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Today’s class

• Perceptron: binary and multiclass case
• Getting a distribution over class labels: one-hot output and softmax
• Differentiable perceptrons: binary and multiclass case
• Cross-entropy loss



Recap: Classification,  
linear classifiers
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Classification as a supervised learning task

• Classification tasks: Label data points x ∈X from an n-dimensional 
vector space with discrete categories (classes) y ∈Y

Binary classification:  Two possible labels Y = {0,1} or Y = {-1,+1}
Multiclass classification: k possible labels Y = {1, 2, …, k} 

• Classifier: a function X →Y f(x) = y
• Linear classifiers f(x) = sgn(wx) [for binary classification] are parametrized 

by (n+1)-dimensional weight vectors

• Supervised learning: Learn the parameters of the classifier (e.g. w) from 
a labeled data set Dtrain = {(x1, y1),…,(xD, yD)} 



Batch versus online training

Batch learning: The learner sees the complete training data, and only 
changes its hypothesis when it has seen the entire training data set. 
Online training: The learner sees the training data one example at a 
time, and can change its hypothesis with every new example
Compromise: Minibatch learning (commonly used in practice)
The learner sees small sets of training examples at a time, 
and changes its hypothesis with every such minibatch of examples
For minibatch and online example: randomize the order of examples for 
each epoch (=complete run through all training examples)



Linear classifiers: f(x) = w0 + wx

Linear classifiers are defined over vector spaces
Every hypothesis f(x) is a hyperplane:

f(x) = w0 + wx
f(x) is also called the decision boundary

Assign ŷ = +1 to all x where f(x) > 0
Assign ŷ = -1 to all x where f(x) < 0

ŷ = sgn(f(x))

x1

x2

f(x) = 0

f(x) < 0

f(x) > 0



y·f(x) > 0: Correct classification

(x, y) is correctly classified by f(x)= ŷ if and only if  y·f(x) > 0:
Case 1 correct classification of a positive example (y = +1 = ŷ): 

predicted f(x) > 0  ⇒ y·f(x) > 0      ✓
Case 2 correct classification of a negative example(y = -1 = ŷ): 

predicted f(x) < 0  ⇒ y·f(x) > 0 ✓
Case 3 incorrect classification of a positive example (y = +1 ≠ ŷ = -1): 

predicted f(x) > 0  ⇒ y·f(x) < 0 ✕
Case 4 incorrect classification of a negative example (y = -1 ≠ ŷ = +1): 

predicted f(x) < 0  ⇒ y·f(x) < 0 ✕

x1

x2

f(x) = 0

f(x) < 0

f(x) > 0



Perceptron
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Perceptron
For each training instance ! with correct label " ∈ {−1,1}:
• Classify with current weights: "’ = sgn(/0!)
• Predicted labels "′ ∈ {−1,1} .

• Update weights:   
• if " = "’ then do nothing
• if " ≠ "’ then / = /+ η y 5⃗
• η (eta) is a “learning rate.”

Learning rate η: determines how much w changes.
Common wisdom: η should get smaller (decay) as we see more examples.



The Perceptron rule
If  target y = +1:  x should be above the decision boundary

Lower the decision boundary’s slope: wi+1 :=  wi +x

If target y = -1: x should be below the decision boundary
Raise the decision boundary’s slope: wi+1  := wi –x
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Perceptron: Proof of Convergence
If the data are linearly separable (if there exists a ! vector 
such that the true label is given by "’ = sgn(!)+⃗)), then 
the perceptron algorithm is guaranteed to converge, even 
with a constant learning rate, even η=1.

Training a perceptron is often the fastest way to find out if the 
data are linearly separable.  If ! converges, then the data are 
separable; if ! cycles, then no.

If the data are not linearly separable, then perceptron 
converges (trivially) iff the learning rate decreases, 
e.g., η=1/n for the n’th training sample.



Multi-class classification
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(Ab)using binary classifiers 
for multiclass classification
• One vs. all scheme: 

K classifiers, one for each of the K classes
Pick the class with the largest score.

• All vs. all scheme:
K(K−1) classifiers for each pair of classes
Pick the class with the largest #votes.

• For both schemes, the classifiers are trained independently.
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Multiclass classifier

• A single K-class discriminant function, 
consisting of K linear functions of the form

fk(x) = wkx + wk0

• Assign class k if  fk(x) > fj(x) for all j ≠ k 
• I.e.: Assign class k* = argmaxk(wkx + wk0)
• We can combine the K different weight vectors into a single vector w:

• w = (w1…wk...wK)
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NB: Why w can be treated as a single vector

Your classifier could map the n-dimensional feature vectors x = (x1,…,xn)
to (sparse) K×n-dimensional vectors F(y,x) 
in which each class corresponds to n dimensions:

Y = {1…K},   X = Rn F: X×Y → RKn

F(1,x)  = [x1,…,xn,  …, 0, …,0] 
F(i,x)  =  [0, …,0, x1,…,xn, 0, …,0] 
F(K,x) =  [0, …,0, ..., x1,…,xn]

Now w = [w1;…; wK], and wF(y,x) = wyx
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Multiclass classification

Learning a multiclass classifier: 
Find w such that for all training items (x,yi)

yi = argmax y wF(y,x)

Equivalently, for all (x, yi) and all k≠i:
wF(yi,x) > wF(yk,x) 
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Linear multiclass classifier decision 
boundaries
Decision boundary between Ck and Cj :
The set of points where fk(x) = fj(x). 

fk(x) = fj(x)
Spelling out f(x):

wkx + wk0 = wjx + wj0

Reordering the terms:
(wk −wj )x + (wk0−wj0) = 0
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Multi-class Perceptrons
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Multi-class perceptrons

• One-vs-others framework: 
We keep one weight vector wc for each class c
• Decision rule: y = argmaxc wc× x
• Update rule: suppose example from class c gets misclassified as c’
• Update for c [the class we should have assigned]: wc ß wc + ηx
• Update for c’ [the class we mistakenly assigned]: wc’ ß wc’ – ηx
• Update for all classes other than c and c’: no change



One-Hot vectors as target representation
One-hot vectors: 
Instead of representing labels as k categories {1,2, …,k}, represent each 
label as a k-dimensional vector where one element is 1, and all other 
elements are 0: 

class 1 => [1,0,0,…,0]    class 2 => [0,1,0,….,0]   … class k => [0,0,0,…,1]

Each example (in the data) is now a vector "⃗i = [yi1,…yij,..,yik] where 

"#$ = &1 ith example is from class j
0 ith example is NOT from class j

Example: if the first example is from class 2, then "⃗) = [0,1,0]



From one-hot vectors to probabilities
Note that we can interpret "⃗ as a probability over class labels:
For the correct label of xi: "#$ = True value of & '()** + ,⃗#), 
because the true probability is always either 1 or 0!

Can we define a classifier such that our hypotheses form a distribution?
i.e. ."#$ = Estimated value of & '()** + ,⃗#),   0 ≤ ."$ ≤ 1, ∑$456 ."$ = 1
Note that the perceptron defines a real vector [w1xi,….,wkxi] ∈ Rk

We want to turn wjxi into a probability P(classj | xi) that is large when wjx is large.
Trick: exponentiate and renormalize!  This is called the softmax function: 

."#$ = softmax$ ?ℓ A ,⃗# = BCDAE⃗F
∑ℓ456 BCℓAE⃗F

Added benefit: this is a differentiable function, unlike argmax



Softmax defines a distribution

The softmax function is defined as: 

!"#$ = softmax
$

-ℓ / 1⃗# = 234/5⃗6
∑ℓ89: 23ℓ/5⃗6

Notice that this gives us

0 ≤ !"#$ ≤ 1, ?
$89

:
!"#$ = 1

Therefore we can interpret !"#$ as an 
estimate of @ ABCDD E 1⃗#).



Differentiable Perceptrons 
(Binary case)
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Differentiable Perceptron
• Also known as a “one-layer feedforward neural network,” also known 

as “logistic regression.”  Has been re-invented many times by many 
different people.
• Basic idea: replace the non-differentiable decision function

!’ = sign()*,⃗)
with a differentiable decision function

!’ = tanh()*,⃗)



Differentiable Perceptron
• Suppose we have n training vectors, "⃗#through "⃗$.  Each one has an 

associated label %& ∈ −1,1 .  Then we replace the true loss function,

+(%#, … , %$, "⃗#, … , "⃗$) =0
&1#

$
%& − sign(67"⃗&) 8

with a differentiable error

+(%#, … , %$, "⃗#, … , "⃗$) =0
&1#

$
%& − tanh(67"⃗&) 8



Why Differentiable?
• Why do we want a differentiable loss function?

!(#$, … , #', )⃗$, … , )⃗') =,
-.$

'
#- − tanh(45)⃗-) 6

• Answer: because if we want to improve it, we can adjust the weight 
vector in order to reduce the error:

4 = 4 − 7∇9!

• This is called “gradient descent.”  We move 4 “downhill,” i.e., in the 
direction that reduces the value of the loss L.



Differential Perceptron
The weights get updated according 

to

! = ! − $∇&'



Differentiable Perceptrons 
(Multi-class case)
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Differentiable Multi-class perceptrons
Same idea works for multi-class perceptrons.  We replace the non-
differentiable decision rule c = argmaxc wc× x with the differentiable 
decision rule c = softmaxc wc× x, where the softmax function is defined 
as

Inputs
Perceptrons w/ 

weights wc

Softmax

Softmax:

! " $⃗ = &'()*⃗
∑,-.# 0123343 &'5)*⃗



Differentiable Multi-Class Perceptron
• Then we can define the loss to be:

! "#, … , "&, (⃗#, … , (⃗& = −+
,-#

&
ln 0 1 = ",|(⃗,

• And because the probability term on the inside is differentiable, we 
can reduce the loss using gradient descent:

3 = 3 − 4∇6!



Gradient descent on softmax
!"#$ is the probability of the %&' class for the (&' training example:

!"#$ = softmax$ 1ℓ 3 5⃗# = 67839:
∑ℓ<=> 67ℓ39:

Computing the gradient of the loss involves the following term 
(for all items i, all classes j and m, and all input features k):

? !"#$
?1@A

= B !"#$ − !"#$D 5#A E = %
−!"#$ !"#@5#A E ≠ %

1@A is the weight that connects the G&' input feature to the E&' class label 
5#A is the value of the G&' input feature for the (&' training token
!"#@ is the probability of the E&' class for the (&' training token
The dependence of !"#$ on 1@A for E ≠ % is weird, and people who are learning this for the 
first time often forget about it.  It comes from the denominator of the softmax.



Cross entropy loss
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Training a Softmax Neural Network
All of that differentiation is useful 
because we want to train the neural 
network to represent a training 
database as well as possible.  If we 
can define the training error to be 
some function L, then we want to 
update the weights according to

!"# = !"# − &
'(

'!"#

So what is L?



Training: Maximize the probability of the training data 
Remember, the whole point of that denominator in 
the softmax function is that it allows us to use 
softmax as

!"#$ = Es8mated value of & class + -⃗#)

Suppose we decide to estimate the network weights 
/01 in order to maximize the probability of the 
training database, in the sense of

/01= argmax
6

& training labels training feature vectors)



Training: Maximize the probability of the training data 
Remember, the whole point of that denominator in 
the softmax function is that it allows us to use 
softmax as

!"#$ = Es8mated value of & class + -⃗#)

If we assume the training tokens are independent, 
this is:

/01
= argmax

6
7
#89

:
& reference label of the BCDtoken BCDfeature vector)



Training: Maximize the probability of the training data 
Remember, the whole point of that denominator in 
the softmax function is that it allows us to use 
softmax as

!"#$ = Es8mated value of & class + -⃗#)

OK.  We need to create some notation to mean 
“the reference label for the /01 token.”  Let’s call it 
+(/).  

345 = argmax
:

;
#<=

>
& class +(/) ?⃗)



Training: Maximize the probability of the training data 
Wow, Cool!!  So we can maximize the probability of 
the training data by just picking the softmax output 
corresponding to the correct class !(#), for each 
token, and then multiplying them all together:

%&' = argmax
.

/
012

3
450,7(0)

So, hey, let’s take the logarithm, to get rid of that 
nasty product operation.

%&' = argmax
.

8
012

3
ln 450,7(0)



Training: Minimizing the negative log probability
So, to maximize the probability of the training data 
given the model, we need:

!"# = argmax
*

+
,-.

/
ln 23,,5(,)

If we just multiply by (-1), that will turn the max 
into a min.  It’s kind of a stupid thing to do---who 
cares whether you’re minimizing 8 or maximizing 
− 8, same thing, right?  But it’s standard, so what 
the heck.

!"# = argmin
*

8

8 =+
,-.

/
− ln 23,,5(,)



Training: Minimizing the negative log probability
Softmax neural networks are almost always trained 
in order to minimize the negative log probability of 
the training data:

!"# = argmin
+

,

, =-
./0

1
− ln 45.,7(.)

This loss function, defined above, is called the 
cross-entropy loss.  The reasons for that name are 
very cool, and very far beyond the scope of this 
course.  Take CS 446 (Machine Learning) and/or 
ECE 563 (Information Theory) to learn more.



Differentiating the cross-entropy

!"
!#$%

='
()*

+
,-($ − -($ /(%

Interpretation:
Increasing #$% will make the error worse if
• ,-($ is already too large, and /(% is positive
• ,-($ is already too small, and /(% is negative



Putting it all together
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Summary: Training Algorithms You Know
1. Naïve Bayes with Laplace Smoothing:

! "# = % class * = #tokens of class * with "# = % + 1
#tokens of class * + #possible values of "#

2. Multi-Class Perceptron:  If example "⃗< of class j is misclassified as class m, 
then

=> = => + ?"⃗<
=@ = =@ − ?"⃗<

3. Softmax Neural Net: for all weight vectors (correct or incorrect),
=@ = =@ − ?∇CDE= =@ − ? FG<@ − G<@ "⃗<



Summary: Perceptron versus Softmax
Softmax Neural Net: for all weight vectors (correct or incorrect),

!" = !" − % &'(" − '(" *⃗(
Notice that, if the network were adjusted so that 

&'(" = +1 network thinks the correct class is :
0 otherwise

Then we’d have

&'(" − '(" = <
−2 correct class is :, but network is wrong
2 network guesses :, but itBs wrong
0 otherwise



Summary: Perceptron versus Softmax
Softmax Neural Net: for all weight vectors (correct or incorrect),

!" = !" − % &'(" − '(" *⃗(
Notice that, if the network were adjusted so that 

&'(" = +1 network thinks the correct class is :
0 otherwise

Then we get the perceptron update rule back again (multiplied by 2, which 
doesn’t matter):

!" = <
!" + 2%*⃗( correct class is :, but network is wrong
!" − 2%*⃗( network guesses :, but itCs wrong

!" otherwise



Summary: Perceptron versus Softmax
So the key difference between perceptron and softmax is that, for a 
perceptron, 

!"#$ = &1 network thinks the correct class is 5
0 otherwise

Whereas, for a softmax,

0 ≤ !"#$ ≤ 1, 9
$:;

<
!"#$ = 1



Summary: Perceptron versus Softmax
…or, to put it another way, for a perceptron, 

!"#$ = &1 if * = argmax
01ℓ13

4ℓ 5 7⃗#
0 otherwise

Whereas, for a softmax network,
!"#$ = softmax

$
4ℓ 5 7⃗#

Inputs
Perceptrons w/ 

weights 4ℓ

Argmax or Softmax



Appendix: How to 
differentiate the softmax
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Unlike argmax, the softmax function is 
differentiable.  All we need is the chain 
rule, plus three rules from calculus:

1. #
#$

%
& = (

&
#%
#$ −

%
&*

#&
#$

2. #
#$ ,% = ,% #%

#$
3. #

#$ ./ = /

/(

/0

softmax
(

/ℓ

How to differentiate the softmax: 3 steps



How to differentiate the softmax: step 1

First, we use the rule for !!"
#
$ = &

$
!#
!" −

#
$(

!$
!":

)*+, = softmax, 4ℓ 6 8⃗+ = 9":6;⃗<
∑ℓ>&? 9"ℓ6;⃗<

@ )*+,
@4AB

= 1
∑ℓ>&? 9"ℓ6;⃗<

@9":6;⃗<
@4AB

− 9":6;⃗<

∑ℓ>&? 9"ℓ6;⃗<
D

@ ∑ℓ>&? 9"ℓ6;⃗<
@4AB

=

1
∑ℓ>&? 9"ℓ6;⃗<

@9":6;⃗<
@4AB

− 9":6;⃗<

∑ℓ>&? 9"ℓ6;⃗<
D

@ ∑ℓ>&? 9"ℓ6;⃗<
@4AB

E = F

− 9":6;⃗<

∑ℓ>&? 9"ℓ6;⃗<
D

@ ∑ℓ>&? 9"ℓ6;⃗<
@4AB

E ≠ F

8&

8D

softmax
&

8ℓ



How to differentiate the softmax: step 2

Next, we use the rule !
!"

#$ = #$
!$

!"
:

! &'()

!"*+
=	

1

∑ℓ01
2 #"ℓ35⃗(

6#")35⃗(

6789
−

#")35⃗(

∑ℓ01
2 #"ℓ35⃗(

;

6 ∑ℓ01
2 #"ℓ35⃗(

6789
< = =

−
#")35⃗(

∑ℓ01
2 #"ℓ35⃗(

;

6 ∑ℓ01
2 #"ℓ35⃗(

6789
< ≠ =

=

#")35⃗(

∑ℓ01
2 #"ℓ35⃗(

−
#")35⃗(

;

∑ℓ01
2 #"ℓ35⃗(

;

6(78 3 @⃗A)

6789
< = =

−
#")35⃗(#"*35⃗(

∑ℓ01
2 #"ℓ35⃗(

;

6(78 3 @⃗A)

6789
< ≠ =

@1

@;

softmax
1

@ℓ



How to differentiate the softmax: step 3

Next, we use the rule !!" #$ = $:

& '()*
&#+,

=

-"./1⃗2
∑ℓ567 -"ℓ/1⃗2

−
-"./1⃗2

9

∑ℓ567 -"ℓ/1⃗2
9

&(#+ / $⃗))
&#+,

< = =

− -"./1⃗2-">/1⃗2

∑ℓ567 -"ℓ/1⃗2
9

&(#+ / $⃗))
&#+,

< ≠ =

=

-"./1⃗2
∑ℓ567 -"ℓ/1⃗2

−
-"./1⃗2

9

∑ℓ567 -"ℓ/1⃗2
9 $), < = =

− -"./1⃗2-">/1⃗2

∑ℓ567 -"ℓ/1⃗2
9 $), < ≠ =

$6

$9

softmax
6

$ℓ



Differentiating the softmax
… and, simplify.

! "#$%
!&'(

=

*+,-/⃗0
∑ℓ345 *+ℓ-/⃗0

−
*+,-/⃗0

7

∑ℓ345 *+ℓ-/⃗0
7 8$( 9 = :

− *+,-/⃗0*+;-/⃗0

∑ℓ345 *+ℓ-/⃗0
7 8$( 9 ≠ :

! "#$%
!&'(

= = "#$% − "#$%7 8$( 9 = :
−"#$% "#$'8$( 9 ≠ :

84
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softmax
4

8ℓ



Recap: how to differentiate the softmax
• !"#$ is the probability of the %&' class, estimated by the neural 

net, in response to the (&' training token
• )*+ is the network weight that connects the ,&' input feature 

to the -&' class label
The dependence of !"#$ on )*+ for - ≠ % is weird, and people 
who are learning this for the first time often forget about it.  It 
comes from the denominator of the softmax.

!"#$ = softmax$ )ℓ 8 :⃗# = ;<=8>⃗?
∑ℓABC ;<ℓ8>⃗?

D !"#$
D)*+

= E !"#$ − !"#$G :#+ - = %
−!"#$ !"#*:#+ - ≠ %

• !"#* is the probability of the -&' class for the (&' training token
• :#+ is the value of the ,&' input feature for the (&' training 

token :B

:G

softmax
B

:ℓ



Appendix: How to differentiate 
the cross-entropy loss
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Differentiating the cross-entropy
The cross-entropy loss function is:

! =#
$%&

'
− ln +,$,.($)

Let’s try to differentiate it:
1!

1234
=#

$%&

'
− 1

+,$,.($)
1 +,$,.($)
1234



Differentiating the cross-entropy
The cross-entropy loss function is:

! =#
$%&

'
− ln +,$,.($)

Let’s try to differentiate it:
1!

1234
=#

$%&

'
− 1

+,$,.($)
1 +,$,.($)
1234

…and then…

1
+,$,.($)

1 +,$,.($)
1234

= 6 1 − +,$3 7$4 8 = 9(:)
−+,$37$4 8 ≠ 9(:)



Differentiating the cross-entropy
Let’s try to differentiate it:

!"
!#$%

='
()*

+
− 1

./(,1(()
! ./(,1(()
!#$%

…and then…

1
./(,1(()

! ./(,1(()
!#$%

= 4 1 − ./($ 5(% 6 = 7(8)
−./($5(% 6 ≠ 7(8)

… but remember our reference labels:

/(1 = 41 ith example is from class j
0 ith example is NOT from class j



Differentiating the cross-entropy
Let’s try to differentiate it:

!"
!#$%

='
()*

+
− 1

./(,1(()
! ./(,1(()
!#$%

…and then…

1
./(,1(()

! ./(,1(()
!#$%

= 4 /($ − ./($ 5(% 6 = 7(8)
/($ − ./($ 5(% 6 ≠ 7(8)

… but remember our reference labels:

/(1 = 41 ith example is from class j
0 ith example is NOT from class j



Differentiating the cross-entropy
Let’s try to differentiate it:

!"
!#$%

='
()*

+
− 1

./(,1(()
! ./(,1(()
!#$%

…and then…

1
./(,1(()

! ./(,1(()
!#$%

= /($ − ./($ 4(%



Differentiating the cross-entropy
Let’s try to differentiate it:

!"
!#$%

='
()*

+
,-($ − -($ /(%



Differentiating the cross-entropy
Let’s try to differentiate it:

!"
!#$%

='
()*

+
,-($ − -($ /(%

Interpretation:
Our goal is to make the error as small as possible.  
So if
• ,-($ is already too large, then we want to make 
#$%/(% smaller
• ,-($ is already too small , then we want to make 
#$%/(% larger

#$% = #$% − 0
!"

!#$%


