Lecture 17: More on binary vs. multi-class classifiers
 (Polychotomizers: One-Hot Vectors, Softmax, and Cross-Entropy)

Mark Hasegawa-Johnson, 3/9/2019. CC-BY 3.0: You are free to share and adapt these slides if you cite the original.
Modified by Julia Hockenmaier

Aliza Aufrichtig @alizauf • Mar 4

Garlic halved horizontally = nature's Voronoi diagram?
en.wikipedia.org/wiki/Voronoi_d.

More on supervised learning

The supervised learning task

Given a labeled training data set of N items $\mathbf{x}_{\mathrm{n}} \in \mathcal{X}$ with labels $\mathrm{y}_{\mathrm{n}} \in \boldsymbol{Y}$

$$
\mathcal{D}^{\text {train }}=\left\{\left(\mathbf{x}_{1}, \mathrm{y}_{1}\right), \ldots,\left(\mathbf{x}_{N}, \mathrm{y}_{\mathrm{N}}\right)\right\}
$$

(y_{n} is determined by some unknown target function $\mathrm{f}(\mathbf{x})$)
Return a model g: $\mathcal{X} \longmapsto \mathcal{Y}$ that is a good approximation of $f(\mathbf{x})$
(g should assign correct labels y to unseen $\mathbf{x} \notin \mathcal{D}^{\text {train }}$)

Supervised learning terms

Input items/data points $\mathrm{x}_{\mathrm{n}} \in \mathcal{X}$ (e.g. emails)
are drawn from an instance space \mathcal{X}
Output labels $\mathrm{y}_{\mathrm{n}} \in \mathcal{Y}$ (e.g. 'spam'/'nospam') are drawn from a label space \mathcal{Y}

Every data point $\mathrm{x}_{\mathrm{n}} \in \mathcal{X}$ has a single correct label $\mathrm{y}_{\mathrm{n}} \in \mathcal{Y}$, defined by an (unknown) target function $f(\mathbf{x})=y$

Supervised learning

Supervised learning: Training

Labeled Training
Data
$\mathcal{D}^{\text {train }}$
$\left(\mathbf{x}_{1}, \mathrm{y}_{1}\right)$
$\left(x_{2}, y_{2}\right)$
$\left(x_{N}, y_{N}\right)$
Give the learner examples in $\mathcal{D}^{\text {train }}$
The learner returns a model $\mathrm{g}(\mathbf{x})$

Supervised learning: Testing

> Labeled
> Test Data
> $\mathcal{D}^{\text {test }}$
> $\left(\mathbf{x}_{1}{ }_{1}, \mathbf{y}^{\prime}\right)$ $\left(\mathbf{x}_{2}{ }_{2}^{\prime} \mathbf{y}_{2}\right)$ $\left(\mathbf{x}_{M}^{\prime}, \mathbf{y}^{\prime}{ }_{M}\right)$

Reserve some labeled data for testing

Supervised learning: Testing

Supervised learning: Testing

Apply the model to the raw test data

Evaluating supervised learners

Use a test data set $\mathcal{D}^{\text {test }}$ that is disjoint from $\mathcal{D}^{\text {train }}$
$\mathcal{D}^{\text {test }}=\left\{\left(\mathbf{x}^{\prime}{ }_{1}, \mathrm{y}^{\prime}{ }_{1}\right), \ldots,\left(\mathbf{x}^{\prime}{ }_{M}, \mathrm{y}^{\prime}{ }_{M}\right)\right\}$
The learner has not seen the test items during learning. Split your labeled data into two parts: test and training.

Take all items $\mathbf{x}_{\mathrm{i}}{ }_{\mathrm{i}}$ in \mathcal{D} test and compare the predicted $\mathrm{f}\left(\mathbf{x}_{\mathrm{i}}{ }_{\mathrm{i}}\right)$ with the correct y_{i}^{\prime}.

This requires an evaluation metric (e.g. accuracy).

1. The instance space

1. The instance space \boldsymbol{X}

Designing an appropriate instance space \mathcal{X} is crucial for how well we can predict y.

1. The instance space \boldsymbol{X}

When we apply machine learning to a task, we first need to define the instance space $\boldsymbol{\mathcal { X }}$.

Instances $\mathrm{x} \in \mathcal{X}$ are defined by features:
Boolean features:
Does this email contain the word 'money'?
Numerical features:
How often does 'money' occur in this email?
What is the width/height of this bounding box?

\boldsymbol{X} as a vector space

\mathcal{X} is an N -dimensional vector space (e.g. \mathbb{R}^{N})
Each dimension = one feature.
Each \mathbf{x} is a feature vector (hence the boldface \mathbf{x}).
Think of $\mathbf{x}=\left[\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{N}}\right]$ as a point in $\boldsymbol{\mathcal { X }}$:

From feature templates to vectors

When designing features, we often think in terms of templates, not individual features:
What is the 2nd letter?

N a oki	$\rightarrow\left[\begin{array}{lllll}1 & 0 & 0 & 0 & \ldots\end{array}\right]$
A b e	$\rightarrow\left[\begin{array}{lllll}0 & 1 & 0 & 0 & \ldots\end{array}\right]$
S c rooge	$\rightarrow\left[\begin{array}{llll}0 & 0 & 1 & 0\end{array}\right]$

What is the i-th letter?

$$
\text { Abe } \rightarrow \text { [1 } 00000 \text { o... } 010000 \text {... } 00001 \text {...] }
$$

Good features are essential

- The choice of features is crucial for how well a task can be learned.
- In many application areas (language, vision, etc.), a lot of work goes into designing suitable features.
- This requires domain expertise.
- We can't teach you what specific features to use for your task.
- But we will touch on some general principles

2. The label space
3. The label space \mathbf{Y}

The label space \mathcal{Y} determines what kind of supervised learning task we are dealing with

Supervised learning tasks I

Output labels $y \in \mathcal{Y}$ are categorical:
Binary classification: Two possible labels
Multiclass classification: k possible labels

Output labels $y \in \mathcal{Y}$ are structured objects (sequences of labels, parse trees, etc.)

Structure learning, etc.

Supervised learning tasks II

Output labels $y \in \mathcal{Y}$ are numerical:

Regression (linear/polynomial):
Labels are continuous-valued
Learn a linear/polynomial function $f(x)$

Ranking:
Labels are ordinal
Learn an ordering $f\left(x_{1}\right)>f\left(x_{2}\right)$ over input
3. Models
(The hypothesis space)
3. The model $g(x)$

We need to choose what kind of model we want to learn

More terminology

For classification tasks (\boldsymbol{Y} is categorical, e.g. $\{0,1\}$, or $\{0,1, \ldots, k\}$), the model is called a classifier.

For binary classification tasks ($\mathcal{Y}=\{0,1\}$ or $\boldsymbol{Y}=\{-1,+1\}$), we can either think of the two values of \boldsymbol{Y} as Boolean or as positive/negative

A learning problem

	x_{1}	x_{2}	x_{3}	x_{4}	y
1	0	0	1	0	0
2	0	1	0	0	0
3	0	0	1	1	1
4	1	0	0	1	1
5	0	1	1	0	0
6	1	1	0	0	0
7	0	1	0	1	0

A learning problem

Each \mathbf{x} has 4 bits: $|\mathcal{X}|=2^{4}=16$
Since $\mathcal{Y}=\{0,1\}$, each $f(\mathbf{x})$ defines one subset of \boldsymbol{X}
χ has $2^{16}=65536$ subsets:
There are 2^{16} possible $f(\mathbf{x})$
(2^{9} are consistent with our data)
We would need to see all of $\boldsymbol{\mathcal { X }}$ to learn $\mathrm{f}(\mathbf{x})$

A learning problem

We would need to see all of $\boldsymbol{\mathcal { X }}$ to learn $\mathrm{f}(\mathbf{x})$
Easy with $|\mathcal{X}|=16$
Not feasible in general
(for any real-world problems)
Learning = generalization, not memorization of the training data

Classifiers in vector spaces

Binary classification:

We assume f separates the positive and negative examples:

Assign $y=1$ to all \mathbf{x} where $f(\mathbf{x})>0$
Assign $y=0$ (or -1) to all \mathbf{x} where $\mathrm{f}(\mathbf{x})<0$

Learning a classifier

The learning task:
Find a function $f(\mathbf{x})$ that best separates the (training) data

What kind of function is f ?
How do we define best?
How do we find f ?

Which model should we pick?

Criteria for choosing models

Accuracy:

Prefer models that make fewer mistakes
We only have access to the training data
But we care about accuracy on unseen (test) examples
Simplicity (Occam's razor):
Prefer simpler models (e.g. fewer parameters).
These (often) generalize better, and need less data for training.

Linear classifiers

Linear classifiers

Many learning algorithms restrict the hypothesis space to linear classifiers:

$$
f(\mathbf{x})=w_{0}+w \mathbf{x}
$$

Linear Separability

- Not all data sets are linearly separable:

- Sometimes, feature transformations help:

Linear classifiers: $f(x)=w_{0}+w x$

Linear classifiers are defined over vector spaces
Every hypothesis $f(\mathbf{x})$ is a hyperplane:

$$
f(\mathbf{x})=w_{0}+w x
$$

$f(x)$ is also called the decision boundary
Assign $\hat{y}=+1$ to all \mathbf{x} where $f(\mathbf{x})>0$
Assign $\hat{y}=-1$ to all \mathbf{x} where $f(\mathbf{x})<0$

$$
\hat{y}=\operatorname{sgn}(f(x))
$$

$y \cdot f(x)>0$: Correct classification

An example (\mathbf{x}, y) is correctly classified by $f(\mathbf{x})$
if and only if $y \cdot f(x)>0$:
Case $1(y=+1=\hat{y}): f(\mathbf{x})>0 \Rightarrow y \cdot f(\mathbf{x})>0$
Case $2(y=-1=\hat{y}): f(x)<0 \Rightarrow y \cdot f(\mathbf{x})>0$
Case $3(y=+1 \neq \hat{y}=-1): f(x)>0 \Rightarrow y \cdot f(x)<0$
Case $4(y=-1 \neq \hat{y}=+1): f(x)<0 \Rightarrow y \cdot f(x)<0$

With a separate bias term $W_{0}: \quad f(x)=w \cdot x+w_{0}$

The instance space \mathcal{X} is a \boldsymbol{d}-dimensional vector space (each $\mathbf{x} \in \mathcal{X}$ has d elements)
The decision boundary $f(x)=0$ is a (d-1)-dimensional hyperplane in the instance space.
The weight vector w is orthogonal (normal)
to the decision boundary $f(\mathbf{x})=0$:
For any two points \mathbf{x}^{A} and \mathbf{x}^{B} on the decision boundary $f\left(\mathbf{x}^{A}\right)=f\left(\mathbf{x}^{B}\right)=0$
For any vector ($\mathbf{x}^{B}-\mathbf{x}^{A}$) on the decision boundary: $\mathbf{w}\left(\mathbf{x}^{B}-\mathbf{x}^{A}\right)=f\left(\mathbf{x}^{B}\right)-w_{0}-f\left(\mathbf{x}^{A}\right)+w_{0}=0$
The bias term w_{0} determines the distance of the decision boundary from the origin:

For \mathbf{x} with $\mathrm{f}(\mathbf{x})=0$, the distance to the origin is

$$
\frac{\mathbf{w} \cdot \mathbf{x}}{\|\mathbf{w}\|}=-\frac{w_{0}}{\|\mathbf{w}\|}=-\frac{w_{0}}{\sqrt{\sum_{i=1}^{d} w_{i}^{2}}}
$$

With a separate bias term $w_{0}: \quad f(x)=w \cdot x+w_{0}$

Canonical representation: getting rid of the bias term

With $\mathbf{w}=\left(w_{1}, \ldots, w_{N}\right)^{\top}$ and $\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right)^{\top}$:

$$
\begin{aligned}
f(x) & =w_{0}+w x \\
& =w_{0}+\sum_{i=1 \ldots . . N} w_{i} x_{i}
\end{aligned}
$$

w_{0} is called the bias term.

The canonical representation redefines \mathbf{w}, \mathbf{x} as
and $\quad \mathbf{x}=\left(1, x_{1}, \ldots, x_{N}\right)^{\top}$
$\Rightarrow \quad f(\mathbf{x})=\mathbf{w} \cdot \mathbf{x}$

In canonical form (with $x_{0}=1$)

- We now operate in (d+1)-dimensional space
- The decision boundary $f(x)=0$ is a d-dimensional hyperplane that goes through the origin.
- The weight vector w is still orthogonal to the decision boundary $f(\mathbf{x})=0$

Learning a linear classifier

Input: Labeled training data
$\mathcal{D}=\left\{\left(\mathbf{x}^{1}, \mathrm{y}^{1}\right), \ldots,\left(\mathbf{x}^{\mathrm{D}}, \mathrm{y}^{\mathrm{D}}\right)\right\}$
plotted in the sample space $\mathcal{X}=\mathbf{R}^{2}$ with $O: y^{i}=+1,2: y^{i}=1$

Output: A decision boundary $f(x)=0$ that separates the training data

$$
y^{i} \cdot f\left(\mathbf{x}^{i}\right)>0
$$

Which model should we pick?

- We need a metric (aka an objective function)
- We would like to minimize the probability of misclassifying unseen examples, but we can't measure that probability.
- Instead: minimize the number of misclassified training examples

Which model should we pick?

- We need a more specific metric:

There may be many models that are consistent with the training data.

- Loss functions provide such metrics.

4. The learning algorithm

4. The learning algorithm

- The learning task:

Given a labeled training data set

$$
\mathcal{D}^{\text {train }}=\left\{\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{N}, \mathbf{y}_{N}\right)\right\}
$$

return a model (classifier) g: $\boldsymbol{X} \mapsto \mathcal{Y}$ from the hypothesis space $\mathcal{H} \subseteq|\mathcal{Y}|^{|x|}$

Batch versus online training

Batch learning:

The learner sees the complete training data, and only changes its hypothesis when it has seen the entire training data set.
Online training:
The learner sees the training data one example at a time, and can change its hypothesis with every new example Compromise: Minibatch learning (commonly used in practice)
The learner sees small sets of training examples at a time, and changes its hypothesis with every such minibatch of examples

Perceptron

Perceptron

- Simple, mistake-driven algorithm for learning linear classifiers
- There are batch and online versions
- We will analyze the online version
- Uses (stochastic) gradient descent, with a particular loss function

Perceptron criterion

We would like a weight vector \mathbf{w} such that

$$
\begin{aligned}
& \mathrm{f}\left(\mathbf{x}_{n}\right)=\mathbf{w} \cdot \mathbf{x}_{n}>0 \text { for } \mathrm{y}_{n}=+1 \\
& \mathrm{f}\left(\mathbf{x}_{n}\right)=\mathbf{w} \cdot \mathbf{x}_{n}<0 \text { for } \mathrm{y}_{n}=-1
\end{aligned}
$$

The perceptron tries to minimize the error

$$
-\mathbf{w} \cdot \mathbf{x}_{n} \cdot \mathbf{y}_{n}
$$

for any misclassified example ($\mathbf{x}_{n}, \mathrm{y}_{n}$)
The overall training error of \mathbf{w} depends on the misclassified items M :

$$
\mathrm{E}_{\text {Perceptron }}(\mathbf{w})=-\sum_{n \in M} \mathbf{w} \cdot \mathbf{x}_{n} \cdot y_{n}
$$

Perceptron

For each training instance $\overrightarrow{\boldsymbol{f}}$ with label $y \in\{-1,1\}$:

- Classify with current weights: $y^{\prime}=\operatorname{sgn}\left(\vec{w}^{T} \vec{f}\right)$
- Notice $y^{\prime} \in\{-1,1\}$ too.
- Update weights:
- if $y=y^{\prime}$ then do nothing
- if $y \neq y^{\prime}$ then $\vec{w}=\vec{w}+\eta y \vec{f}$
- η (eta) is a "learning rate." More about that later.

The Perceptron rule

If target $\mathbf{y}=+\mathbf{1}: \mathbf{x}$ should be above the decision boundary
Lower the decision boundary's slope: $\mathbf{w}^{i+1}:=\mathbf{w}^{i}+\mathbf{x}$

If target $\mathbf{y}=\mathbf{- 1}: \mathbf{x}$ should be below the decision boundary
Raise the decision boundary's slope: $\mathbf{w}^{\mathbf{i + 1}}:=\mathbf{w}^{\mathbf{i}}-\mathbf{x}$

Perceptron in action

(Figures from Bishop 2006)

Perceptron in action

(Figures from Bishop 2006)

Perceptron: Proof of Convergence

- If the data are linearly separable (if there exists a \vec{w} vector such that the true label is given by $y^{\prime}=\operatorname{sgn}\left(\vec{w}^{T} \vec{f}\right)$), then the perceptron algorithm is guarantee to converge, even with a constant learning rate, even $\eta=1$.
- In fact, training a perceptron is often the fastest way to find out if the data are linearly separable. If \vec{w} converges, then the data are separable; if \vec{w} diverges toward infinity, then no.
- If the data are not linearly separable, then perceptron converges iff the learning rate decreases, e.g., $\eta=1 / n$ for the n'th training sample.

Perceptron: Proof of Convergence

Suppose the data are linearly separable. For example, suppose red dots are the class $y=1$, and blue dots are the class $y=-1$:

Perceptron: Proof of Convergence

- Instead of plotting \vec{f}, plot $\mathrm{y} \times \vec{f}$. The red dots are unchanged; the blue dots are multiplied by -1 .
- Since the original data were linearly separable, the new data are all in the same half of the feature space.

Perceptron: Proof of Convergence

- Remember the perceptron training rule: if any example is misclassified, then we use it to update $\vec{w}=\vec{w}+y \vec{f}$.
- So eventually, \vec{w} becomes just a weighted average of $\mathrm{y} \vec{f}$.
- ... and the perpendicular line, $\vec{w}^{T} \vec{f}=0$, is the classifier boundary.

Perceptron: Proof of Convergence: Conclusion

- If the data are linearly separable, then the perceptron will eventually find the equation for a line that separates them.
- If the data are NOT linearly separable, then perceptron converges iff the learning rate decreases, e.g., $\eta=1 / n$ for the n 'th training sample. In this case, convergence is trivially obvious, because y and \vec{f} are finite, therefore the weight updates η y \vec{f} approach 0 as η approaches 0 .

Implementation details

- Bias (add feature dimension with value fixed to 1) vs. no bias
- Initialization of weights: all zeros vs. random
- Learning rate decay function
- Number of epochs (passes through the training data)
- Order of cycling through training examples (random)

Multi-class Perceptrons

Multi-class perceptrons

- One-vs-others framework: Need to keep a weight vector \mathbf{w}_{c} for each class c
- Decision rule: $\mathbf{y}=\operatorname{argmax}{ }_{c} \mathbf{w}_{c} \cdot \mathbf{f}$
- Update rule: suppose example from class c gets misclassified as c'
- Update for $\mathrm{c}: \mathbf{w}_{\mathrm{c}} \leqslant \mathbf{w}_{\mathrm{c}}+\eta \mathrm{f}$
- Update for $\mathrm{c}^{\prime}: \mathbf{w}_{\mathrm{c}^{\prime}} \leftarrow \mathbf{w}_{\mathrm{c}^{\prime}}-\eta \mathbf{\eta}$
- Update for all classes other than c and c^{\prime} : no change

Multi-class perceptrons

- One-vs-others framework: Need to keep a weight vector \mathbf{w}_{c} for each class c
- Decision rule: $\mathbf{y}=\operatorname{argmax}{ }_{c} \mathbf{w}_{\mathrm{c}} \cdot \mathbf{f}$

One-Hot Vector

- Example: if the first example is from class $2(\mathrm{red})$, then $\vec{y}_{1}=[0,1,0]$

$$
y_{i j}= \begin{cases}1 & \mathrm{i}^{\mathrm{th}} \text { example is from class } \mathrm{j} \\ 0 & \mathrm{ith}^{\text {th }} \text { example is NOT from class } \mathrm{j}\end{cases}
$$

Call $y_{i j}$ the reference label, and call $\hat{y}_{i j}$ the hypothesis. Then notice that:

- $y_{i j}=$ True value of $P\left(\right.$ class $\left.j \mid \vec{f}_{i}\right)$, because the true probability is always either 1 or 0 !
- $\hat{y}_{i j}=$ Estimated value of $P\left(\right.$ class $\left.j \mid \vec{f}_{i}\right), \quad 0 \leq \hat{y}_{j} \leq 1, \quad \sum_{j=1}^{c} \hat{y}_{j}=1$

Wait. Dichotomizer is just a Special Case of Polychotomizer, isn't it?

Yes. Yes, it is.

- Polychotomizer: $\quad \vec{y}_{i}=\left[y_{i 1}, \ldots, y_{i c}\right], y_{i j}=P\left(\right.$ class $\left.j \mid \vec{f}_{i}\right)$.
- Dichotomizer: $y_{i}=P\left(\right.$ class $\left.1 \mid \vec{f}_{i}\right)$
- That's all you need, because if there are only two classes, then $P\left(\right.$ other class $\left.\mid \vec{f}_{i}\right)=1-y_{i}$
- (One of the two classes in a dichotomizer is always called "class 1." The other might be called "class 2," or "class 0 ," or "class -1 ".... Who cares. They all mean "the class that is not class 1.")

Outline

- Dichotomizers and Polychotomizers
- Dichotomizer: what it is; how to train it
- Polychotomizer: what it is; how to train it
- One-Hot Vectors: Training targets for the polychotomizer
- Softmax Function
- A differentiable approximate argmax
- How to differentiate the softmax
- Cross-Entropy
- Cross-entropy = negative log probability of training labels
- Derivative of cross-entropy w.r.t. network weights
- Putting it all together: a one-layer softmax neural net

OK, now we know what the polychotomizer should compute. How do we compute it?

Now you know that

- $y_{i j}=$ reference label $=$ True value of $P\left(\right.$ class $\left.j \mid \vec{f}_{i}\right)$, given to you with the training database.
- $\hat{y}_{i j}=$ hypothesis = value of $P\left(\right.$ class $\left.j \mid \vec{f}_{i}\right)$ estimated by the neural net. How can we do that estimation?

OK, now we know what the polychotomizer should compute. How do we compute it?

$\hat{y}_{i j}=$ value of $P\left(\right.$ class $\left.j \mid \vec{f}_{i}\right)$ estimated by the neural net.
How can we do that estimation?
Multi-class perceptron example:

$$
\hat{y}_{i j}=\left\{\begin{array}{cc}
1 & \text { if } j=\underset{1 \leq \rho \leq c}{\operatorname{argmax}} \vec{w}_{\ell} \cdot \vec{f}_{i} \\
0 & \text { otherwise }
\end{array}\right.
$$

Differentiable perceptron: we need a differentiable
 approximation of the argmax function.

Softmax = differentiable approximation of the

 argmax functionThe softmax function is defined as:

$$
\hat{y}_{i j}=\underset{j}{\operatorname{softmax}}\left(\vec{w}_{\ell} \cdot \vec{f}_{i}\right)=\frac{e^{\vec{w}_{j} \cdot \vec{f}_{i}}}{\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}}
$$

For example, the figure to the right shows

$$
\hat{y}_{1}=\underset{1}{\operatorname{softmax}}\left(f_{\ell}\right)=\frac{e^{f_{1}}}{\sum_{\ell=1}^{2} e^{f_{\ell}}}
$$

Notice that it's close to 1 (yellow) when $f_{1}=\max f_{\ell}$, and close to zero (blue) otherwise, with a smooth transition zone in between.

Softmax = differentiable approximation of the

 argmax functionThe softmax function is defined as:

$$
\hat{y}_{i j}=\underset{j}{\operatorname{softmax}}\left(\vec{w}_{\ell} \cdot \vec{f}_{i}\right)=\frac{e^{\vec{w}_{j} \cdot \vec{f}_{i}}}{\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}}
$$

Notice that this gives us

$$
0 \leq \hat{y}_{i j} \leq 1, \quad \sum_{j=1}^{c} \hat{y}_{i j}=1
$$

Therefore we can interpret $\hat{y}_{i j}$ as an estimate of $P\left(\right.$ class $\left.j \mid \vec{f}_{i}\right)$.

Outline

- Dichotomizers and Polychotomizers
- Dichotomizer: what it is; how to train it
- Polychotomizer: what it is; how to train it
- One-Hot Vectors: Training targets for the polychotomizer
- Softmax Function
- A differentiable approximate argmax
- How to differentiate the softmax
- Cross-Entropy
- Cross-entropy = negative log probability of training labels
- Derivative of cross-entropy w.r.t. network weights
- Putting it all together: a one-layer softmax neural net

How to differentiate the softmax: 3 steps

Unlike argmax, the softmax function is differentiable. All we need is the chain rule, plus three rules from calculus:

1. $\frac{\partial}{\partial w}\left(\frac{a}{b}\right)=\left(\frac{1}{b}\right) \frac{\partial a}{\partial w}-\left(\frac{a}{b^{2}}\right) \frac{\partial b}{\partial w}$
2. $\frac{\partial}{\partial w}\left(e^{a}\right)=\left(e^{a}\right) \frac{\partial a}{\partial w}$
3. $\frac{\partial}{\partial w}(w f)=f$

How to differentiate the softmax: step 1

First, we use the rule for $\frac{\partial}{\partial w}\left(\frac{a}{b}\right)=\left(\frac{1}{b}\right) \frac{\partial a}{\partial w}-\left(\frac{a}{b^{2}}\right) \frac{\partial b}{\partial w}$:

$$
\hat{y}_{i j}=\underset{j}{\operatorname{softmax}}\left(\vec{w}_{\ell} \cdot \vec{f}_{i}\right)=\frac{e^{\vec{w}_{j} \cdot \vec{f}_{i}}}{\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}}
$$

$\frac{\partial \hat{y}_{i j}}{\partial w_{m k}}=\left(\frac{1}{\sum_{\ell=1}^{c} e^{\vec{w}_{e} \cdot \vec{f}_{i}}}\right)\left(\frac{\partial e^{\vec{w}_{j} \cdot \vec{f}_{i}}}{\partial w_{m k}}\right)-\left(\frac{e^{\vec{w}_{j} \cdot \vec{f}_{i}}}{\left(\sum_{\ell=1}^{c} e^{\vec{w}_{l} \cdot \vec{f}_{i}}\right)^{2}}\right)\left(\frac{\partial\left(\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}\right)}{\partial w_{m k}}\right)$
$=\left\{\begin{array}{cc}\left(\frac{1}{\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}}\right)\left(\frac{\partial e^{\vec{w}_{j} \cdot \vec{f}_{i}}}{\partial w_{m k}}\right)-\left(\frac{e^{\vec{w}_{j} \cdot \vec{f}_{i}}}{\left(\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}\right)^{2}}\right)\left(\frac{\partial\left(\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}\right)}{\partial w_{m k}}\right) & m=j \\ -\left(\frac{e^{\vec{w}_{j} \cdot \vec{f}_{i}}}{\left(\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}\right)^{2}}\right)\left(\frac{\partial\left(\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}\right)}{\partial w_{m k}}\right) & m \neq j\end{array}\right.$

How to differentiate the softmax: step 2

Next, we use the rule $\frac{\partial}{\partial w}\left(e^{a}\right)=\left(e^{a}\right) \frac{\partial a}{\partial w}$:

$$
\begin{aligned}
& \frac{\partial \hat{y}_{i j}}{\partial w_{m k}}= \\
& \left\{\left(\frac{1}{\sum_{\ell=1}^{c} e^{\vec{w}_{f} \cdot \overrightarrow{f_{i}}}}\right)\left(\frac{\partial e^{\overrightarrow{w_{j}} \cdot \vec{f}_{i}}}{\partial w_{m k}}\right)-\left(\frac{e^{\vec{w}_{j} \cdot \overrightarrow{f_{i}}}}{\left(\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}\right)^{2}}\right)\left(\frac{\partial\left(\sum_{\ell=1}^{c} e^{\overrightarrow{w_{f}} \cdot \overrightarrow{f_{i}}}\right)}{\partial w_{m k}}\right) \quad m=j\right. \\
& -\left(\frac{e^{\vec{w}_{j} \cdot \vec{f}_{i}}}{\left(\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}\right)^{2}}\right)\left(\frac{\partial\left(\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}\right)}{\partial w_{m k}}\right) \\
& =\left\{\begin{array}{cc}
\left(\frac{e^{\vec{w}_{j} \cdot \vec{f}_{i}}}{\sum_{\ell=1}^{c} e^{\overrightarrow{w_{k}} \cdot \overrightarrow{f_{i}}}}-\frac{\left(e^{\vec{w}_{j} \cdot \overrightarrow{f_{i}}}\right)^{2}}{\left(\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}\right)^{2}}\right)\left(\frac{\partial\left(\vec{w}_{m} \cdot \vec{f}_{i}\right)}{\partial w_{m k}}\right) & m=j \\
\left(-\frac{e^{\vec{w}_{j} \cdot \vec{f}_{i}} e^{\vec{w}_{m} \cdot \vec{f}_{i}}}{\left(\sum_{\ell=1}^{c} e^{\vec{w}_{f} \cdot \vec{f}_{i}}\right)^{2}}\right)\left(\frac{\partial\left(\vec{w}_{m} \cdot \vec{f}_{i}\right)}{\partial w_{m k}}\right) & m \neq j
\end{array}\right. \\
& m \neq j
\end{aligned}
$$

How to differentiate the softmax: step 3

Next, we use the rule $\frac{\partial}{\partial w}(w f)=f$:

$$
\begin{aligned}
& \frac{\partial \hat{y}_{i j}}{\partial w_{m k}}=\left\{\begin{array}{cc}
\left(\frac{e^{\vec{w}_{j} \cdot \vec{f}_{i}}}{\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}}-\frac{\left(e^{\vec{w}_{j} \cdot \vec{f}_{i}}\right)^{2}}{\left(\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}\right)^{2}}\right)\left(\frac{\partial\left(\vec{w}_{m} \cdot \vec{f}_{i}\right)}{\partial w_{m k}}\right) & m=j \\
\left(-\frac{e^{\vec{w}_{j} \cdot \vec{f}_{i}} e^{\vec{w}_{m} \cdot \vec{f}_{i}}}{\left(\sum_{\ell=1}^{c} e^{\vec{w}_{i} \cdot \vec{f}_{i}}\right)^{2}}\right)\left(\frac{\partial\left(\vec{w}_{m} \cdot \vec{f}_{i}\right)}{\partial w_{m k}}\right) & m \neq j
\end{array}\right.
\end{aligned}
$$

Differentiating the softmax

... and, simplify.

$$
\begin{gathered}
\frac{\partial \hat{y}_{i j}}{\partial w_{m k}}=\left\{\begin{array}{ll}
\left(\frac{e^{\vec{w}_{j} \cdot \vec{f}_{i}}}{\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}}-\frac{\left(e^{\vec{w}_{j}} \cdot \vec{f}_{i}\right.}{}\right)^{2} \\
\left(\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}\right)^{2}
\end{array}\right) f_{i k} \quad m=j \\
\left(-\frac{e^{\vec{w}_{j} \cdot \vec{f}_{i}} e^{\vec{w}_{m} \cdot \vec{f}_{i}}}{\left(\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}\right)^{2}}\right) f_{i k} \\
\frac{\partial \neq j}{} \\
\frac{\partial \hat{y}_{i j}}{\partial w_{m k}}=\left\{\begin{array}{cc}
\left(\hat{y}_{i j}-\hat{y}_{i j}^{2}\right) f_{i k} & m=j \\
-\hat{y}_{i j} \hat{y}_{i m} f_{i k} & m \neq j
\end{array}\right.
\end{gathered}
$$

Recap: how to differentiate the softmax

- $\hat{y}_{i j}$ is the probability of the $j^{\text {th }}$ class, estimated by the neural net, in response to the $i^{\text {th }}$ training token
- $w_{m k}$ is the network weight that connects the $k^{\text {th }}$ input feature to the $m^{\text {th }}$ class label
The dependence of $\hat{y}_{i j}$ on $w_{m k}$ for $m \neq j$ is weird, and people who are learning this for the first time often forget about it. It comes from the denominator of the softmax.

$$
\begin{gathered}
\hat{y}_{i j}=\operatorname{softmax}\left(\vec{w}_{\ell} \cdot \vec{f}_{i}\right)=\frac{e^{\vec{w}_{j} \cdot \vec{f}_{i}}}{\sum_{\ell=1}^{c} e^{\vec{w}_{\ell} \cdot \vec{f}_{i}}} \\
\frac{\partial \hat{y}_{i j}}{\partial w_{m k}}=\left\{\begin{array}{cc}
\left(\hat{y}_{i j}-\hat{y}_{i j}^{2}\right) f_{i k} & m=j \\
-\hat{y}_{i j} \hat{y}_{i m} f_{i k} & m \neq j
\end{array}\right.
\end{gathered}
$$

- $\hat{y}_{i m}$ is the probability of the $m^{\text {th }}$ class for the $i^{\text {th }}$ training token
- $f_{i k}$ is the value of the $k^{\text {th }}$ input feature for the $i^{\text {th }}$ training token

Outline

- Dichotomizers and Polychotomizers
- Dichotomizer: what it is; how to train it
- Polychotomizer: what it is; how to train it
- One-Hot Vectors: Training targets for the polychotomizer
- Softmax Function: A differentiable approximate argmax
- Cross-Entropy
- Cross-entropy = negative log probability of training labels
- Derivative of cross-entropy w.r.t. network weights
- Putting it all together: a one-layer softmax neural net

Training a Softmax Neural Network

All of that differentiation is useful because we want to train the neural network to represent a training database as well as possible. If we can define the training error to be some function L, then we want to update the weights according to

$$
w_{m k}=w_{m k}-\eta \frac{\partial L}{\partial w_{m k}}
$$

So what is L ?

Training: Maximize the probability of the training data Remember, the whole point of that denominator in the softmax function is that it allows us to use softmax as

$$
\hat{y}_{i j}=\text { Estimated value of } P\left(\text { class } j \mid \vec{f}_{i}\right)
$$

Suppose we decide to estimate the network
 weights $w_{m k}$ in order to maximize the probability of the training database, in the sense of
$w_{m k}$
$=\operatorname{argmax} P$ (training labels \mid training feature vectors)

Training: Maximize the probability of the training data Remember, the whole point of that denominator in the softmax function is that it allows us to use softmax as

$$
\hat{y}_{i j}=\text { Estimated value of } P\left(\text { class } j \mid \vec{f}_{i}\right)
$$

If we assume the training tokens are independent,
 this is:
$w_{m k}$
$=\underset{w}{\operatorname{argmax}} \prod_{i=1}^{n} P\left(\right.$ reference label of the $i^{\text {th }}$ token $\mid i^{\text {th }}$ feature vector)

Training: Maximize the probability of the training data Remember, the whole point of that denominator in the softmax function is that it allows us to use softmax as

$$
\left.\hat{y}_{i j}=\text { Estimated value of } P \text { (class } j \mid \vec{f}_{i}\right)
$$

OK. We need to create some notation to mean
 "the reference label for the $i^{\text {th }}$ token." Let's call it $j(i)$.

$$
w_{m k}=\underset{w}{\operatorname{argmax}} \prod_{i=1}^{n} P(\text { class } j(i) \mid \vec{f})
$$

Training: Maximize the probability of the training data
Wow, Cool!! So we can maximize the probability of the training data by just picking the softmax output corresponding to the correct class $j(i)$, for each token, and then multiplying them all together:

$$
w_{m k}=\underset{w}{\operatorname{argmax}} \prod_{i=1}^{n} \hat{y}_{i, j(i)}
$$

So, hey, let's take the logarithm, to get rid of that nasty product operation.

$$
w_{m k}=\underset{w}{\operatorname{argmax}} \sum_{i=1}^{n} \ln \hat{y}_{i, j(i)}
$$

Training: Minimizing the negative log probability

So, to maximize the probability of the training data given the model, we need:

$$
w_{m k}=\underset{w}{\operatorname{argmax}} \sum_{i=1}^{n} \ln \hat{y}_{i, j(i)}
$$

If we just multiply by (-1), that will turn the max into a min. It's kind of a stupid thing to do---who cares whether you're minimizing L or maximizing - L, same thing, right? But it's standard, so what
 the heck.

$$
\begin{aligned}
& w_{m k}=\underset{w}{\operatorname{argmin}} L \\
& L=\sum_{i=1}^{n}-\ln \hat{y}_{i, j(i)}
\end{aligned}
$$

Training: Minimizing the negative log probability

Softmax neural networks are almost always trained in order to minimize the negative log probability of the training data:

$$
\begin{aligned}
& w_{m k}=\underset{w}{\operatorname{argmin}} L \\
& L=\sum_{i=1}^{n}-\ln \hat{y}_{i, j(i)}
\end{aligned}
$$

This loss function, defined above, is called the
 cross-entropy loss. The reasons for that name are very cool, and very far beyond the scope of this course. Take CS 446 (Machine Learning) and/or ECE 563 (Information Theory) to learn more.

Outline

- Dichotomizers and Polychotomizers
- Dichotomizer: what it is; how to train it
- Polychotomizer: what it is; how to train it
- One-Hot Vectors: Training targets for the polychotomizer
- Softmax Function: A differentiable approximate argmax
- Cross-Entropy
- Cross-entropy = negative log probability of training labels
- Derivative of cross-entropy w.r.t. network weights
- Putting it all together: a one-layer softmax neural net

Differentiating the cross-entropy

The cross-entropy loss function is:

$$
L=\sum_{i=1}^{n}-\ln \hat{y}_{i, j(i)}
$$

Let's try to differentiate it:

$$
\frac{\partial L}{\partial w_{m k}}=\sum_{i=1}^{n}-\left(\frac{1}{\hat{y}_{i, j(i)}}\right) \frac{\partial \hat{y}_{i, j(i)}}{\partial w_{m k}}
$$

Differentiating the cross-entropy

The cross-entropy loss function is:

$$
L=\sum_{i=1}^{n}-\ln \hat{y}_{i, j(i)}
$$

Let's try to differentiate it:

$$
\frac{\partial L}{\partial w_{m k}}=\sum_{i=1}^{n}-\left(\frac{1}{\hat{y}_{i, j(i)}}\right) \frac{\partial \hat{y}_{i, j(i)}}{\partial w_{m k}}
$$

...and then...

$$
\left(\frac{1}{\hat{y}_{i, j(i)}}\right) \frac{\partial \hat{y}_{i, j(i)}}{\partial w_{m k}}=\left\{\begin{array}{cc}
\left(1-\hat{y}_{i m}\right) f_{i k} & m=j(i) \\
-\hat{y}_{i m} f_{i k} & m \neq j(i)
\end{array}\right.
$$

Differentiating the cross-entropy

 Let's try to differentiate it:$$
\frac{\partial L}{\partial w_{m k}}=\sum_{i=1}^{n}-\left(\frac{1}{\hat{y}_{i, j(i)}}\right) \frac{\partial \hat{y}_{i, j(i)}}{\partial w_{m k}}
$$

...and then...

$$
\left(\frac{1}{\hat{y}_{i, j(i)}}\right) \frac{\partial \hat{y}_{i, j(i)}}{\partial w_{m k}}=\left\{\begin{array}{cc}
\left(1-\hat{y}_{i m}\right) f_{i k} & m=j(i) \\
-\hat{y}_{i m} f_{i k} & m \neq j(i)
\end{array}\right.
$$

... but remember our reference labels:

$$
y_{i j}=\left\{\begin{array}{lc}
1 & \mathrm{i}^{\text {th }} \text { example is from class } \mathrm{j} \\
0 & \mathrm{i}^{\mathrm{th}} \text { example is NOT from class } \mathrm{j}
\end{array}\right.
$$

Differentiating the cross-entropy

 Let's try to differentiate it:$$
\frac{\partial L}{\partial w_{m k}}=\sum_{i=1}^{n}-\left(\frac{1}{\hat{y}_{i, j(i)}}\right) \frac{\partial \hat{y}_{i, j(i)}}{\partial w_{m k}}
$$

...and then...

$$
\left(\frac{1}{\hat{y}_{i, j(i)}}\right) \frac{\partial \hat{y}_{i, j(i)}}{\partial w_{m k}}= \begin{cases}\left(y_{i m}-\hat{y}_{i m}\right) f_{i k} & m=j(i) \\ \left(y_{i m}-\hat{y}_{i m}\right) f_{i k} & m \neq j(i)\end{cases}
$$

... but remember our reference labels:

$$
y_{i j}=\left\{\begin{array}{lc}
1 & \mathrm{ith}^{\text {th }} \text { example is from class } \mathrm{j} \\
0 & \mathrm{ith}^{\text {h }} \text { example is NOT from class } \mathrm{j}
\end{array}\right.
$$

Differentiating the cross-entropy

Let's try to differentiate it:

$$
\frac{\partial L}{\partial w_{m k}}=\sum_{i=1}^{n}-\left(\frac{1}{\hat{y}_{i, j(i)}}\right) \frac{\partial \hat{y}_{i, j(i)}}{\partial w_{m k}}
$$

$$
\left(\frac{1}{\hat{y}_{i, j(i)}}\right) \frac{\partial \hat{y}_{i, j(i)}}{\partial w_{m k}}=\left(y_{i m}-\hat{y}_{i m}\right) f_{i k}
$$

Differentiating the cross-entropy

Let's try to differentiate it:

$$
\frac{\partial L}{\partial w_{m k}}=\sum_{i=1}^{n}\left(\hat{y}_{i m}-y_{i m}\right) f_{i k}
$$

Differentiating the cross-entropy

 Let's try to differentiate it:$$
\frac{\partial L}{\partial w_{m k}}=\sum_{i=1}^{n}\left(\hat{y}_{i m}-y_{i m}\right) f_{i k}
$$

Interpretation:
Increasing $w_{m k}$ will make the error worse if

- $\hat{y}_{i m}$ is already too large, and $f_{i k}$ is positive
- $\hat{y}_{i m}$ is already too small, and $f_{i k}$ is negative

Differentiating the cross-entropy

 Let's try to differentiate it:$$
\frac{\partial L}{\partial w_{m k}}=\sum_{i=1}^{n}\left(\hat{y}_{i m}-y_{i m}\right) f_{i k}
$$

Interpretation:
Our goal is to make the error as small as possible. So if

- $\hat{y}_{i m}$ is already too large, then we want to make
 $w_{m k} f_{i k}$ smaller
- $\hat{y}_{i m}$ is already too small, then we want to make $w_{m k} f_{i k}$ larger

$$
w_{m k}=w_{m k}-\eta \frac{\partial L}{\partial w_{m k}}
$$

Outline

- Dichotomizers and Polychotomizers
- Dichotomizer: what it is; how to train it
- Polychotomizer: what it is; how to train it
- One-Hot Vectors: Training targets for the polychotomizer
- Softmax Function: A differentiable approximate argmax
- Cross-Entropy
- Cross-entropy = negative log probability of training labels
- Derivative of cross-entropy w.r.t. network weights
- Putting it all together: a one-layer softmax neural net

Summary: Training Algorithms You Know

1. Naïve Bayes with Laplace Smoothing:

$$
P\left(f_{k}=x \mid \text { class } j\right)=\frac{\left(\# \text { tokens of class } j \text { with } f_{k}=x\right)+1}{(\# \text { tokens of class } j)+\left(\# \text { possible values of } f_{k}\right)}
$$

2. Multi-Class Perceptron: If token \vec{f}_{i} of class j is misclassified as class m , then

$$
\begin{aligned}
\vec{w}_{j} & =\vec{w}_{j}+\eta \vec{f}_{i} \\
\vec{w}_{m} & =\vec{w}_{m}-\eta \vec{f}_{i}
\end{aligned}
$$

3. Softmax Neural Net: for all weight vectors (correct or incorrect),

$$
\begin{gathered}
\vec{w}_{m}=\vec{w}_{m}-\eta \nabla_{\vec{w}_{m}} L \\
=\vec{w}_{m}-\eta\left(\hat{y}_{i m}-y_{i m}\right) \vec{f}_{i}
\end{gathered}
$$

Summary: Perceptron versus Softmax

Softmax Neural Net: for all weight vectors (correct or incorrect),

$$
\vec{w}_{m}=\vec{w}_{m}-\eta\left(\hat{y}_{i m}-y_{i m}\right) \vec{f}_{i}
$$

Notice that, if the network were adjusted so that

$$
\hat{y}_{i m}=\left\{\begin{array}{lc}
1 & \text { network thinks the correct class is } m \\
0 & \text { otherwise }
\end{array}\right.
$$

Then we'd have

$$
\left(\hat{y}_{i m}-y_{i m}\right)=\left\{\begin{array}{cc}
-2 & \text { correct class is } m, \text { but network is wrong } \\
2 & \text { network guesses } m, \text { but it's wrong } \\
0 & \text { otherwise }
\end{array}\right.
$$

Summary: Perceptron versus Softmax

Softmax Neural Net: for all weight vectors (correct or incorrect),

$$
\vec{w}_{m}=\vec{w}_{m}-\eta\left(\hat{y}_{i m}-y_{i m}\right) \vec{f}_{i}
$$

Notice that, if the network were adjusted so that

$$
\hat{y}_{i m}=\left\{\begin{array}{lc}
1 & \text { network thinks the correct class is } m \\
0 & \text { otherwise }
\end{array}\right.
$$

Then we get the perceptron update rule back again (multiplied by 2 , which doesn't matter):

$$
\vec{w}_{m}=\left\{\begin{array}{cc}
\vec{w}_{m}+2 \eta \vec{f}_{i} & \text { correct class is } m, \text { but network is wrong } \\
\vec{w}_{m}-2 \eta \vec{f}_{i} & \text { network guesses } m, \text { but it's wrong } \\
\vec{w}_{m} & \text { otherwise }
\end{array}\right.
$$

Summary: Perceptron versus Softmax

So the key difference between perceptron and softmax is that, for a perceptron,

$$
\hat{y}_{i j}=\left\{\begin{array}{lc}
1 & \text { network thinks the correct class is } j \\
0 & \text { otherwise }
\end{array}\right.
$$

Whereas, for a softmax,

$$
0 \leq \hat{y}_{i j} \leq 1, \quad \sum_{j=1}^{c} \hat{y}_{i j}=1
$$

Summary: Perceptron versus Softmax

...or, to put it another way, for a perceptron,

$$
\hat{y}_{i j}=\left\{\begin{array}{cc}
1 & \text { if } j=\underset{1 \leq \ell \leq c}{\operatorname{argmax}} \vec{w}_{\ell} \cdot \vec{f}_{i} \\
0 & \text { otherwise }
\end{array}\right.
$$

Whereas, for a softmax network,

$$
\hat{y}_{i j}=\underset{j}{\operatorname{softmax}}\left(\vec{w}_{\ell} \cdot \vec{f}_{i}\right)
$$

