learn the model parameters (transition and emission probabilities)
 - EM algorithm

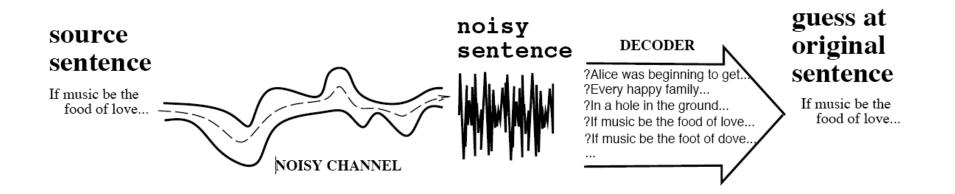
Applications of HMMs

- Speech recognition HMMs:
 - Observations are acoustic signals (continuous valued)
 - States are specific positions in specific words (so, tens of thousands)
- Machine translation HMMs:
 - Observations are words (tens of thousands)
 - States are translation options
- Robot tracking:
 - Observations are range readings (continuous)
 - States are positions on a map (continuous)

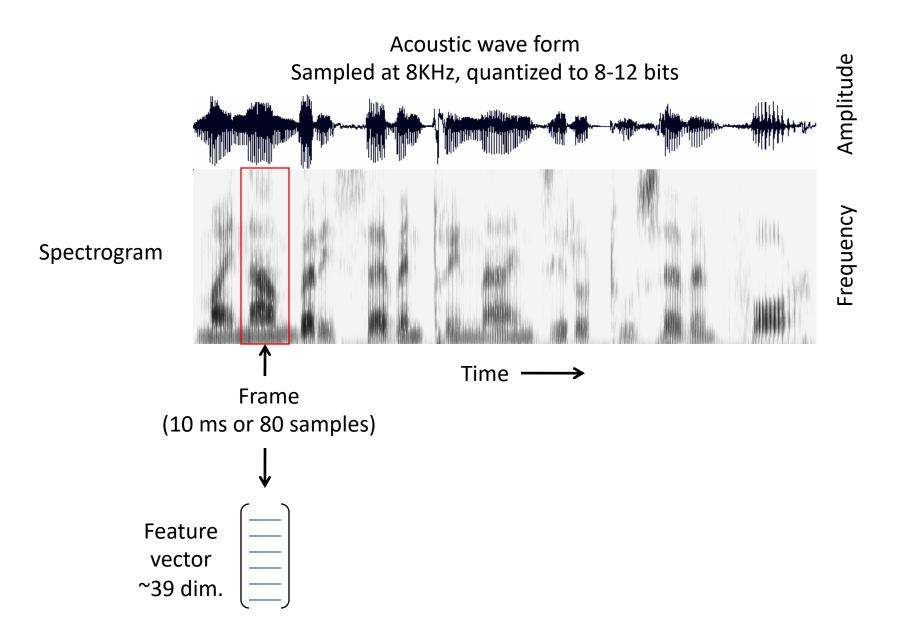
Google			
Translate	From: Latin 👻	+	To: English 👻

Application of HMMs: Speech recognition

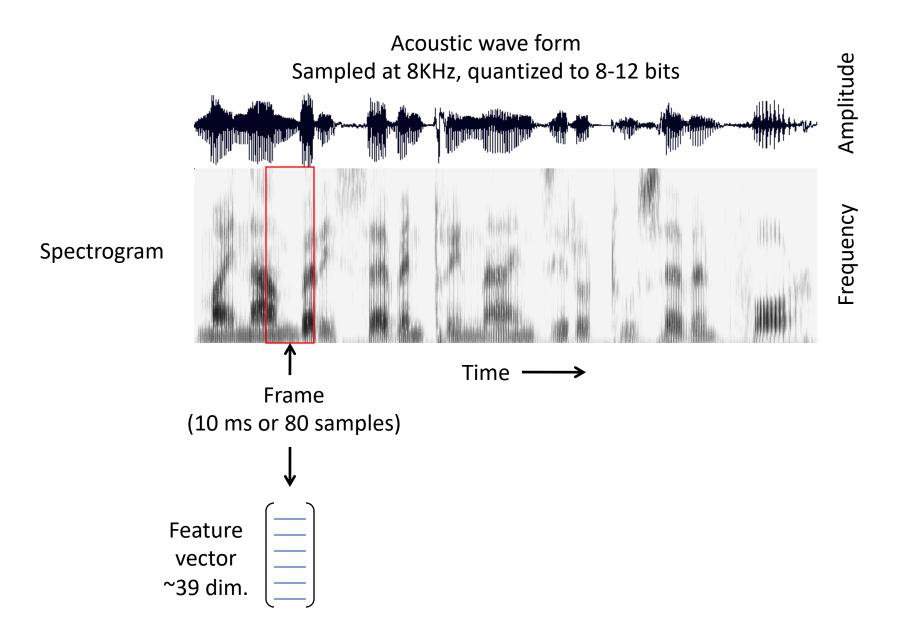
"Noisy channel" model of speech



Speech feature extraction



Speech feature extraction



Phonetic model

- Phones: speech sounds
- **Phonemes:** groups of speech sounds that have a unique meaning/function in a language (e.g., there are several different ways to pronounce "t")

Phonetic model

IPA	ARPAbet		IPA	ARPAbet
Symbol	Symbol	Word	Transcription	Transcription
[p]	[p]	parsley	['parsli]	[paarsliy]
[t]	[t]	tarragon	['tærəgan]	[t ae r ax g aa n]
[k]	[k]	<u>c</u> atnip	['kætnip]	[k ae t n ix p]
[b]	[b]	<u>b</u> ay	[beɪ]	[b ey]
[d]	[d]	<u>d</u> ill	[dɪl]	[d ih l]
[g]	[g]	garlic	['garlik]	[g aa r l ix k]
[m]	[m]	<u>m</u> int	[mmt]	[m ih n t]
[n]	[n]	<u>n</u> utmeg	['nʌtmɛg]	[n ah t m eh g
[ŋ]	[ng]	ginseng	[ˈdʒmsɨŋ]	[jh ih n s ix ng]
[f]	[f]	fennel	[ˈfɛnl]	[f eh n el]
[v]	[v]	clo <u>v</u> e	[klouv]	[k l ow v]
[θ]	[th]	<u>th</u> istle	[ˈθɪsl]	[th ih s el]
[ð]	[dh]	hea <u>th</u> er	[ˈhɛðəʲ]	[h eh dh axr]
[s]	[s]	sage	[seid3]	[s ey jh]
[z]	[z]	hazelnut	['heɪzlnʌt]	[h ey z el n ah t]
ព្រ	[sh]	squa <u>sh</u>	[skwa∫]	[s k w a sh]
[3]	[zh]	ambro <u>s</u> ia	[æm'broʊʒə]	[ae m b r ow zh ax]
[tʃ]	[ch]	<u>ch</u> icory	[ˈtʃɪkəʲi]	[ch ih k axr iy]
[dʒ]	[jh]	sage	[seid3]	[s ey jh]
[1]	[1]	licorice	[ˈlɪkəʲɨʃ]	[l ih k axr ix sh]
[w]	[w]	ki <u>w</u> i	[ˈkiwi]	[k iy w iy]
[r]	[r]	parsley	['parsli]	[paarsliy]
[j]	[y]	yew	[yu]	[y uw]
[h]	[h]	horseradish	['hɔrsrædı∫]	[h ao r s r ae d ih sh]
[?]	[q]	uh-oh	[?v300]	[q ah q ow]
[1]	[dx]	bu <u>tt</u> er	['bʌrəʲ]	[b ah dx axr]
[ĩ]	[nx]	wintergreen	[wır̃əgrin]	[wihnxaxrgrin]
[ļ]	[el]	thist <u>le</u>	[ˈθɪsl]	[th ih s el]
Figure 4.1 IPA and ARPAbet symbols for transcription of English consonants.				

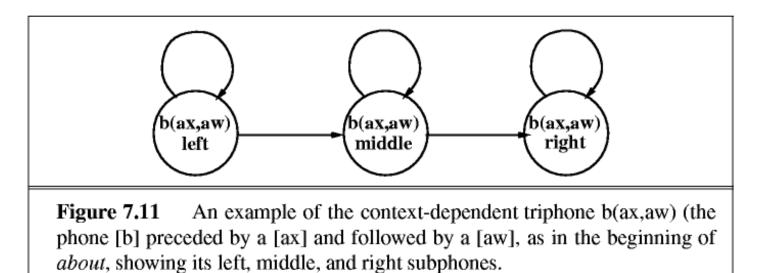
IPA	ARPAbet		IPA	ARPAbet
Symbol	Symbol	Word	Transcription	Transcription
[i]	[iy]	lily	['lɪli]	[1 ih 1 iy]
[1]	[ih]	lily	['lɪli]	[l ih l iy]
[eɪ]	[ey]	d <u>ai</u> sy	['deɪzi]	[d ey z i]
[8]	[eh]	poins <u>e</u> ttia	[pomˈsɛriə]	[p oy n s eh dx iy ax
[æ]	[ae]	aster	['æstø']	[ae s t axr]
[a]	[aa]	poppy	['papi]	[p aa p i]
[c]	[ao]	orchid	['ɔrkɨd]	[ao r k ix d]
[ʊ]	[uh]	w <u>oo</u> druff	['wudrʌf]	[w uh d r ah f]
[00]	[ow]	lotus	[seruol']	[l ow dx ax s]
[u]	[uw]	tulip	['tulip]	[t uw l ix p]
[Λ]	[uh]	buttercup	['bʌrəʰˌkʌp]	[b uh dx axr k uh p]
[3 4]	[er]	b <u>ir</u> d	['bæd]	[b er d]
[aɪ]	[ay]	<u>i</u> ris	['arris]	[ay r ix s]
[au]	[aw]	sunfl <u>ow</u> er	['sʌnflaʊə^]	[s ah n f l aw axr]
[10]	[oy]	p <u>oi</u> nsettia	[pomˈsɛriə]	[p oy n s eh dx iy ax
[ju]	[y uw]	feverfew	[fivə fju]	[f iy v axr f y u]
[ə]	[ax]	woodruff	['wudrəf]	[w uh d r ax f]
[3 *]	[axr]	heath <u>er</u>	[ˈhɛðə]	[h eh dh axr]
[i]	[ix]	tulip	[ˈtulɨp]	[t uw l ix p]
[u]	[ux]		0	0

Figure 4.2 IPA and ARPAbet symbols for transcription of English vowels

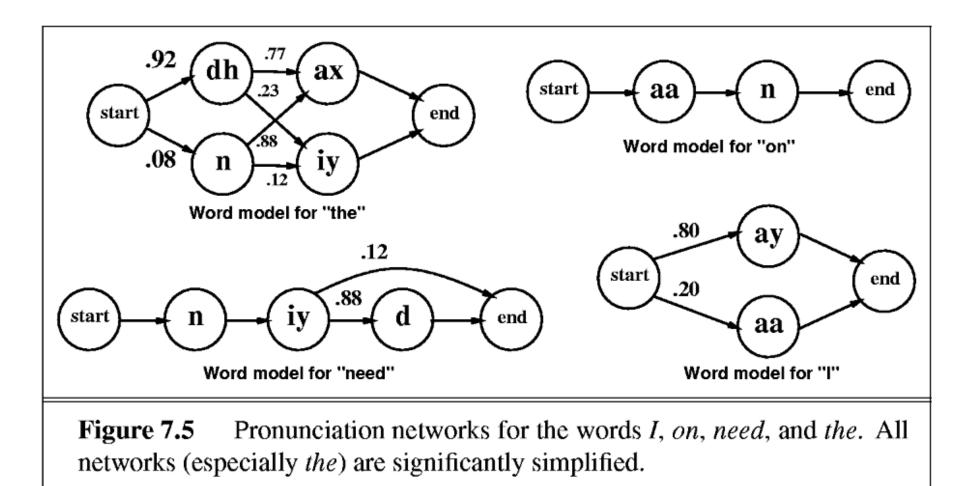
HMM models for phones

HMM states in most speech recognition systems correspond to *subsegments* of *triphones*

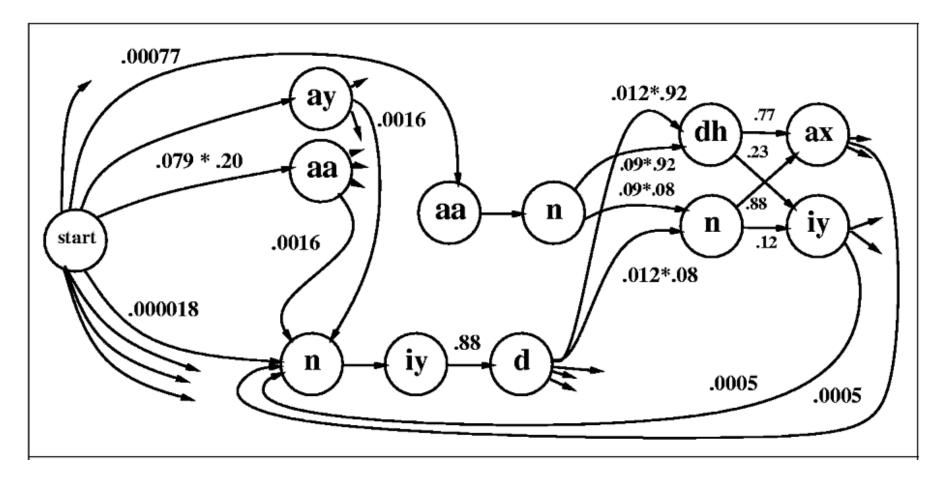
- <u>Triphone</u>: the /b/ in "about" (ax-b+aw) sounds different from the /b/ in "Abdul" (ae-b+d). There are around 60 phones and as many as 60³ context-dependent *triphones*.
- <u>Subsegments</u>: /b/ has three subsegments: the closure, the silence, and the release. There are 3×60^3 subsegments of triphones.



HMM models for words



Putting words together

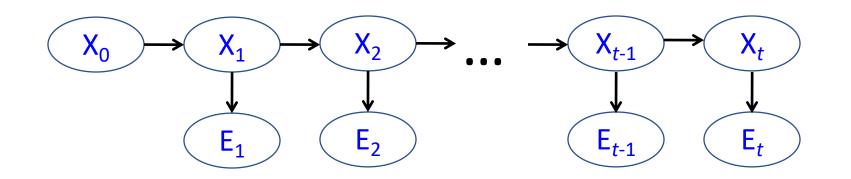


• Given a sequence of acoustic features, how do we find the corresponding word sequence?

The Viterbi Algorithm

$$\max_{\substack{X_{0:t} \\ = \max_{X_t} P(E_t | X_t) \max_{X_{t-1}} P(X_t | X_{t-1}) P(E_{t-1} | X_{t-1}) \max_{X_{t-2}} \dots}$$

Complexity changes from O{N^T} to O{TN^2}



Decoding with the Viterbi algorithm

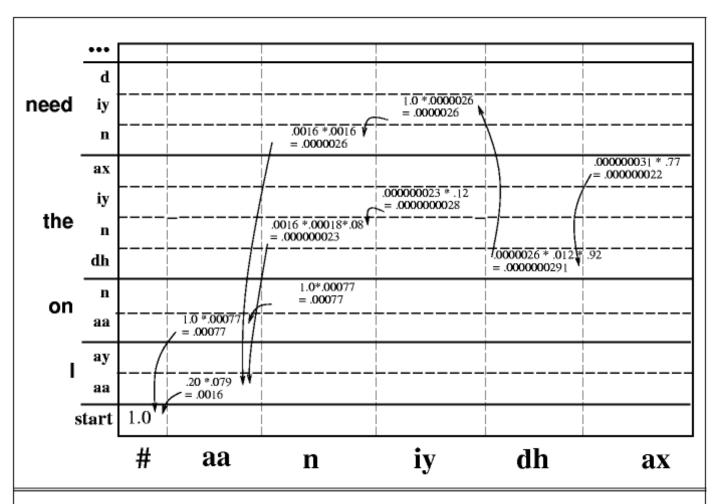


Figure 7.10 The entries in the individual state columns for the Viterbi algorithm. Each cell keeps the probability of the best path so far and a pointer to the previous cell along that path. Backtracing from the successful last word (*the*), we can reconstruct the word sequence *I need the*.

For more information

- CS 447: Natural Language Processing
- ECE 417: Multimedia Signal Processing
- ECE 594: Mathematical Models of Language
- Linguistics 506: Computational Linguistics
- D. Jurafsky and J. Martin, "Speech and Language Processing," 2nd ed., Prentice Hall, 2008