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Today’s lecture

• Bayesian Networks (Bayes Nets)
• A graphical representation 

of probabilistic models
• Capture conditional (in)dependencies between random variables 

• Inference and Learning in Bayes Nets
• Inference = Reasoning
• Learning = Parameter estimation 
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Review: Bayesian inference
A general scenario:

Query variables: X
Evidence (observed) variables and their values: E = e

Inference problem: answer questions about the query 
variables given the evidence variables
This can be done using the posterior distribution P(X | E = e)
Example of a useful question: Which X is true?

More formally: what value of X has the least probability of 
being wrong?
Answer: MPE = MAP (argmin P(error) = argmax P(X=x|E=e))



Today: What if P(X,E) is complicated?

• Very, very common problem: P(X,E) is complicated because both X 
and E depend on some hidden variable Y

• SOLUTION:
• Represent the dependencies as a graph
• When your algorithm performs inference, make sure it does so in the order of 

the graph

• FORMALISM: Bayesian Network



Bayesian Inference with Hidden Variables
• A general scenario:

- Query variables: X
- Evidence (observed) variables and their values: E = e
- Hidden (unobserved) variables: Y

• Inference problem: answer questions about the query 
variables given the evidence variables
- This can be done using the posterior distribution P(X | E = e)
- In turn, the posterior needs to be derived from the full joint P(X, E, Y)

• Bayesian networks are a tool for representing joint 
probability distributions efficiently
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Bayesian Networks



Bayesian networks

• More commonly called graphical models
• A way to depict conditional independence 

relationships between random variables
• A compact specification of full joint distributions



Independence 
• Random variables X and Y are independent (X⊥Y) 

if P(X,Y) = P(X) × P(Y)
NB.: Since X and Y are R.V.s (not individual events), 
P(X,Y) = P(X)×P(Y) is an abbreviation for:
∀x∀y P(X=x,Y=y) =P(X=x)×P(Y=y)

• X and Y are conditionally independent given Z (X⊥Y | Z)
if P(X,Y | Z) = P(X | Z ) × P(Y | Z)
The value of X depends on the value of Z, and the value of Y depends on the 
value of Z, so X and Y are not independent.
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Bayesian networks

• Insight: (Conditional) independence assumptions are essential for 
probabilistic modeling

• Bayes Net: a directed graph which represents the joint distribution of 
a number of random variables in a directed graph

• Nodes = random variables
• Directed edges = dependencies
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Bayesian networks

• Nodes: random variables
• Edges: dependencies

• An edge from one variable (parent) to 
another (child) indicates direct influence 
(conditional probabilities)

• Edges must form a directed, acyclic graph
• Each node is conditioned on its parents: 

P(X | Parents(X))
These conditional distributions are the 
parameters of the network

• Each node is conditionally independent 
of its non-descendants given its parent

We have four random variables
Weather is independent of cavity, 
toothache and catch
Toothache and catch both depend on 
cavity.



Conditional independence and the 
joint distribution

• Key property: each node is conditionally independent of 
its non-descendants given its parents

• Suppose the nodes X1, …, Xn are sorted in topological order 
of the graph (i.e. if Xi is a parent of Xj, i < j)

• To get the joint distribution P(X1, …, Xn), 
use chain rule (step 1 below) and then 
take advantage of independencies (step 2)
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The joint probability distribution

P(j, m, a,¬b,¬e) = P(¬b) P(¬e) P(a|¬b,¬e) P(j|a) P(m|a)
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Example: N independent 
coin flips

• Complete independence: no interactions:
P(X1) P(X2) P(X3)

X1 X2 Xn
…



Conditional probability distributions
• To specify the full joint distribution, we need to specify a 

conditional distribution for each node given its parents: 
P (X | Parents(X))

Z1 Z2 Zn

X

…

P (X | Z1, …, Zn)



Naïve Bayes document model

• Random variables:
• X: document class
• W1, …, Wn: words in the document

• Dependencies: P(X) P(W1 | X) … P(Wn | X)

W1 W2 Wn
…

X



Example: Los Angeles Burglar Alarm

• I have a burglar alarm that is sometimes set off by minor earthquakes. My two 
neighbors, John and Mary, promised to call me at work if they hear the alarm

• Example inference task: suppose Mary calls and John doesn’t call. What is the probability of a 
burglary?

• What are the random variables? 
• Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

• What are the direct influence relationships?
• A burglar can set the alarm off
• An earthquake can set the alarm off
• The alarm can cause Mary to call
• The alarm can cause John to call



Example: Burglar Alarm

𝑃(𝐵) 𝑃(𝐸)

𝑃(𝐴|𝐵, 𝐸)

𝑃(𝑀|𝐴)𝑃(𝐽|𝐴)

• A “model” is a complete 
specification of the 
dependencies.

• The conditional 
probability tables are 
the model parameters.



Example: Burglar Alarm



Outline

• Review: Bayesian inference
• Bayesian network: graph semantics
• The Los Angeles burglar alarm example
• Conditional independence ≠ Independence
• Constructing a Bayesian network: Structure learning
• Constructing a Bayesian network: Hire an expert



Independence
• By saying that 𝑋/ and 𝑋0 are independent, we mean that 

P(𝑋0, 𝑋/) = P(𝑋/)P(𝑋0)
• 𝑋/ and 𝑋0 are independent if and only if they have no common 

ancestors
• Example: independent coin flips

• Another example: Weather is independent of all other variables in this 
model.

X1 X2 Xn
…



Conditional independence
• By saying that 𝑊/ and 𝑊0 are conditionally independent given 𝑋, we 

mean that 
P 𝑊/,𝑊0 𝑋 = P(𝑊/|𝑋)P(𝑊0|𝑋)

• 𝑊/ and 𝑊0 are conditionally independent given 𝑋 if and only if they 
have no common ancestors other than the ancestors of 𝑋. 

• Example: naïve Bayes model:

W1 W2 Wn
…

X



Common cause: Conditionally 
Independent

Common effect: Independent

Are X and Z independent? No

𝑃 𝑍, 𝑋 =5
6

𝑃 𝑍 𝑌 𝑃 𝑋 𝑌 𝑃(𝑌)

𝑃 𝑍 𝑃 𝑋 = 5
6

𝑃 𝑍 𝑌 𝑃(𝑌) 5
6

𝑃 𝑋 𝑌 𝑃(𝑌)

Are they conditionally independent given Y? Yes
𝑃 𝑍, 𝑋 𝑌 = 𝑃(𝑍|𝑌)𝑃(𝑋|𝑌)

Are X and Z independent? Yes
𝑃(𝑋, 𝑍) = 𝑃(𝑋)𝑃(𝑍)

Are they conditionally independent given Y? No

𝑃 𝑍, 𝑋 𝑌 =
𝑃 𝑌 𝑋, 𝑍 𝑃 𝑋 𝑃(𝑍)

𝑃(𝑌)
≠ 𝑃 𝑍|𝑌 𝑃 𝑋|𝑌

Conditional independence ≠ Independence



Common cause: Conditionally 
Independent

Common effect: Independent

Are X and Z independent? No
Knowing X tells you about Y, which tells you about Z.
Are they conditionally independent given Y? Yes
If you already know Y, then X gives you no useful 
information about Z.

Are X and Z independent? Yes
Knowing X tells you nothing about Z.
Are they conditionally independent given Y? No

If Y is true, then either X or Z must be true.
Knowing that X is false means Z must be true.
We say that X “explains away” Z.

Conditional independence ≠ Independence



Conditional independence ≠ Independence

Being conditionally independent given X does NOT mean that 𝑊/ and 𝑊0 are 
independent.  Quite the opposite.  For example:
• The document topic, X, can be either “sports” or “pets”, equally probable.
• W1=1 if the document contains the word “food,” otherwise W1=0.
• W2=1 if the document contains the word “dog,” otherwise W2=0.
• Suppose you don’t know X, but you know that W2=1 (the document has the 

word “dog”).  Does that change your estimate of p(W1=1)?

W1 W2 Wn
…

X



Conditional independence
Another example: causal chain

• X and Z are conditionally independent given Y, because they have 
no common ancestors other than the ancestors of Y.  

• Being conditionally independent given Y does NOT mean that X 
and Z are independent.  Quite the opposite.  For example, 
suppose P(𝑋) = 0.5, P 𝑌 𝑋 = 0.8, P 𝑌 ¬𝑋 = 0.1, P 𝑍 𝑌 =
0.7, and P 𝑍 ¬𝑌 = 0.4. Then we can calculate that P 𝑍 𝑋 =
0.64, but P(𝑍) = 0.535



Outline

• Review: Bayesian inference
• Bayesian network: graph semantics
• The Los Angeles burglar alarm example
• Conditional independence ≠ Independence
• Constructing a Bayesian network: Structure learning
• Constructing a Bayesian network: Hire an expert



Constructing a Bayes Network: Two Methods
1. “Structure Learning” a.k.a. “Analysis of Causality:”

1. Suppose you know the variables, but you don’t know which variables depend on 
which others.  You can learn this from data.

2. This is an exciting new area of research in statistics, where it goes by the name of 
“analysis of causality.”

3. … but it’s almost always harder than method #2.  You should know how to do this 
in very simple examples (like the Los Angeles burglar alarm), but you don’t need to 
know how to do this in the general case.

2. “Hire an Expert:” 
1. Find somebody who knows how to solve the problem.  
2. Get her to tell you what are the important variables, and which variables depend 

on which others.
3. THIS IS ALMOST ALWAYS THE BEST WAY.



Constructing Bayesian networks: Structure 
Learning
1. Choose an ordering of variables X1, … , Xn

2. For i = 1 to n
• add Xi to the network
• Check your training data.  If there is any variable X1, … ,Xi-1 that CHANGES 

the probability of Xi=1, then add that variable to the set Parents(Xi) such 
that
P(Xi | Parents(Xi)) = P(Xi | X1, ... Xi-1)

3. Repeat the above steps for every possible ordering (complexity: n!). 
4. Choose the graph that has the smallest number of edges.



• Suppose we choose the ordering M, J, A, B, E

Example
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• Suppose we choose the ordering M, J, A, B, E

Example



• Suppose we choose the ordering M, J, A, B, E

Example



Example contd.

• Deciding conditional independence is hard in noncausal directions
• The causal direction seems much more natural

• Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed (vs. 
1+1+4+2+2=10 for the causal ordering)

versus



Why store it in causal order? A: Saves 
memory
• Suppose we have a Boolean variable Xi with k Boolean parents. How many rows 

does its conditional probability table have? 
• 2k rows for all the combinations of parent values
• Each row requires one number for P(Xi = true | parent values)

• If each variable has no more than k parents, how many numbers does the 
complete network require? 

• O(n · 2k) numbers – vs. O(2n) for the full joint distribution

• How many nodes for the burglary network? 
1 + 1 + 4 + 2 + 2 = 10 numbers (vs. 25-1 = 31)



Outline

• Review: Bayesian inference
• Bayesian network: graph semantics
• The Los Angeles burglar alarm example
• Conditional independence ≠ Independence
• Constructing a Bayesian network: Structure learning
• Constructing a Bayesian network: Hire an expert



A more realistic Bayes Network: 
Car diagnosis

• Initial observation: car won’t start
• Orange: “broken, so fix it” nodes
• Green: testable evidence
• Gray: “hidden variables” to ensure sparse structure, reduce parameters



Car insurance



In research literature…

Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data 
Karen Sachs, Omar Perez, Dana Pe'er, Douglas A. Lauffenburger, and Garry P. Nolan
(22 April 2005) Science 308 (5721), 523.



In research literature…

Describing Visual Scenes Using Transformed Objects and Parts
E. Sudderth, A. Torralba, W. T. Freeman, and A. Willsky.
International Journal of Computer Vision, No. 1-3, May 2008, pp. 291-330.



In research literature…

Audiovisual Speech Recognition with Articulator Positions as Hidden Variables
Mark Hasegawa-Johnson, Karen Livescu, Partha Lal and Kate Saenko
International Congress on Phonetic Sciences 1719:299-302, 2007

http://isle.illinois.edu/sst/pubs/2007/hasegawa-johnson07icphs.pdf


In research literature…

Detecting interaction links in a collaborating group using manually annotated data
S. Mathur, M.S. Poole, F. Pena-Mora, M. Hasegawa-Johnson, N. Contractor
Social Networks 10.1016/j.socnet.2012.04.002

http://isle.illinois.edu/sst/pubs/


In research literature…

Detecting interaction links in a collaborating group using manually annotated data
S. Mathur, M.S. Poole, F. Pena-Mora, M. Hasegawa-Johnson, N. Contractor
Social Networks 10.1016/j.socnet.2012.04.002

• Link: 𝐿/0 = 1 if #i is 
listening to #j.

• Indirect: 𝐼/0 = 1 if 
#i and #j are both 
listening to the 
same person.

• Speaking: 𝑆/ = 1 if 
the i’th person is 
speaking.

• Gaze: 𝐺/0 = 1 if #i 
is looking at #j.

• Neighborhood:
𝑁/0 = 1 if they’re 
near one another

http://isle.illinois.edu/sst/pubs/


Summary

• Bayesian networks provide a natural representation for (causally 
induced) conditional independence

• Topology + conditional probability tables
• Generally easy for domain experts to construct
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Bayes Net Inference and Learning



Bayes Network Inference & Learning
Bayes net is a memory-efficient model of dependencies among a set 
of random variables.

Inference problem: answer questions about the query variables X 
given the evidence variables and their values E=e as well as some 
unobserved (hidden) variables Y.
• We want to know the posterior distribution P(X | E = e)
• The posterior can be derived from the full joint P(X, E, Y)
• How do we make this computationally efficient?

Learning problem: given some training examples, how do we 
estimate the parameters of the model?
• Parameters = p(variable|parents), for each variable in the net



Outline

• Inference Examples
• Inference Algorithms

• Trees: Sum-product algorithm
• Poly-trees: Junction tree algorithm
• Graphs: No polynomial-time algorithm

• Parameter Learning



Practice example 1
• Variables: Cloudy, Sprinkler, Rain, Wet Grass



Practice example 1
• Given that the grass is wet, what is the probability 

that it has rained?

P(r |w) = P(r,w)
P(w)

=

P(c, s, r,w)
C=c,S=s
∑

P(c, s, r,w)
C=c,S=s,R=r
∑

=

P(c)P(s | c)P(r | c)P(w | r, s)
C=c,S=s
∑

P(c)P(s | c)P(r | c)P(w | r, s)
C=c,S=s,R=r
∑
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Practice example 1
• Given that the grass is wet, what is the probability 

that it has rained?

P(r |w) = P(r,w)
P(w)

=

P(c, s, r,w)
C=c,S=s
∑

P(c, s, r,w)
C=c,S=s,R=r
∑

=

P(c)P(s | c)P(r | c)P(w | r, s)
C=c,S=s
∑

P(c)P(s | c)P(r | c)P(w | r, s)
C=c,S=s,R=r
∑



Practice Example #2

• Suppose you have an observation, for example, “Jack called” (J=1)
• You want to know: was there a burglary?
• You need

𝑃 𝐵 = 1 𝐽 = 1 =
𝑃(𝐵, 𝐽 = 1)

∑H 𝑃(𝐵 = 𝑏, 𝐽 = 1)
• So you need to compute the table P(B,J) for all possible settings of 
(B,J)



Bayes Net Inference: 
The Hard Way

1. P(B,	E,	A,	J,	M)	=	P(B)	P(E)	P(A|B,E)	P(J|A)	P(M|A)
2. P B, J = ∑Q∑R∑SP(B, E, A, J, M)

Exponential complexity (#P-hard, actually): N variables, each of which has 
K possible values ⇒ 𝑂{𝐾X} time complexity



Is there an easier way?

• Tree-structured Bayes nets: the sum-product algorithm
• Quadratic complexity, 𝑂{𝑁𝐾Z}

• Polytrees: the junction tree algorithm
• Pseudo-polynomial complexity, 𝑂{𝑁𝐾[}, for M<N

• Arbitrary Bayes nets: #P complete, 𝑶{𝑲𝑵}
• The SAT problem is a Bayes net!



1. Tree-Structured Bayes Nets

• Suppose these are all binary variables.
• We observe E=1
• We want to find P(H=1|E=1)
• Means that we need to find both 

P(H=0,E=1) and P(H=1,E=1) because

𝑃 𝐻 = 1 𝐸 = 1 =
𝑃(𝐻 = 1, 𝐸 = 1)

∑` 𝑃(𝐻 = ℎ, 𝐸 = 1)



The Sum-Product Algorithm (Belief Propagation)

• Find the only undirected path from the 
evidence variable to the query variable
(E-D-B-F-G-I-H)

• Find the directed root of this path P(F)
• Find the joint probabilities of root and 

evidence: P(F=0,E=1) and P(F=1,E=1)
• Find the joint probabilities of query and 

evidence: P(H=0,E=1) and P(H=1,E=1)
• Find the conditional probability P(H=1|E=1)



The Sum-Product Algorithm

Starting with the root P(F), we find P(F,E) by 
alternating product steps and sum steps:
1. Product: P(B,D,F)=P(F)P(B|F)P(D|B)
2. Sum: 𝑃 𝐷, 𝐹 = ∑fghi 𝑃(𝐵, 𝐷, 𝐹)
3. Product: P(D,E,F)=P(D,F)P(E|D)
4. Sum: 𝑃 𝐸, 𝐹 = ∑jghi 𝑃(𝐷, 𝐸, 𝐹)

The Sum-Product Algorithm (Belief Propagation)



The Sum-Product Algorithm

Starting with the root P(E,F), we find P(E,H) 
by alternating product steps and sum steps:
1. Product: P(E,F,G)=P(E,F)P(G|F)
2. Sum: 𝑃 𝐸, 𝐺 = ∑lghi 𝑃(𝐸, 𝐹, 𝐺)
3. Product: P(E,G,I)=P(E,G)P(I|G)
4. Sum: 𝑃 𝐸, 𝐼 = ∑nghi 𝑃(𝐸, 𝐺, 𝐼)
5. Product: P(E,H,I)=P(E,I)P(I|G)
6. Sum: 𝑃 𝐸, 𝐻 = ∑pghi 𝑃(𝐸, 𝐻, 𝐼)

The Sum-Product Algorithm (Belief Propagation)



• Each product step generates a table 
with 3 variables

• Each sum step reduces that to a table 
with 2 variables

• If each variable has K values, and if there 
are 𝑂{𝑁} variables on the path from 
evidence to query, then time complexity is 
𝑂{𝑁𝐾Z}

Time Complexity of Belief Propagation



Time Complexity of Bayes Net Inference

• Tree-structured Bayes nets: the sum-product algorithm
• Quadratic complexity, 𝑂{𝑁𝐾Z}

• Polytrees: the junction tree algorithm
• Pseudo-polynomial complexity, 𝑂{𝑁𝐾[}, for M<N

• Arbitrary Bayes nets: #P complete, 𝑶{𝑲𝑵}
• The SAT problem is a Bayes net!



2. The Junction Tree Algorithm

a. Moralize the graph (identify each variable’s Markov blanket)
b. Triangulate the graph (eliminate undirected cycles)
c. Create the junction tree (form cliques)
d. Run the sum-product algorithm on the junction tree



2.a. Markov Blanket

• Suppose there is a Bayes net 
with variables A,B,C,D,E,F,G,H

• The “Markov blanket” of 
variable F is D,E,G if

P(F|A,B,C,D,E,G,H) 
= P(F|D,E,G)



2.a. Markov Blanket

• Suppose there is a Bayes net 
with variables A,B,C,D,E,F,G,H

• The “Markov blanket” of 
variable F is D,E,G if

P(F|A,B,C,D,E,G,H) 
= P(F|D,E,G)

A

B

C D

E F
G

H



2.a. Markov Blanket

• The “Markov blanket” of variable F is 
D,E,G if

P(F|A,B,C,D,E,G,H) 
= P(F|D,E,G)

• How can we prove that?
• P(A,…,H) = P(A)P(B|A) …
• Which of those terms include F?

A

B

C D

E F
G

H



2.a. Markov Blanket

• Which of those terms include F?
• Only these two:

P(F|D)
and

P(G|E,F)

A

B

C D

E F
G

H



2.a. Markov Blanket

The Markov Blanket of variable F 
includes only its immediate family 
members:

• Its parent, D
• Its child, G
• The other parent of its child, E

Because P(F|A,B,C,D,E,G,H) 
= P(F|D,E,G)

A

B

C D

E F
G

H



2.a. Moralization

“Moralization” = 
1. If two variables have a child 

together, force them to get 
married.

2. Get rid of the arrows (not 
necessary any more).

Result: Markov blanket = the set of 
variables to which a variable is 
connected.

A

B

C D

E F
G

H



2.b. Triangulation

Triangulation = draw edges so that 
there is no unbroken cycle of length > 3.

There are usually many different ways to 
do this.  For example, here’s one:

A

B

C D

E F
G

H



2.c. Form Cliques

Clique = a group of variables, all of 
whom are members of each other’s 
immediate family.

Junction Tree = a tree in which
• Each node is a clique from the 

original graph,
• Each edge is an “intersection set,”

naming the variables that overlap 
between the two cliques.

A

B

C D

E F
G

H

AB

BCD

CDF

CEF

EFG

GH

B

CD

CF

EF

G



2.d. Sum-Product
Suppose we need P(B,G):
1. Product: P(B,C,D,F)=P(B)P(C|B)P(D|B)P(F|D)
2. Sum:  𝑃 𝐵, 𝐶, 𝐹 = ∑j 𝑃(𝐵, 𝐶, 𝐷, 𝐹)
3. Product: P(B,C,E,F)=P(B,C,F)P(E|C)
4. Sum: 𝑃 𝐵, 𝐸, 𝐹 = ∑s 𝑃(𝐵, 𝐶, 𝐸, 𝐹)
5. Product: P(B,E,F,G)	=	P(B,E,F)P(G|E,F)
6. Sum: 𝑃 𝐵, 𝐺 = ∑t ∑l 𝑃(𝐵, 𝐸, 𝐹, 𝐺)

Complexity: 𝑂{𝑁𝐾[}, where N=# cliques,
K = # values for each variable, 
M = 1 + # variables in the largest clique

B

C D

E F
G



Junction Tree: Sample Test Question

Consider the burglar alarm 
example.
a. Moralize this graph
b. Is it already triangulated?  If 

not, triangulate it.
c. Draw the junction tree



Solution

B E
A

J M



Solution

a. Moralize this graphB E
A

J M



Solution

b. Is it already triangulated?

Answer: yes.  There is no 
unbroken cycle of length > 3.

B E
A

J M



Solution

c. Draw the junction tree

ABE

AJ AM
A A



Time Complexity of Bayes Net Inference

• Tree-structured Bayes nets: the sum-product algorithm
• Quadratic complexity, 𝑂{𝑁𝐾Z}

• Polytrees: the junction tree algorithm
• Pseudo-polynomial complexity, 𝑂{𝑁𝐾[}, for M<N

• Arbitrary Bayes nets: #P complete, 𝑶{𝑲𝑵}
• The SAT problem is a Bayes net!



Bayesian network inference
• In full generality, NP-hard

• More precisely, #P-hard: equivalent to counting satisfying assignments

• We can reduce satisfiability to Bayesian network inference
• Decision problem: is P(Y) > 0?

Y = (U1∨U2 ∨U3)∧(¬U1∨¬U2 ∨U3)∧(U2 ∨¬U3∨U4 )



Bayesian network inference
• In full generality, NP-hard

• More precisely, #P-hard: equivalent to counting satisfying assignments

• We can reduce satisfiability to Bayesian network inference
• Decision problem: is P(Y) > 0?

G. Cooper, 1990

Y = (U1∨U2 ∨U3)∧(¬U1∨¬U2 ∨U3)∧(U2 ∨¬U3∨U4 )

C1 C2 C3



Bayesian network inference

P(U1,U2,U3,U4,C1,C2,C3,D1,D2,Y ) =
P(U1)P(U2 )P(U3)P(U4 )
P(C1 |U1,U2,U3)P(C2 |U1,U2,U3)P(C3 |U2,U3,U4 )
P(D1 |C1)P(D2 |D1,C2 )P(Y |D2,C3)



Bayesian network inference

Why can’t we use the junction tree algorithm to 
efficiently compute Pr(Y)?



Bayesian network inference

Why can’t we use the junction tree algorithm to 
efficiently compute Pr(Y)?
Answer: after we moralize and triangulate, the size of 
the largest clique (u2u3c1c2c3) is 𝑀 ≈ 𝑁, same order 
of magnitude as the original problem



Time Complexity of Bayes Net Inference

• Tree-structured Bayes nets: the sum-product algorithm
• Quadratic complexity, 𝑂{𝑁𝐾Z}

• Polytrees: the junction tree algorithm
• Pseudo-polynomial complexity, 𝑂{𝑁𝐾[}, for M<N

• Arbitrary Bayes nets: #P complete, 𝑂{𝐾X}
• The SAT problem is a Bayes net!



Parameter learning
• Inference problem: given values of evidence variables 

E = e, answer questions about query variables X using 
the posterior P(X | E = e)

• Learning problem: estimate the parameters of the 
probabilistic model P(X | E) given a training sample
{(x1,e1), …, (xn,en)}



Parameter learning: complete data
• Suppose we know the network structure (but not the 

parameters), and have a training set of complete
observations

Sample C S R W

1 T F T T

2 F T F T

3 T F F F

4 T T T T

5 F T F T

6 T F T F

… … … …. …

?

?
?

?
?

?
?
?
?

Training set



Parameter learning
• Suppose we know the network structure (but not the 

parameters), and have a training set of complete
observations

• Example:

𝑃 𝑆 = 𝑇 𝐶 = 𝑇 =
#samples with 𝑆 = 𝑇, 𝐶 = 𝑇

# samples with 𝐶 = 𝑇
=
1
4 Sample C S R W

1 T F T T

2 F T F T

3 T F F F

4 T T T T

5 F T F T

6 T F T F

… … … …. …

Training set



Parameter learning
• Suppose we know the network structure (but not the 

parameters), and have a training set of complete
observations

• P(X | Parents(X)) is given by the observed frequencies of 
the different values of X for each combination of parent 
values



Parameter learning: missing data
• Suppose we know the network structure (but not the 

parameters), and have a training set, but the training set 
is missing some observations.

?

?
?

?
?

?
?
?
?

Training set
Sample C S R W

1 ? F T T

2 ? T F T

3 ? F F F

4 ? T T T

5 ? T F T

6 ? F T F

… … … …. …



Missing data: the EM algorithm
• The EM algorithm starts (“Expectation Maximization”) 

starts with an initial guess for each parameter value.
• We try to improve the initial guess, using the algorithm on the 

next two slides:
• E-step 
• M-step

0.5?

0.5?
0.5?

0.5?
0.5?

0.5?
0.5?
0.5?
0.5?

Training set
Sample C S R W

1 ? F T T

2 ? T F T

3 ? F F F

4 ? T T T

5 ? T F T

6 ? F T F

… … … …. …



Missing data: the EM algorithm
• E-Step (Expectation): Given the model parameters, replace each of the missing 

numbers with a probability (a number between 0 and 1) using

𝑃 𝐶 = 1 𝑆, 𝑅,𝑊 =
𝑃(𝐶 = 1, 𝑆, 𝑅,𝑊)

𝑃 𝐶 = 1, 𝑆, 𝑅,𝑊 + 𝑃(𝐶 = 0, 𝑆, 𝑅,𝑊)

0.5?

0.5?
0.5?

0.5?
0.5?

0.5?
0.5?
0.5?
0.5?

Training set
Sample C S R W

1 0.5? F T T

2 0.5? T F T

3 0.5? F F F

4 0.5? T T T

5 0.5? T F T

6 0.5? F T F

… … … …. …



Missing data: the EM algorithm
• M-Step (Maximization): Given the missing data estimates, replace each of the 

missing model parameters using

𝑃 Variable = T Parents = value =
𝐸[# times Variable = 𝑇, Parents = value]

𝐸[#times Parents = value]

0.5

0.5
0.5

0.5
0.5

1.0
1.0
0.5
0.0

Training set
Sample C S R W

1 0.5? F T T

2 0.5? T F T

3 0.5? F F F

4 0.5? T T T

5 0.5? T F T

6 0.5? F T F

… … … …. …



Missing data: the EM algorithm
• Iterate back and forth between E-step and M-step until the model converges.

0.5

0.5
0.5

0.5
0.5

1.0
1.0
0.5
0.0

Training set
Sample C S R W

1 0.5? F T T

2 0.5? T F T

3 0.5? F F F

4 0.5? T T T

5 0.5? T F T

6 0.5? F T F

… … … …. …



Summary: Bayesian networks

• Structure
• Parameters
• Inference
• Learning


