Lecture 17: More on binary vs. multi-class classifiers

(Polychotomizers: One-Hot Vectors, Softmax, and Cross-Entropy)

Mark Hasegawa-Johnson, 3/9/2019. CC-BY 3.0: You are free to share and adapt these slides if you cite the original.

Modified by Julia Hockenmaier

Aliza Aufrichtig <a> @alizauf · Mar 4 Garlic halved horizontally = nature's Voronoi diagram?

en.wikipedia.org/wiki/Voronoi_d...

More on supervised learning

The supervised learning task

Given a **labeled training data set** of N items $\mathbf{x}_n \in \mathcal{X}$ with labels $y_n \in \mathcal{Y}$ $\mathcal{D}^{\text{train}} = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N)\}$

(y_n is determined by some unknown target function f(x))

Return a model g: $\mathcal{X} \mapsto \mathcal{Y}$ that is a good approximation of f(x) (g should assign correct labels y to unseen $\mathbf{x} \notin \mathcal{D}^{\text{train}}$)

Supervised learning terms

Input items/data points $\mathbf{x}_n \in \mathcal{X}$ (e.g. emails) are drawn from an instance space \mathcal{X}

Output labels $y_n \in \mathcal{Y}$ (e.g. 'spam'/'nospam') are drawn from a **label space** \mathcal{Y}

Every data point $\mathbf{x}_n \in \mathcal{X}$ has a *single* correct label $y_n \in \mathcal{Y}$, defined by an (unknown) target function $f(\mathbf{x}) = y$

Supervised learning: Training

Give the learner examples in $\mathcal{D}^{ ext{train}}$

The learner returns a model g(x)

Reserve some labeled data for testing

Supervised learning: Testing Apply the model to the raw test data

Evaluating supervised learners

Use a **test data set** $\mathcal{D}^{ ext{test}}$ that is *disjoint* from $\mathcal{D}^{ ext{train}}$

 $\mathcal{D}^{\text{test}} = \{ (\mathbf{x'}_1, \mathbf{y'}_1), ..., (\mathbf{x'}_M, \mathbf{y'}_M) \}$

The learner has not seen the test items during learning. Split your labeled data into two parts: test and training.

Take all items $\mathbf{x'}_i$ in $\mathcal{D}^{\text{test}}$ and compare the predicted $f(\mathbf{x'}_i)$ with the correct $\mathbf{y'}_i$.

This requires an evaluation metric (e.g. accuracy).

1. The instance space

Designing an appropriate instance space X is crucial for how well we can predict y.

1. The instance space ${oldsymbol{\mathcal{X}}}$

When we apply machine learning to a task, we first need to *define* the instance space X.

Instances $\mathbf{x} \in \mathcal{X}$ are defined by **features**:

Boolean features:

Does this email contain the word 'money'?

Numerical features:

How often does 'money' occur in this email? What is the width/height of this bounding box?

${oldsymbol{\mathcal{X}}}$ as a vector space

X is an N-dimensional vector space (e.g. \mathbb{R}^{N}) Each dimension = one feature.

Each **x** is a **feature vector** (hence the boldface **x**).

Think of $\mathbf{x} = [\mathbf{x}_1 \dots \mathbf{x}_N]$ as a point in \mathcal{X} :

From feature templates to vectors

When designing features, we often think in terms of templates, not individual features:

What is the 2nd letter?

N <mark>a</mark> oki	\rightarrow [1 0 0 0]
A <mark>b</mark> e	\rightarrow [0 1 0 0]
S c rooge	\rightarrow [0 0 1 0]

What is the *i*-th letter?

 $Abe \rightarrow [1 \ 0 \ 0 \ 0 \ 0 \ \dots \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ \dots \ 0 \ 0 \ 0 \ 1 \ \dots]$

Good features are essential

- The choice of features is crucial for how well a task can be learned.
 - In many application areas (language, vision, etc.), a lot of work goes into designing suitable features.
 - This requires domain expertise.
- We can't teach you what specific features to use for your task.
 - But we will touch on some general principles

2. The label space

The label space \mathcal{Y} determines what kind of supervised learning task we are dealing with

Supervised learning tasks I

Output labels y∈Y are categorical: Binary classification: Two possible labels Multiclass classification: k possible labels

CLASSIFICATION

Output labels $y \in \mathcal{Y}$ are structured objects (sequences of labels, parse trees, etc.)

Structure learning, etc.

Supervised learning tasks II

Output labels $y \in \mathcal{Y}$ are **numerical**:

Regression (linear/polynomial): Labels are continuous-valued Learn a linear/polynomial function f(x)

Ranking:

Labels are ordinal Learn an ordering $f(x_1) > f(x_2)$ over input

Models (The hypothesis space)

We need to choose what *kind* of model we want to learn

More terminology

For classification tasks (\mathcal{Y} is categorical, e.g. {0, 1}, or {0, 1, ..., k}), the model is called a **classifier**.

For **binary classification tasks** ($\mathcal{Y} = \{0, 1\}$ or $\mathcal{Y} = \{-1, +1\}$),

we can either think of the two values of ${\mathcal Y}$ as Boolean or as positive/negative

A learning problem

	x ₁	x ₂	X 3	x ₄	У
1	0	0	1	0	0
2	0	1	0	0	0
3	0	0	1	1'	1
4	1	0	0	1	1
5	0	1	1	0	0
6	1	1	0	0	0
7	0	1	0	1	0

A learning problem

Each **x** has 4 bits: $|X| = 2^4 = 16$

Since $\mathcal{Y} = \{0, 1\}$, each f(x) defines one subset of \mathcal{X}

X has 2^{16} = 65536 subsets: There are 2^{16} possible f(**x**) (2^{9} are consistent with our data)

We would need to see all of X to learn f(x)

A learning problem

We would need to see all of X to learn f(x)

Easy with |X|=16

Not feasible in general (for any real-world problems)

Learning = generalization, not memorization of the training data

Classifiers in vector spaces x_2 x_2 x_2 x_2 x_3 x_4 x_4 x_5 f(x) < 0 x_1

Binary classification:

We assume f *separates* the positive and negative examples:

```
Assign y = 1 to all x where f(x) > 0
Assign y = 0 (or -1) to all x where f(x) < 0
```

Learning a classifier

The learning task: Find a function f(**x**) that best separates the (training) data

What kind of function is f? How do we define *best*? How do we find f?

Which model should we pick?

Criteria for choosing models

Accuracy:

Prefer models that make fewer mistakes

We only have access to the training data

But we care about accuracy on unseen (test) examples

Simplicity (Occam's razor):

Prefer simpler models (e.g. fewer parameters).

These (often) generalize better, and need less data for training.

Linear classifiers

Linear classifiers

Many learning algorithms restrict the hypothesis space to **linear classifiers**: $f(\mathbf{x}) = w_0 + \mathbf{w}\mathbf{x}$

Linear Separability

• Not all data sets are linearly separable:

• Sometimes, feature transformations help:

Linear classifiers: $f(\mathbf{x}) = w_0 + \mathbf{w}\mathbf{x}$

Linear classifiers are defined over vector spaces

Every hypothesis $f(\mathbf{x})$ is a hyperplane: $f(\mathbf{x}) = w_0 + \mathbf{w}\mathbf{x}$

f(x) is also called the decision boundary Assign $\hat{y} = +1$ to all x where f(x) > 0 Assign $\hat{y} = -1$ to all x where f(x) < 0 $\hat{y} = \text{sgn}(f(x))$

An example (x, y) is correctly classified by f(x) if and only if $y \cdot f(x) > 0$:

Case 1 (y = +1 = \hat{y}): f(x) > 0 \Rightarrow y·f(x) > 0 Case 2 (y = -1 = \hat{y}): f(x) < 0 \Rightarrow y·f(x) > 0 Case 3 (y = +1 $\neq \hat{y}$ = -1): f(x) > 0 \Rightarrow y·f(x) < 0 Case 4 (y = -1 $\neq \hat{y}$ = +1): f(x) < 0 \Rightarrow y·f(x) < 0

With a separate bias term w_0 : $f(x) = w \cdot x + w_0$

The instance space X is a *d*-dimensional vector space (each $x \in X$ has *d* elements)

The decision boundary f(x) = 0 is a (*d*-1)-dimensional hyperplane in the instance space.

The **weight vector w** is **orthogonal (normal)** to the decision boundary $f(\mathbf{x}) = 0$:

For any two points \mathbf{x}^{A} and \mathbf{x}^{B} on the decision boundary $f(\mathbf{x}^{A}) = f(\mathbf{x}^{B}) = 0$ For any vector $(\mathbf{x}^{B} - \mathbf{x}^{A})$ on the decision boundary: $\mathbf{w}(\mathbf{x}^{B} - \mathbf{x}^{A}) = f(\mathbf{x}^{B}) - w_{0} - f(\mathbf{x}^{A}) + w_{0} = 0$

The **bias term** w₀ determines the **distance of the decision boundary** from the origin:

With a separate bias term w_0 : $f(x) = w \cdot x + w_0$

Canonical representation:
getting rid of the bias term
With
$$\mathbf{w} = (w_1, ..., w_N)^T$$
 and $\mathbf{x} = (x_1, ..., x_N)^T$:
 $f(x) = w_0 + \mathbf{wx}$
 $= w_0 + \sum_{i=1...N} w_i x_i$

w₀ is called the **bias term**.

The **canonical representation** redefines **w**, **x** as

 $w = (w_0, w_1, ..., w_N)^T$ and $x = (1, x_1, ..., x_N)^T$ => $f(x) = w \cdot x$

- The decision boundary f(x) = 0 is a d-dimensional hyperplane that goes through the origin.
- The weight vector w is still orthogonal to the decision boundary f(x) = 0

Learning a linear classifier

Input: Labeled training data $\mathcal{D} = \{(\mathbf{x}^1, \mathbf{y}^1), ..., (\mathbf{x}^D, \mathbf{y}^D)\}$ plotted in the sample space $\mathcal{X} = \mathbf{R}^2$ with $\mathbf{o}: \mathbf{y}^i = +1, \mathbf{x}: \mathbf{y}^i = 1$

Output: A decision boundary $f(\mathbf{x}) = 0$ that separates the training data $y^i \cdot f(\mathbf{x}^i) > 0$

Which model should we pick?

- We need a metric (aka an objective function)
- We would like to minimize the probability of misclassifying *unseen* examples, but we can't measure that probability.
- Instead: minimize the number of misclassified training examples

Which model should we pick?

- We need a more specific metric: There may be many models that are consistent with the training data.
- Loss functions provide such metrics.

4. The learning algorithm

4. The learning algorithm

• The learning task:

Given a labeled training data set $\mathcal{D}^{\text{train}} = \{(\mathbf{x}_1, \mathbf{y}_1), ..., (\mathbf{x}_N, \mathbf{y}_N)\}$ return a model (classifier) g: $\mathcal{X} \mapsto \mathcal{Y}$ from the hypothesis space $\mathcal{H} \subseteq |\mathcal{Y}|^{|\mathcal{X}|}$

Batch versus online training

Batch learning:

The learner sees the complete training data, and only changes its hypothesis when it has seen **the entire training data set**.

Online training:

The learner sees the training data one example at a time, and can change its hypothesis **with every new example**

Compromise: Minibatch learning (commonly used in practice)

The learner sees **small sets of training examples** at a time, and changes its hypothesis with every such minibatch of examples

Perceptron

Perceptron

- Simple, **mistake-driven** algorithm for learning linear classifiers
- There are batch and online versions
- We will analyze the online version
- Uses (stochastic) gradient descent, with a particular loss function

Perceptron criterion

We would like a weight vector **w** such that

$$f(\mathbf{x}_n) = \mathbf{w} \cdot \mathbf{x}_n > 0$$
 for $y_n = +1$

$$f(\mathbf{x}_n) = \mathbf{w} \cdot \mathbf{x}_n < 0 \text{ for } \mathbf{y}_n = -1$$

The perceptron tries to minimize the error

 $-\mathbf{w}\cdot\mathbf{x}_n\cdot\mathbf{y}_n$

for any misclassified example $(\mathbf{x}_n, \mathbf{y}_n)$

The overall training error of **w** depends on the misclassified items M:

$$\mathbf{E}_{Perceptron}(\mathbf{w}) = -\sum_{n \in M} \mathbf{w} \cdot \mathbf{x}_n \cdot \mathbf{y}_n$$

Perceptron

For each training instance \vec{f} with label $y \in \{-1,1\}$:

- Classify with current weights: $y' = \operatorname{sgn}(\vec{w}^T \vec{f})$
 - Notice $y' \in \{-1,1\}$ too.
- Update weights:
 - if y = y' then do nothing
 - if $y \neq y'$ then $\vec{w} = \vec{w} + \eta y \vec{f}$
 - η (eta) is a "learning rate." More about that later.

The Perceptron rule

If target y = +1: x should be above the decision boundary

Lower the decision boundary's slope: $\mathbf{w}^{i+1} := \mathbf{w}^i + \mathbf{x}$

If target y = -1: **x** should be **below** the decision boundary

Raise the decision boundary's slope: $w^{i+1} := w^i - x$

(Figures from Bishop 2006)

- If the data are linearly separable (if there exists a \vec{w} vector such that the true label is given by $y' = \text{sgn}(\vec{w}^T \vec{f})$), then the perceptron algorithm is guarantee to converge, even with a constant learning rate, even $\eta=1$.
- In fact, training a perceptron is often the fastest way to find out if the data are linearly separable. If \vec{w} converges, then the data are separable; if \vec{w} diverges toward infinity, then no.
- If the data are not linearly separable, then perceptron converges iff the learning rate decreases, e.g., η=1/n for the n'th training sample.

Suppose the data are linearly separable. For example, suppose red dots are the class y=1, and blue dots are the class y=-1:

- Instead of plotting \vec{f} , plot $y \times \vec{f}$. The red dots are unchanged; the blue dots are multiplied by -1.
- Since the original data were linearly separable, the new data are all in the same half of the feature space.

- Remember the perceptron training rule: if any example is misclassified, then we use it to update $\vec{w} = \vec{w} + y \vec{f}$.
- So eventually, \vec{w} becomes just a weighted average of $y\vec{f}$.
- ... and the perpendicular line, $\vec{w}^T \vec{f} = 0$, is the classifier boundary.

Perceptron: Proof of Convergence: Conclusion

- If the data are linearly separable, then the perceptron will eventually find the equation for a line that separates them.
- If the data are NOT linearly separable, then perceptron converges iff the learning rate decreases, e.g., $\eta=1/n$ for the n'th training sample. In this case, convergence is trivially obvious, because y and \vec{f} are finite, therefore the weight updates $\eta y \vec{f}$ approach 0 as η approaches 0.

Implementation details

- Bias (add feature dimension with value fixed to 1) vs. no bias
- Initialization of weights: all zeros vs. random
- Learning rate decay function
- Number of epochs (passes through the training data)
- Order of cycling through training examples (random)

Multi-class Perceptrons

Multi-class perceptrons

- One-vs-others framework: Need to keep a weight vector ${\bf w}_{\rm c}$ for each class c
- Decision rule: y = argmax_c w_c· f
- Update rule: suppose example from class c gets misclassified as c'
 - Update for c: $\mathbf{w}_{c} \leftarrow \mathbf{w}_{c} + \eta \mathbf{f}$
 - Update for c': $\mathbf{w}_{c'} \leftarrow \mathbf{w}_{c'} \eta \mathbf{f}$
 - Update for all classes other than c and c': no change

Multi-class perceptrons

- One-vs-others framework: Need to keep a weight vector w_c for each class c
- Decision rule: y = argmax_c w_c· f

One-Hot Vector

• Example: if the first example is from class 2 (red), then $\vec{y}_1 = [0,1,0]$

$$y_{ij} = \begin{cases} 1 & i^{th} \text{ example is from class j} \\ 0 & i^{th} \text{ example is NOT from class j} \end{cases}$$

Call y_{ij} the **reference label**, and call \hat{y}_{ij} the **hypothesis**. Then notice that:

- y_{ij} = True value of $P(class j | \vec{f}_i)$, because the true probability is always either 1 or 0!
- \hat{y}_{ij} = Estimated value of $P(class \ j \ | \vec{f}_i), \ 0 \le \hat{y}_j \le 1, \ \sum_{j=1}^c \hat{y}_j = 1$

Wait. Dichotomizer is just a Special Case of Polychotomizer, isn't it?

Yes. Yes, it is.

- Polychotomizer: $\vec{y}_i = [y_{i1}, \dots, y_{ic}], y_{ij} = P(class \ j | \vec{f}_i).$
- Dichotomizer: $y_i = P(class \ 1 | \vec{f_i})$
- That's all you need, because if there are only two classes, then $P(other \ class \ |\vec{f_i}) = 1 y_i$
- (One of the two classes in a dichotomizer is always called "class 1." The other might be called "class 2," or "class 0," or "class -1".... Who cares. They all mean "the class that is not class 1.")

Outline

- Dichotomizers and Polychotomizers
 - Dichotomizer: what it is; how to train it
 - Polychotomizer: what it is; how to train it
- One-Hot Vectors: Training targets for the polychotomizer

Softmax Function

- A differentiable approximate argmax
- How to differentiate the softmax
- Cross-Entropy
 - Cross-entropy = negative log probability of training labels
 - Derivative of cross-entropy w.r.t. network weights
- Putting it all together: a one-layer softmax neural net

OK, now we know what the polychotomizer should compute. How do we compute it?

Now you know that

- y_{ij} = reference label = True value of $P(class j | \vec{f_i})$, given to you with the training database.
- \hat{y}_{ij} = hypothesis = value of $P(class j | \vec{f}_i)$ estimated by the neural net. How can we do that estimation?

OK, now we know what the polychotomizer should compute. How do we compute it?

 \hat{y}_{ij} = value of $P(class j | \vec{f}_i)$ estimated by the neural net.

How can we do that estimation? Multi-class perceptron example:

$$\hat{y}_{ij} = \begin{cases} 1 & \text{if } j = \operatorname*{argmax}_{1 \leq \ell \leq c} \vec{w}_{\ell} \cdot \vec{f}_{i} \\ 0 & \text{otherwise} \end{cases}$$

Differentiable perceptron: we need a differentiable approximation of the argmax function.

Softmax = differentiable approximation of the argmax function $softmax(f_{e})$

The softmax function is defined as:

$$\hat{y}_{ij} = \operatorname{softmax}_{j} \left(\vec{w}_{\ell} \cdot \vec{f}_{i} \right) = \frac{e^{\vec{w}_{j} \cdot \vec{f}_{i}}}{\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}}$$

For example, the figure to the right shows f_{f}

$$\hat{y}_1 = \text{softmax}(f_\ell) = \frac{e^{f_1}}{\sum_{\ell=1}^2 e^{f_\ell}}$$

Notice that it's close to 1 (yellow) when $f_1 = \max f_{\ell}$, and close to zero (blue) otherwise, with a smooth transition zone in between.

Softmax = differentiable approximation of the argmax function $softmax(f_{e})$

The softmax function is defined as:

$$\hat{y}_{ij} = \operatorname{softmax}(\vec{w}_{\ell} \cdot \vec{f}_i) = \frac{e^{\vec{w}_j \cdot \vec{f}_i}}{\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_i}}$$

Notice that this gives us

$$0 \le \hat{y}_{ij} \le 1$$
, $\sum_{j=1}^{j} \hat{y}_{ij} = 1$

Therefore we can interpret \hat{y}_{ij} as an estimate of $P(class j | \vec{f}_i)$.

Outline

- Dichotomizers and Polychotomizers
 - Dichotomizer: what it is; how to train it
 - Polychotomizer: what it is; how to train it
- One-Hot Vectors: Training targets for the polychotomizer

Softmax Function

- A differentiable approximate argmax
- How to differentiate the softmax
- Cross-Entropy
 - Cross-entropy = negative log probability of training labels
 - Derivative of cross-entropy w.r.t. network weights
- Putting it all together: a one-layer softmax neural net

How to differentiate the softmax: 3 steps

Unlike argmax, the softmax function is differentiable. All we need is the chain rule, plus three rules from calculus:

1.
$$\frac{\partial}{\partial w} \left(\frac{a}{b} \right) = \left(\frac{1}{b} \right) \frac{\partial a}{\partial w} - \left(\frac{a}{b^2} \right) \frac{\partial b}{\partial w}$$

2. $\frac{\partial}{\partial w} (e^a) = (e^a) \frac{\partial a}{\partial w}$
3. $\frac{\partial}{\partial w} (wf) = f$

How to differentiate the softmax: step 1

softmax(f_{ℓ}) First, we use the rule for $\frac{\partial}{\partial w} \left(\frac{a}{b} \right) = \left(\frac{1}{b} \right) \frac{\partial a}{\partial w} - \left(\frac{a}{b^2} \right) \frac{\partial b}{\partial w}$. $\hat{y}_{ij} = \operatorname{softmax}_{j} \left(\vec{w}_{\ell} \cdot \vec{f}_{i} \right) = \frac{e^{\vec{w}_{j} \cdot \vec{f}_{i}}}{\sum_{\ell=1}^{C} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}}$ 20 - $\frac{\partial \hat{y}_{ij}}{\partial w_{mk}} = \left(\frac{1}{\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}}\right) \left(\frac{\partial e^{\vec{w}_{j} \cdot \vec{f}_{i}}}{\partial w_{mk}}\right) - \left(\frac{e^{\vec{w}_{j} \cdot \vec{f}_{i}}}{\left(\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}\right)^{2}}\right) \left(\frac{\partial \left(\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}\right)}{\partial w_{mk}}\right)$ f_{2}^{40} 60 - $= \begin{cases} \left(\frac{1}{\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}}\right) \left(\frac{\partial e^{\vec{w}_{j} \cdot \vec{f}_{i}}}{\partial w_{mk}}\right) - \left(\frac{e^{\vec{w}_{j} \cdot \vec{f}_{i}}}{\left(\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}\right)^{2}}\right) \left(\frac{\partial \left(\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}\right)}{\partial w_{mk}}\right) & m = j \\ - \left(\frac{e^{\vec{w}_{j} \cdot \vec{f}_{i}}}{\left(\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}\right)^{2}}\right) \left(\frac{\partial \left(\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}\right)}{\partial w_{mk}}\right) & m \neq j \end{cases}$ 80 $m \neq j$ 20 40 60 0

80

How to differentiate the softmax: step 2

Next, we use the rule
$$\frac{\partial}{\partial w}(e^a) = (e^a)\frac{\partial a}{\partial w}$$
:

$$\frac{\partial \hat{y}_{ij}}{\partial w_{mk}} = \begin{cases} \left(\frac{1}{\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_i}}\right) \left(\frac{\partial e^{\vec{w}_j \cdot \vec{f}_i}}{\partial w_{mk}}\right) - \left(\frac{e^{\vec{w}_j \cdot \vec{f}_i}}{\left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_i}\right)^2}\right) \left(\frac{\partial \left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_i}\right)}{\partial w_{mk}}\right) - \left(\frac{e^{\vec{w}_j \cdot \vec{f}_i}}{\left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_i}\right)^2}\right) \left(\frac{\partial \left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_i}\right)}{\partial w_{mk}}\right) - \left(\frac{e^{\vec{w}_\ell \cdot \vec{f}_i}}{\left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_i}\right)^2}\right) \left(\frac{\partial \left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_i}\right)}{\partial w_{mk}}\right) - \left(\frac{e^{\vec{w}_\ell \cdot \vec{f}_i}}{\left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_i}\right)^2}\right) \left(\frac{\partial \left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_i}\right)}{\partial w_{mk}}\right) - \left(\frac{e^{\vec{w}_\ell \cdot \vec{f}_i}}{\left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_i}\right)^2}\right) \left(\frac{\partial \left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_i}\right)}{\partial w_{mk}}\right) - \left(\frac{e^{\vec{w}_\ell \cdot \vec{f}_i}}{\left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_i}\right)^2}\right) \left(\frac{\partial \left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_i}\right)}{\partial w_{mk}}\right) - \left(\frac{e^{\vec{w}_\ell \cdot \vec{f}_i}}{\left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_i}\right)^2}\right) \left(\frac{\partial \left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_i}\right)}{\partial w_{mk}}\right) - \left(\frac{e^{\vec{w}_\ell \cdot \vec{f}_i}}{\left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_i}\right)^2}\right) \left(\frac{\partial \left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_i}\right)}{\left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_\ell}\right)^2}\right) - \left(\frac{\partial \left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_\ell}\right)}{\left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_\ell}\right)^2}\right) - \left(\frac{\partial \left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_\ell}\right)}{\left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_\ell}\right)^2}\right) - \left(\frac{\partial \left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_\ell}\right)}{\left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_\ell}\right)^2}\right) - \left(\frac{\partial \left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_\ell}\right)}{\left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_\ell}\right)^2}\right) - \left(\frac{\partial \left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_\ell}\right)}{\left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_\ell}\right)^2}\right) - \left(\frac{\partial \left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_\ell}\right)}{\left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_\ell}\right)^2}\right) - \left(\frac{\partial \left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_\ell}\right)}{\left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_\ell}\right)^2}\right) - \left(\frac{\partial \left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_\ell}\right)}{\left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_\ell}\right)^2}\right) - \left(\frac{\partial \left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_\ell}\right)}{\left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_\ell}\right)^2}\right) - \left(\frac{\partial \left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_\ell}\right)}{\left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_\ell}\right)^2}\right) - \left(\frac{\partial \left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_\ell}\right)}{\left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_\ell}\right)$$

$$= \begin{cases} \left(\frac{e^{\vec{w}_j \cdot \vec{f}_i}}{\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_i}} - \frac{\left(e^{\vec{w}_j \cdot \vec{f}_i}\right)^2}{\left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_i}\right)^2} \right) \left(\frac{\partial(\vec{w}_m \cdot \vec{f}_i)}{\partial w_{mk}}\right) & m = j \\ \left(-\frac{e^{\vec{w}_j \cdot \vec{f}_i} e^{\vec{w}_m \cdot \vec{f}_i}}{\left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_i}\right)^2} \right) \left(\frac{\partial(\vec{w}_m \cdot \vec{f}_i)}{\partial w_{mk}}\right) & m \neq j \end{cases}$$

How to differentiate the softmax: step 3

Next, we use the rule
$$\frac{\partial}{\partial w}(wf) = f$$
:

$$\frac{\partial \hat{y}_{ij}}{\partial w_{mk}} = \begin{cases} \left(\frac{e^{\vec{w}_j \cdot \vec{f}_i}}{\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_i}} - \frac{\left(e^{\vec{w}_j \cdot \vec{f}_i}\right)^2}{\left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_i}\right)^2}\right) \left(\frac{\partial(\vec{w}_m \cdot \vec{f}_i)}{\partial w_{mk}}\right) & m = j \\ \left(-\frac{e^{\vec{w}_j \cdot \vec{f}_i} e^{\vec{w}_m \cdot \vec{f}_i}}{\left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_i}\right)^2}\right) \left(\frac{\partial(\vec{w}_m \cdot \vec{f}_i)}{\partial w_{mk}}\right) & m \neq j \end{cases} \quad m \neq j$$

$$= \begin{cases} \left(\frac{e^{\vec{w}_j \cdot \vec{f}_i}}{\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_i}} - \frac{\left(e^{\vec{w}_j \cdot \vec{f}_i}\right)^2}{\left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_i}\right)^2}\right) f_{ik} & m = j \\ \left(-\frac{e^{\vec{w}_j \cdot \vec{f}_i} e^{\vec{w}_m \cdot \vec{f}_i}}{\left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_i}\right)^2}\right) f_{ik} & m \neq j \end{cases}$$

Differentiating the softmax

... and, simplify.

$$\frac{\partial \hat{y}_{ij}}{\partial w_{mk}} = \begin{cases} \left(\frac{e^{\vec{w}_j \cdot \vec{f}_i}}{\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_i}} - \frac{\left(e^{\vec{w}_j \cdot \vec{f}_i}\right)^2}{\left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_i}\right)^2}\right) f_{ik} \quad m = j \\ \left(-\frac{e^{\vec{w}_j \cdot \vec{f}_i} e^{\vec{w}_m \cdot \vec{f}_i}}{\left(\sum_{\ell=1}^c e^{\vec{w}_\ell \cdot \vec{f}_i}\right)^2}\right) f_{ik} \quad m \neq j \end{cases}$$

$$\frac{\partial \hat{y}_{ij}}{\partial w_{mk}} = \begin{cases} \left(\hat{y}_{ij} - \hat{y}_{ij}^2\right) f_{ik} & m = j \\ -\hat{y}_{ij} \hat{y}_{im} f_{ik} & m \neq j \end{cases}$$

Recap: how to differentiate the softmax

- \hat{y}_{ij} is the probability of the j^{th} class, estimated by the neural net, in response to the i^{th} training token
- w_{mk} is the network weight that connects the $k^{\rm th}$ input feature to the $m^{\rm th}$ class label

The dependence of \hat{y}_{ij} on w_{mk} for $m \neq j$ is weird, and people who are learning this for the first time often forget about it. It comes from the denominator of the softmax.

$$\hat{y}_{ij} = \operatorname{softmax}(\vec{w}_{\ell} \cdot \vec{f}_{i}) = \frac{e^{\vec{w}_{j} \cdot \vec{f}_{i}}}{\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}}$$
$$\frac{\partial \hat{y}_{ij}}{\partial w_{mk}} = \begin{cases} (\hat{y}_{ij} - \hat{y}_{ij}^{2}) f_{ik} & m = j \\ -\hat{y}_{ij} \hat{y}_{im} f_{ik} & m \neq j \end{cases}$$

- \hat{y}_{im} is the probability of the $m^{\rm th}$ class for the $i^{\rm th}$ training token
- f_{ik} is the value of the k^{th} input feature for the i^{th} training token

Outline

- Dichotomizers and Polychotomizers
 - Dichotomizer: what it is; how to train it
 - Polychotomizer: what it is; how to train it
- One-Hot Vectors: Training targets for the polychotomizer
- Softmax Function: A differentiable approximate argmax
- Cross-Entropy
 - Cross-entropy = negative log probability of training labels
 - Derivative of cross-entropy w.r.t. network weights
- Putting it all together: a one-layer softmax neural net

Training a Softmax Neural Network

All of that differentiation is useful because we want to train the neural network to represent a training database as well as possible. If we can define the training error to be some function L, then we want to update the weights according to

$$w_{mk} = w_{mk} - \eta \frac{\partial L}{\partial w_{mk}}$$

So what is L?

Remember, the whole point of that denominator in the softmax function is that it allows us to use softmax as

$$\hat{y}_{ij}$$
 = Estimated value of $P(\text{class } j | \vec{f}_i)$

Suppose we decide to estimate the network weights w_{mk} in order to maximize the probability of the training database, in the sense of

 W_{mk} = argmax *P*(training labels | training feature vectors)

Remember, the whole point of that denominator in the softmax function is that it allows us to use softmax as

$$\hat{y}_{ij}$$
 = Estimated value of $P(\text{class } j | \vec{f}_i)$

If we assume the training tokens are independent, this is:

$$= \underset{w}{\operatorname{argmax}} \prod_{i=1}^{n} P(\text{reference label of the } i^{th} \text{token } | i^{th} \text{feature vector})$$

Remember, the whole point of that denominator in the softmax function is that it allows us to use softmax as

$$\hat{y}_{ij}$$
 = Estimated value of $P(\text{class } j | \vec{f}_i)$

OK. We need to create some notation to mean "the reference label for the i^{th} token." Let's call it j(i).

$$w_{mk} = \underset{w}{\operatorname{argmax}} \prod_{i=1}^{n} P(\operatorname{class} j(i) | \vec{f})$$

Wow, Cool!! So we can maximize the probability of the training data by just picking the softmax output corresponding to the <u>correct class</u> j(i), for each token, and then multiplying them all together:

$$w_{mk} = \underset{w}{\operatorname{argmax}} \prod_{i=1}^{n} \hat{y}_{i,j(i)}$$

So, hey, let's take the logarithm, to get rid of that nasty product operation.

$$w_{mk} = \underset{w}{\operatorname{argmax}} \sum_{i=1}^{n} \ln \hat{y}_{i,j(i)}$$

Training: Minimizing the negative log probability

So, to maximize the probability of the training data given the model, we need:

$$w_{mk} = \underset{w}{\operatorname{argmax}} \sum_{i=1}^{n} \ln \hat{y}_{i,j(i)}$$

If we just multiply by (-1), that will turn the max into a min. It's kind of a stupid thing to do---who cares whether you're minimizing L or maximizing -L, same thing, right? But it's standard, so what the heck.

$$w_{mk} = \underset{w}{\operatorname{argmin}} L$$
$$L = \sum_{i=1}^{n} -\ln \hat{y}_{i,j(i)}$$

Training: Minimizing the negative log probability

Softmax neural networks are almost always trained in order to minimize the negative log probability of the training data:

$$w_{mk} = \underset{w}{\operatorname{argmin}} L$$
$$L = \sum_{i=1}^{n} -\ln \hat{y}_{i,j(i)}$$

This loss function, defined above, is called the <u>cross-entropy loss</u>. The reasons for that name are very cool, and very far beyond the scope of this course. Take CS 446 (Machine Learning) and/or ECE 563 (Information Theory) to learn more.

Outline

- Dichotomizers and Polychotomizers
 - Dichotomizer: what it is; how to train it
 - Polychotomizer: what it is; how to train it
- One-Hot Vectors: Training targets for the polychotomizer
- Softmax Function: A differentiable approximate argmax

• Cross-Entropy

- Cross-entropy = negative log probability of training labels
- Derivative of cross-entropy w.r.t. network weights
- Putting it all together: a one-layer softmax neural net

The cross-entropy loss function is:

$$L = \sum_{i=1}^{n} -\ln \hat{y}_{i,j(i)}$$

Let's try to differentiate it:

$$\frac{\partial L}{\partial w_{mk}} = \sum_{i=1}^{n} -\left(\frac{1}{\hat{y}_{i,j(i)}}\right) \frac{\partial \hat{y}_{i,j(i)}}{\partial w_{mk}}$$

The cross-entropy loss function is:

$$L = \sum_{i=1}^{N} -\ln \hat{y}_{i,j(i)}$$

Let's try to differentiate it:

$$\frac{\partial L}{\partial w_{mk}} = \sum_{i=1}^{n} -\left(\frac{1}{\hat{y}_{i,j(i)}}\right) \frac{\partial \hat{y}_{i,j(i)}}{\partial w_{mk}}$$

...and then...

$$\left(\frac{1}{\hat{y}_{i,j(i)}}\right)\frac{\partial \hat{y}_{i,j(i)}}{\partial w_{mk}} = \begin{cases} (1-\hat{y}_{im})f_{ik} & m=j(i)\\ -\hat{y}_{im}f_{ik} & m\neq j(i) \end{cases}$$

Let's try to differentiate it:

$$\frac{\partial L}{\partial w_{mk}} = \sum_{i=1}^{n} -\left(\frac{1}{\hat{y}_{i,j(i)}}\right) \frac{\partial \hat{y}_{i,j(i)}}{\partial w_{mk}}$$

...and then...

$$\left(\frac{1}{\hat{y}_{i,j(i)}}\right)\frac{\partial \hat{y}_{i,j(i)}}{\partial w_{mk}} = \begin{cases} (1-\hat{y}_{im})f_{ik} & m=j(i)\\ -\hat{y}_{im}f_{ik} & m\neq j(i) \end{cases}$$

... but remember our reference labels:

$$y_{ij} = \begin{cases} 1 & i^{th} \text{ example is from class j} \\ 0 & i^{th} \text{ example is NOT from class j} \end{cases}$$

Let's try to differentiate it:

$$\frac{\partial L}{\partial w_{mk}} = \sum_{i=1}^{n} -\left(\frac{1}{\hat{y}_{i,j(i)}}\right) \frac{\partial \hat{y}_{i,j(i)}}{\partial w_{mk}}$$

...and then...

$$\begin{pmatrix} 1\\ \hat{y}_{i,j(i)} \end{pmatrix} \frac{\partial \hat{y}_{i,j(i)}}{\partial w_{mk}} = \begin{cases} (y_{im} - \hat{y}_{im}) f_{ik} & m = j(i) \\ (y_{im} - \hat{y}_{im}) f_{ik} & m \neq j(i) \end{cases}$$

... but remember our reference labels:

$$y_{ij} = \begin{cases} 1 & i^{th} \text{ example is from class j} \\ 0 & i^{th} \text{ example is NOT from class j} \end{cases}$$

Let's try to differentiate it:

$$\frac{\partial L}{\partial w_{mk}} = \sum_{i=1}^{n} -\left(\frac{1}{\hat{y}_{i,j(i)}}\right) \frac{\partial \hat{y}_{i,j(i)}}{\partial w_{mk}}$$

...and then...

$$\left(\frac{1}{\hat{y}_{i,j(i)}}\right)\frac{\partial\hat{y}_{i,j(i)}}{\partial w_{mk}} = (y_{im} - \hat{y}_{im})f_{ik}$$

Let's try to differentiate it:

$$\frac{\partial L}{\partial w_{mk}} = \sum_{i=1}^{n} (\hat{y}_{im} - y_{im}) f_{ik}$$

Let's try to differentiate it:

$$\frac{\partial L}{\partial w_{mk}} = \sum_{i=1}^{n} (\hat{y}_{im} - y_{im}) f_{ik}$$

Interpretation:

Increasing w_{mk} will make the error worse if

- \hat{y}_{im} is already too large, and f_{ik} is positive
- \hat{y}_{im} is already too small, and f_{ik} is negative

Let's try to differentiate it:

$$\frac{\partial L}{\partial w_{mk}} = \sum_{i=1}^{n} (\hat{y}_{im} - y_{im}) f_{ik}$$

Interpretation:

- Our goal is to make the error as small as possible. So if
- \hat{y}_{im} is already too large, then we want to make $w_{mk}f_{ik}$ smaller
- \hat{y}_{im} is already too small , then we want to make $w_{mk}f_{ik}$ larger

$$w_{mk} = w_{mk} - \eta \frac{\partial L}{\partial w_{mk}}$$

Outline

- Dichotomizers and Polychotomizers
 - Dichotomizer: what it is; how to train it
 - Polychotomizer: what it is; how to train it
- One-Hot Vectors: Training targets for the polychotomizer
- Softmax Function: A differentiable approximate argmax
- Cross-Entropy
 - Cross-entropy = negative log probability of training labels
 - Derivative of cross-entropy w.r.t. network weights
- Putting it all together: a one-layer softmax neural net

Summary: Training Algorithms You Know

1. Naïve Bayes with Laplace Smoothing: $P(f_k = x | \text{class } j) = \frac{(\text{#tokens of class } j \text{ with } f_k = x) + 1}{(\text{#tokens of class } j) + (\text{#possible values of } f_k)}$

- 2. Multi-Class Perceptron: If token $\vec{f_i}$ of class j is misclassified as class m, then $\vec{w_j} = \vec{w_j} + \eta \vec{f_i}$ $\vec{w_m} = \vec{w_m} - \eta \vec{f_i}$
- 3. Softmax Neural Net: for all weight vectors (correct or incorrect),

$$\vec{w}_m = \vec{w}_m - \eta \nabla_{\vec{w}_m} L$$
$$= \vec{w}_m - \eta (\hat{y}_{im} - y_{im}) \vec{f}_i$$

Softmax Neural Net: for all weight vectors (correct or incorrect), $\vec{w}_m = \vec{w}_m - \eta(\hat{y}_{im} - y_{im})\vec{f}_i$

Notice that, if the network were adjusted so that

$$\hat{y}_{im} = \begin{cases} 1 & \text{network thinks the correct class is } m \\ 0 & \text{otherwise} \end{cases}$$

Then we'd have

 $(\hat{y}_{im} - y_{im})$

$$= \begin{cases} -2 & \text{correct class is } m, \text{ but network is wrong} \\ 2 & \text{network guesses } m, \text{ but it's wrong} \\ 0 & \text{otherwise} \end{cases}$$

Softmax Neural Net: for all weight vectors (correct or incorrect), $\vec{w} = \vec{w} = n(\hat{y} = v)\vec{f}$

$$\vec{w}_m = \vec{w}_m - \eta(\hat{y}_{im} - y_{im})f_i$$

Notice that, if the network were adjusted so that

$$\hat{y}_{im} = \begin{cases} 1 & \text{network thinks the correct class is } m \\ 0 & \text{otherwise} \end{cases}$$

Then we get the perceptron update rule back again (multiplied by 2, which doesn't matter);

$$\vec{w}_m = \begin{cases} \vec{w}_m + 2\eta \vec{f}_i & \text{correct class is } m, \text{ but network is wrong} \\ \vec{w}_m - 2\eta \vec{f}_i & \text{network guesses } m, \text{ but it's wrong} \\ \vec{w}_m & \text{otherwise} \end{cases}$$

So the key difference between perceptron and softmax is that, for a perceptron,

$$\hat{y}_{ij} = \begin{cases} 1 & \text{network thinks the correct class is } j \\ 0 & \text{otherwise} \end{cases}$$

Whereas, for a softmax,

$$0 \le \hat{y}_{ij} \le 1$$
, $\sum_{j=1}^{c} \hat{y}_{ij} = 1$

...or, to put it another way, for a perceptron,

$$\hat{y}_{ij} = \begin{cases} 1 & \text{if } j = \operatorname*{argmax}_{1 \leq \ell \leq c} \vec{w}_{\ell} \cdot \vec{f}_{i} \\ 0 & \text{otherwise} \end{cases}$$

Whereas, for a softmax network,

$$\hat{y}_{ij} = \operatorname{softmax}\left(\vec{w}_{\ell} \cdot \vec{f}_{i}\right)$$

