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More on supervised learning
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The supervised learning task

Given a labeled training data set 
of N items xn∈X with labels yn ∈Y

D train = {(x1, y1),…, (xN, yN)}
(yn is determined by some unknown target function f(x))

Return a model g: X ⟼Y that is a good approximation of f(x)
(g should assign correct labels y to unseen x ∉Dtrain)



Supervised learning terms

Input items/data points xn∈X (e.g. emails) 
are drawn from an instance space X

Output labels yn ∈Y (e.g. ‘spam’/‘nospam’) 
are drawn from a label space Y

Every data point xn ∈X has a single correct label yn ∈Y,  
defined by an (unknown) target function  f(x) = y



Output

y ∈Y

An item y
drawn from a label 

space Y

Input

x∈X

An item x
drawn from an 

instance space X

Learned model
y = g(x)

Supervised learning

Target function
y' = f(x)

You often seen f(x) instead of g(x), and y^ but 
PowerPoint can’t really typeset that, so g(x) and y’ will 
have to do.

^



Supervised learning: Training

Labeled Training 
Data
D train

(x1, y1)
(x2, y2)

…
(xN, yN) 

Learned 
model

g(x)

Learning 
Algorithm

Give the learner examples in D train

The learner returns a model g(x)



Supervised learning: Testing
Labeled

Test Data
D test

(x’1, y’1)
(x’2, y’2)

…
(x’M, y’M) 

Reserve some labeled data for testing



Supervised learning: Testing
Labeled

Test Data
D test

(x’1, y’1)
(x’2, y’2)

…
(x’M, y’M) 

Test 
Labels
Y test

y’1

y’2

...
y’M

Raw Test 
Data
X test

x’1
x’2
….
x’M



Test 
Labels
Y test

y’1

y’2

...
y’M

Raw Test 
Data
X test

x’1
x’2
….
x’M

Supervised learning: Testing

Learned 
model

g(x)

Predicted
Labels

g(X test)
g(x’1)
g(x’2)

….
g(x’M)

Apply the model to the raw test data



Evaluating supervised learners

Use a test data set D test that is disjoint from D train

D test = {(x’1, y’1),…, (x’M, y’M)} 
The learner has not seen the test items during learning.
Split your labeled data into two parts: test and training.

Take all items x’i in D test and compare the predicted f(x’i) 
with the correct y’i .

This requires an evaluation metric (e.g. accuracy). 



1. The instance space



Output

y∈Y
An item y

drawn from a label 
space Y

Input

x∈X
An item x

drawn from an 
instance space X

Learned
Model
y = g(x)

Designing an appropriate instance space X 
is crucial for how well we can predict y.

1. The instance space X



1. The instance space X

When we apply machine learning to a task, 
we first need to define the instance space X.

Instances x∈X are defined by features:
Boolean features:

Does this email contain the word ‘money’?  
Numerical features: 

How often does ‘money’ occur in this email? 
What is the width/height of this bounding box?



X as a vector space

X is an N-dimensional vector space (e.g. ℝN) 
Each dimension = one feature.
Each x is a feature vector (hence the boldface x).
Think of x = [x1 … xN] as a point in X :

x1

x2



From feature templates to vectors

When designing features, we often think in terms of templates, 
not individual features:
What is the 2nd letter? 

N a oki → [1 0 0 0 …]
A b e → [0 1 0 0 …]
S c rooge → [0 0 1 0 …]

What is the i-th letter? 
Abe → [1 0 0 0 0… 0 1 0 0 0 0… 0 0 0 0 1 …]



Good features are essential

• The choice of features is crucial 
for how well a task can be learned.

• In many application areas (language, vision, etc.),  
a lot of work goes into designing suitable features.

• This requires domain expertise.

• We can’t teach you what specific features 
to use for your task.

• But we will touch on some general principles



2. The label space



Output

y∈Y
An item y

drawn from a label 
space Y

Input

x∈X
An item x

drawn from an 
instance space X

Learned 
Model
y = g(x)

The label space Y determines what kind of 
supervised learning task we are dealing with

2. The label space Y



CLASSIFICATION

Supervised learning tasks I
Output labels y∈Y are categorical:

Binary classification: Two possible labels
Multiclass classification: k possible labels

Output labels y∈Y are structured objects 
(sequences of labels, parse trees, etc.)

Structure learning, etc.



Supervised learning tasks II
Output labels y∈Y are numerical:

Regression (linear/polynomial): 
Labels are continuous-valued
Learn a linear/polynomial function f(x)

Ranking: 
Labels are ordinal
Learn an ordering f(x1) > f(x2) over input



3. Models 
(The hypothesis space)



Output

y∈Y
An item y

drawn from a label 
space Y

Input

x∈X
An item x

drawn from an 
instance space X

Learned 
Model
y = g(x)

We need to choose what kind of model 
we want to learn

3. The model g(x)



More terminology

For classification tasks (Y is categorical, e.g. {0, 1}, or {0, 1, …, k}), 
the model is called a classifier.

For binary classification tasks (Y = {0, 1} or Y = {-1, +1}),
we can either think of the two values of Y as Boolean or as 
positive/negative



A learning problem

x1 x2 x3 x4 y
1 0 0 1 0 0
2 0 1 0 0 0
3 0 0 1 1 1
4 1 0 0 1 1
5 0 1 1 0 0
6 1 1 0 0 0
7 0 1 0 1 0

‘



A learning problem

Each x has 4 bits: |X |= 24 = 16 

Since Y = {0, 1}, each f(x) 
defines one subset of X

X has 216 = 65536 subsets:
There are  216 possible f(x)
(29 are consistent with our data)

We would need to see all of X to learn f(x)



A learning problem

We would need to see all of X to learn f(x)

Easy with |X|=16

Not feasible in general 
(for any real-world problems)

Learning = generalization, 
not memorization of the training data



Classifiers in vector spaces

Binary classification: 
We assume f separates the positive and negative 
examples: 

Assign y = 1 to all x where f(x) > 0
Assign y = 0 (or -1) to all x where f(x) < 0

x1

x2
f(x) = 0

f(x) < 0

f(x) > 0



Learning a classifier

The learning task: 
Find a function f(x) that best separates 
the (training) data

What kind of function is f?
How do we define best?
How do we find f?



Which model should we pick?



Criteria for choosing models

Accuracy: 
Prefer models that make fewer mistakes

We only have access to the training data
But we care about accuracy on unseen (test) examples

Simplicity (Occam’s razor):
Prefer simpler models (e.g. fewer parameters).

These (often) generalize better, 
and need less data for training. 



CS446 Machine Learning

Linear classifiers
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Linear classifiers

Many learning algorithms restrict the hypothesis space 
to linear classifiers:   
f(x) = w0 + wx

x1

x2

f(x) = 0

f(x) < 0

f(x) > 0



Linear Separability

• Not all data sets are linearly separable: 

• Sometimes, feature transformations help:
x1

x2

x1

x1

x1
2

x1

|x2- x1|



Linear classifiers: f(x) = w0 + wx

Linear classifiers are defined over vector spaces
Every hypothesis f(x) is a hyperplane:

f(x) = w0 + wx
f(x) is also called the decision boundary

Assign ŷ = +1 to all x where f(x) > 0
Assign ŷ = -1 to all x where f(x) < 0

ŷ = sgn(f(x))

x1

x2

f(x) = 0

f(x) < 0

f(x) > 0



y·f(x) > 0: Correct classification

An example (x, y) is correctly classified by f(x) 
if and only if  y·f(x) > 0:
Case 1 (y = +1 = ŷ): f(x) > 0  ⇒ y·f(x) > 0
Case 2 (y = -1 = ŷ): f(x) < 0  ⇒ y·f(x) > 0
Case 3 (y = +1 ≠ ŷ = -1): f(x) > 0  ⇒ y·f(x) < 0
Case 4 (y = -1 ≠ ŷ = +1): f(x) < 0  ⇒ y·f(x) < 0

x1

x2

f(x) = 0

f(x) < 0

f(x) > 0



With a separate bias term w0:     f(x) = w·x + w0

The instance space X is a d-dimensional vector space 
(each x∈X has d elements)
The decision boundary f(x) = 0 is a (d−1)-dimensional 
hyperplane in the instance space.
The weight vector w is orthogonal (normal) 
to the decision boundary f(x) = 0:

For any two points xA and xB on the decision boundary f(xA) = f(xB) = 0
For any vector (xB − xA) on the decision boundary: w(xB − xA) = f(xB)−w0−f(xA)+w0= 0

The bias term w0 determines the distance of the decision 
boundary from the origin:

For x with f(x) = 0, the distance to the origin is
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w ⋅x
w

= −
w0
w

= −
w0

wi
2

i=1

d
∑



With a separate bias term w0:     f(x) = w·x + w0
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x1

x2

decision boundary
f(x) = 0

weight vector w

arbitrary point 
x

distance of decision boundary 
to origin

−
w0
w

distance of x 
to decision boundary

f(x)
w



Canonical representation: 
getting rid of the bias term
With w = (w1, …, wN)T and x = (x1, …, xN)T:

f(x) = w0 + wx
= w0 + ∑i=1…N wixi

w0 is called the bias term.

The canonical representation redefines w, x as
w = (w0, w1, …, wN)T

and x = (1, x1, …, xN)T

=> f(x) = w·x
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In canonical form (with x0 = 1)    
f(x) = (w0w1…wd)·(1 x1…xd)

• We now operate in (d+1)-dimensional space 
• The decision boundary f(x) = 0 is a d-dimensional 

hyperplane that goes through the origin.
• The weight vector w is still orthogonal 

to the decision boundary f(x) = 0
CS446 Machine Learning 39

x1

x2

x0

f(x) = 0

w



Learning a linear classifier
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x1

x2

f(x) = 0

f(x) < 0

f(x) > 0

x1

x2

Input: Labeled training data
D = {(x1, y1),…,(xD, yD)} 
plotted in the sample space X = R2

with        : yi = +1,     : yi = 1

Output: A decision boundary f(x) = 0
that separates the training data

yi·f(xi) > 0



Which model should we pick?

• We need a metric (aka an objective function) 
• We would like to minimize the probability of 

misclassifying unseen examples, but we can’t measure 
that probability.
• Instead: minimize the number of misclassified training 

examples
CS446 Machine Learning 41



Which model should we pick?

• We need a more specific metric: 
There may be many models that are consistent with 
the training data.

• Loss functions provide such metrics.
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4. The learning algorithm



4. The learning algorithm

• The learning task:
Given a labeled training data set 

D train = {(x1, y1),…, (xN, yN)}
return a model (classifier) g: X ⟼Y 
from the hypothesis space H ⊆|Y||X|



Batch versus online training

Batch learning:
The learner sees the complete training data, and only changes its 
hypothesis when it has seen the entire training data set. 
Online training:
The learner sees the training data one example at a time, 
and can change its hypothesis with every new example
Compromise: Minibatch learning (commonly used in practice)
The learner sees small sets of training examples at a time, 
and changes its hypothesis with every such minibatch of examples
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Perceptron
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Perceptron

• Simple, mistake-driven algorithm 
for learning linear classifiers

• There are batch and online versions
• We will analyze the online version

• Uses (stochastic) gradient descent, 
with a particular loss function

47



Perceptron criterion
We would like a weight vector w such that

f(xn) = w·xn > 0  for  yn  = +1

f(xn) = w·xn < 0  for  yn  = -1

The perceptron tries to minimize the error

−w·xn·yn

for any misclassified example (xn, yn )

The overall training error of w depends on the 
misclassified items M:
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EPerceptron (w) = − w ⋅xn ⋅ yn
n∈M
∑



Perceptron
For each training instance ! with label " ∈ {−1,1}:
• Classify with current weights: "’ = sgn(/02⃗)
• Notice "′ ∈ {−1,1} too.

• Update weights:   
• if " = "’ then do nothing
• if " ≠ "’ then / = /+ η y 2⃗
• η (eta) is a “learning rate.”  More about that later.



The Perceptron rule
If  target y = +1:  x should be above the decision boundary

Lower the decision boundary’s slope: wi+1 := wi +x

If target y = -1: x should be below the decision boundary
Raise the decision boundary’s slope: wi+1  := wi –x
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Target
x

Current Model
x

New Model
x

Target

x

New Model

x

Current Model

x



Perceptron in action
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−1 −0.5 0 0.5 1
−1
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0.5
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wx = 0
Current 
decision 

boundary
w

Current weight 
vector

x (with y = -1)
next item to be 

classified
x as a vector

x as a vector added to 
w

wx = 0
New

decision 
boundary

w 
New weight 

vector

(Figures from Bishop 2006)



Perceptron in action
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Perceptron: Proof of Convergence
• If the data are linearly separable (if there exists a ! vector 

such that the true label is given by "’ = sgn(!)+⃗)), then 
the perceptron algorithm is guarantee to converge, even 
with a constant learning rate, even η=1.
• In fact, training a perceptron is often the fastest way to 

find out if the data are linearly separable.  If ! converges, 
then the data are separable; if ! diverges toward infinity, 
then no.
• If the data are not linearly separable, then perceptron 

converges iff the learning rate decreases, e.g., η=1/n for 
the n’th training sample.



Perceptron: Proof of Convergence
Suppose the data are linearly separable.  For example, 
suppose red dots are the class y=1, and blue dots are the 
class y=-1:

!"

!#



Perceptron: Proof of Convergence
• Instead of plotting "⃗, plot y×"⃗.  The red dots are 

unchanged; the blue dots are multiplied by -1.  
• Since the original data were linearly separable, the new 

data are all in the same half of the feature space.

%"&

%"'



Perceptron: Proof of Convergence
•Remember the perceptron training rule: if any example is 

misclassified, then we use it to update ! = ! + y #⃗.
• So eventually, ! becomes just a weighted average of y#⃗.
•… and the perpendicular line, !%#⃗ = 0, is the classifier 

boundary.

()*

()+
!



Perceptron: Proof of Convergence: Conclusion
• If the data are linearly separable, then the perceptron will 

eventually find the equation for a line that separates 
them.
• If the data are NOT linearly separable, then perceptron 

converges iff the learning rate decreases, e.g., η=1/n for 
the n’th training sample.   …. In this case, convergence is 
trivially obvious, because y and "⃗ are finite, therefore the 
weight updates η y "⃗ approach 0 as η approaches 0.



Implementation details
• Bias (add feature dimension with value fixed to 1) vs. 

no bias
• Initialization of weights: all zeros vs. random
• Learning rate decay function
• Number of epochs (passes through the training data)
• Order of cycling through training examples (random)
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Multi-class perceptrons

• One-vs-others framework: Need to keep a weight vector wc for each 
class c
• Decision rule: y = argmaxc wc× f
• Update rule: suppose example from class c gets misclassified as c’
• Update for c: wc ß wc + ηf
• Update for c’: wc’ ß wc’ – ηf
• Update for all classes other than c and c’: no change



Multi-class perceptrons

• One-vs-others framework: Need to keep a weight vector wc for each 
class c
• Decision rule: y = argmaxc wc× f

Inputs
Perceptrons w/ 

weights wc

Max



One-Hot Vector
• Example: if the first example is from class 2 (red), then "⃗# = [0,1,0]

"*+ = ,1 ith example is from class j
0 ith example is NOT from class j

Call "*+ the reference label, and call -"*+ the hypothesis.  Then notice that:
• "*+ = True value of . /0122 3 4⃗*), because the true probability is always 

either 1 or 0!
• -"*+ = Estimated value of . /0122 3 4⃗*),   0 ≤ -"+ ≤ 1, ∑+8#9 -"+ = 1



Wait.  Dichotomizer is just a Special Case of 
Polychotomizer, isn’t it?
Yes.  Yes, it is.
• Polychotomizer:       "⃗# = "#%, … , "#( , "#) = * +,-.. / 0⃗#).
• Dichotomizer: "# = * +,-.. 1 0⃗#)
• That’s all you need, because if there are only two classes, then  
* 34ℎ67 +,-.. 0⃗#) = 1 − "#
• (One of the two classes in a dichotomizer is always called “class 1.”  The 

other might be called “class 2,” or “class 0,” or “class -1”…. Who cares.  
They all mean “the class that is not class 1.”)



Outline

• Dichotomizers and Polychotomizers

• Dichotomizer: what it is; how to train it

• Polychotomizer: what it is; how to train it

• One-Hot Vectors: Training targets for the polychotomizer

• Softmax Function

• A differentiable approximate argmax

• How to differentiate the softmax

• Cross-Entropy

• Cross-entropy = negative log probability of training labels

• Derivative of cross-entropy w.r.t. network weights

• Putting it all together: a one-layer softmax neural net



OK, now we know what the polychotomizer
should compute.  How do we compute it?
Now you know that 
• !"# = reference label = True value of % &'()) * ,⃗"), given to you with 

the training database.
• .!"# = hypothesis = value of % &'()) * ,⃗") estimated by the neural net.
How can we do that estimation?



OK, now we know what the polychotomizer
should compute.  How do we compute it?
!"#$ = value of & '()** + -⃗#) estimated by the neural 
net.
How can we do that estimation? 
Multi-class perceptron example:

!"#$ = /1 if + = argmax
89ℓ9;

<ℓ = -⃗#
0 otherwise

Differentiable perceptron: we need a differentiable 
approximation of the argmax function.

Inputs
Perceptrons w/ 

weights wc

Max



Softmax = differentiable approximation of the 
argmax function

The softmax function is defined as: 

!"#$ = softmax$ -ℓ / 1⃗# = 234/5⃗6
∑ℓ89: 23ℓ/5⃗6

For example, the figure to the right shows 

!"9 = softmax9 1ℓ = 25;
∑ℓ89< 25ℓ

Notice that it’s close to 1 (yellow) 
when19 = max1ℓ, and close to zero (blue) 
otherwise, with a smooth transition zone in 
between.  19

1<

softmax
9

1ℓ



Softmax = differentiable approximation of the 
argmax function

The softmax function is defined as: 

!"#$ = softmax
$

-ℓ / 1⃗# = 234/5⃗6
∑ℓ89: 23ℓ/5⃗6

Notice that this gives us

0 ≤ !"#$ ≤ 1, ?
$89

:
!"#$ = 1

Therefore we can interpret !"#$ as an 
estimate of @ ABCDD E 1⃗#). 19

1G

softmax
9

1ℓ



Outline

• Dichotomizers and Polychotomizers

• Dichotomizer: what it is; how to train it

• Polychotomizer: what it is; how to train it

• One-Hot Vectors: Training targets for the polychotomizer

• Softmax Function

• A differentiable approximate argmax

• How to differentiate the softmax

• Cross-Entropy

• Cross-entropy = negative log probability of training labels

• Derivative of cross-entropy w.r.t. network weights

• Putting it all together: a one-layer softmax neural net



Unlike argmax, the softmax function is 
differentiable.  All we need is the chain 
rule, plus three rules from calculus:

1. #
#$

%
& = (

&
#%
#$ −

%
&*

#&
#$

2. #
#$ ,% = ,% #%

#$
3. #

#$ ./ = /

/(

/0

softmax
(

/ℓ

How to differentiate the softmax: 3 steps



How to differentiate the softmax: step 1

First, we use the rule for !!"
#
$ = &

$
!#
!" −

#
$(

!$
!":

)*+, = softmax, 4ℓ 6 8⃗+ = 9":6;⃗<
∑ℓ>&? 9"ℓ6;⃗<

@ )*+,
@4AB

= 1
∑ℓ>&? 9"ℓ6;⃗<

@9":6;⃗<
@4AB

− 9":6;⃗<

∑ℓ>&? 9"ℓ6;⃗<
D

@ ∑ℓ>&? 9"ℓ6;⃗<
@4AB

=

1
∑ℓ>&? 9"ℓ6;⃗<

@9":6;⃗<
@4AB

− 9":6;⃗<

∑ℓ>&? 9"ℓ6;⃗<
D

@ ∑ℓ>&? 9"ℓ6;⃗<
@4AB

E = F

− 9":6;⃗<

∑ℓ>&? 9"ℓ6;⃗<
D

@ ∑ℓ>&? 9"ℓ6;⃗<
@4AB

E ≠ F

8&

8D

softmax
&

8ℓ



How to differentiate the softmax: step 2

Next, we use the rule !
!"

#$ = #$
!$

!"
:

! &'()

!"*+
=	

1

∑ℓ01
2 #"ℓ35⃗(

6#")35⃗(

6789
−

#")35⃗(

∑ℓ01
2 #"ℓ35⃗(

;

6 ∑ℓ01
2 #"ℓ35⃗(

6789
< = =

−
#")35⃗(

∑ℓ01
2 #"ℓ35⃗(

;

6 ∑ℓ01
2 #"ℓ35⃗(

6789
< ≠ =

=

#")35⃗(

∑ℓ01
2 #"ℓ35⃗(

−
#")35⃗(

;

∑ℓ01
2 #"ℓ35⃗(

;

6(78 3 @⃗A)

6789
< = =

−
#")35⃗(#"*35⃗(

∑ℓ01
2 #"ℓ35⃗(

;

6(78 3 @⃗A)

6789
< ≠ =

@1

@;

softmax
1

@ℓ



How to differentiate the softmax: step 3

Next, we use the rule !!" #$ = $:

& '()*
&#+,

=

-"./1⃗2
∑ℓ567 -"ℓ/1⃗2

−
-"./1⃗2

9

∑ℓ567 -"ℓ/1⃗2
9

&(#+ / $⃗))
&#+,

< = =

− -"./1⃗2-">/1⃗2

∑ℓ567 -"ℓ/1⃗2
9

&(#+ / $⃗))
&#+,

< ≠ =

=

-"./1⃗2
∑ℓ567 -"ℓ/1⃗2

−
-"./1⃗2

9

∑ℓ567 -"ℓ/1⃗2
9 $), < = =

− -"./1⃗2-">/1⃗2

∑ℓ567 -"ℓ/1⃗2
9 $), < ≠ =

$6

$9

softmax
6

$ℓ



Differentiating the softmax
… and, simplify.

! "#$%
!&'(

=

*+,-/⃗0
∑ℓ345 *+ℓ-/⃗0

−
*+,-/⃗0

7

∑ℓ345 *+ℓ-/⃗0
7 8$( 9 = :

− *+,-/⃗0*+;-/⃗0

∑ℓ345 *+ℓ-/⃗0
7 8$( 9 ≠ :

! "#$%
!&'(

= = "#$% − "#$%7 8$( 9 = :
−"#$% "#$'8$( 9 ≠ :

84

87

softmax
4

8ℓ



Recap: how to differentiate the softmax
• !"#$ is the probability of the %&' class, estimated by the neural 

net, in response to the (&' training token
• )*+ is the network weight that connects the ,&' input feature 

to the -&' class label
The dependence of !"#$ on )*+ for - ≠ % is weird, and people 
who are learning this for the first time often forget about it.  It 
comes from the denominator of the softmax.

!"#$ = softmax$ )ℓ 8 :⃗# = ;<=8>⃗?
∑ℓABC ;<ℓ8>⃗?

D !"#$
D)*+

= E !"#$ − !"#$G :#+ - = %
−!"#$ !"#*:#+ - ≠ %

• !"#* is the probability of the -&' class for the (&' training token
• :#+ is the value of the ,&' input feature for the (&' training 

token :B

:G

softmax
B

:ℓ
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Training a Softmax Neural Network
All of that differentiation is useful 
because we want to train the neural 
network to represent a training 
database as well as possible.  If we 
can define the training error to be 
some function L, then we want to 
update the weights according to

!"# = !"# − &
'(

'!"#

So what is L?



Training: Maximize the probability of the training data 
Remember, the whole point of that denominator in 
the softmax function is that it allows us to use 
softmax as

!"#$ = Es8mated value of & class + -⃗#)

Suppose we decide to estimate the network 
weights /01 in order to maximize the probability 
of the training database, in the sense of

/01= argmax
6

& training labels training feature vectors)



Training: Maximize the probability of the training data 
Remember, the whole point of that denominator in 
the softmax function is that it allows us to use 
softmax as

!"#$ = Es8mated value of & class + -⃗#)

If we assume the training tokens are independent, 
this is:

/01
= argmax

6
7
#89

:
& reference label of the BCDtoken BCDfeature vector)



Training: Maximize the probability of the training data 
Remember, the whole point of that denominator in 
the softmax function is that it allows us to use 
softmax as

!"#$ = Es8mated value of & class + -⃗#)

OK.  We need to create some notation to mean 
“the reference label for the /01 token.”  Let’s call it 
+(/).  

345 = argmax
:

;
#<=

>
& class +(/) -⃗)



Training: Maximize the probability of the training data 
Wow, Cool!!  So we can maximize the probability of 
the training data by just picking the softmax output 
corresponding to the correct class !(#), for each 
token, and then multiplying them all together:

%&' = argmax
.

/
012

3
450,7(0)

So, hey, let’s take the logarithm, to get rid of that 
nasty product operation.

%&' = argmax
.

8
012

3
ln 450,7(0)



Training: Minimizing the negative log probability
So, to maximize the probability of the training data 
given the model, we need:

!"# = argmax
*

+
,-.

/
ln 23,,5(,)

If we just multiply by (-1), that will turn the max 
into a min.  It’s kind of a stupid thing to do---who 
cares whether you’re minimizing 8 or maximizing 
− 8, same thing, right?  But it’s standard, so what 
the heck.

!"# = argmin
*

8

8 =+
,-.

/
− ln 23,,5(,)



Training: Minimizing the negative log probability
Softmax neural networks are almost always trained 
in order to minimize the negative log probability of 
the training data:

!"# = argmin
+

,

, =-
./0

1
− ln 45.,7(.)

This loss function, defined above, is called the 
cross-entropy loss.  The reasons for that name are 
very cool, and very far beyond the scope of this 
course.  Take CS 446 (Machine Learning) and/or 
ECE 563 (Information Theory) to learn more.
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Differentiating the cross-entropy
The cross-entropy loss function is:

! =#
$%&

'
− ln +,$,.($)

Let’s try to differentiate it:
1!

1234
=#

$%&

'
− 1

+,$,.($)
1 +,$,.($)
1234



Differentiating the cross-entropy
The cross-entropy loss function is:

! =#
$%&

'
− ln +,$,.($)

Let’s try to differentiate it:
1!

1234
=#

$%&

'
− 1

+,$,.($)
1 +,$,.($)
1234

…and then…

1
+,$,.($)

1 +,$,.($)
1234

= 6 1 − +,$3 7$4 8 = 9(:)
−+,$37$4 8 ≠ 9(:)



Differentiating the cross-entropy
Let’s try to differentiate it:

!"
!#$%

='
()*

+
− 1

./(,1(()
! ./(,1(()
!#$%

…and then…

1
./(,1(()

! ./(,1(()
!#$%

= 4 1 − ./($ 5(% 6 = 7(8)
−./($5(% 6 ≠ 7(8)

… but remember our reference labels:

/(1 = 41 ith example is from class j
0 ith example is NOT from class j



Differentiating the cross-entropy
Let’s try to differentiate it:
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…and then…

1
./(,1(()

! ./(,1(()
!#$%

= 4 /($ − ./($ 5(% 6 = 7(8)
/($ − ./($ 5(% 6 ≠ 7(8)

… but remember our reference labels:

/(1 = 41 ith example is from class j
0 ith example is NOT from class j



Differentiating the cross-entropy
Let’s try to differentiate it:

!"
!#$%

='
()*

+
− 1

./(,1(()
! ./(,1(()
!#$%

…and then…

1
./(,1(()

! ./(,1(()
!#$%

= /($ − ./($ 4(%



Differentiating the cross-entropy
Let’s try to differentiate it:

!"
!#$%

='
()*

+
,-($ − -($ /(%



Differentiating the cross-entropy
Let’s try to differentiate it:

!"
!#$%

='
()*

+
,-($ − -($ /(%

Interpretation:
Increasing #$% will make the error worse if
• ,-($ is already too large, and /(% is positive
• ,-($ is already too small, and /(% is negative



Differentiating the cross-entropy
Let’s try to differentiate it:

!"
!#$%

='
()*

+
,-($ − -($ /(%

Interpretation:
Our goal is to make the error as small as possible.  
So if
• ,-($ is already too large, then we want to make 
#$%/(% smaller
• ,-($ is already too small , then we want to make 
#$%/(% larger

#$% = #$% − 0
!"

!#$%
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Summary: Training Algorithms You Know
1. Naïve Bayes with Laplace Smoothing:

! "# = % class * = #tokens of class * with "# = % + 1
#tokens of class * + #possible values of "#

2. Multi-Class Perceptron:  If token "⃗< of class j is misclassified as class m, then
=> = => + ?"⃗<
=@ = =@ − ?"⃗<

3. Softmax Neural Net: for all weight vectors (correct or incorrect),
=@ = =@ − ?∇CDE

= =@ − ? FG<@ − G<@ "⃗<



Summary: Perceptron versus Softmax
Softmax Neural Net: for all weight vectors (correct or incorrect),

!" = !" − % &'(" − '(" *⃗(
Notice that, if the network were adjusted so that 

&'(" = +1 network thinks the correct class is :
0 otherwise

Then we’d have

&'(" − '(" = <
−2 correct class is :, but network is wrong
2 network guesses :, but itBs wrong
0 otherwise



Summary: Perceptron versus Softmax
Softmax Neural Net: for all weight vectors (correct or incorrect),

!" = !" − % &'(" − '(" *⃗(
Notice that, if the network were adjusted so that 

&'(" = +1 network thinks the correct class is :
0 otherwise

Then we get the perceptron update rule back again (multiplied by 2, which 
doesn’t matter):

!" =
!" + 2%*⃗( correct class is :, but network is wrong
!" − 2%*⃗( network guesses :, but itBs wrong

!" otherwise



Summary: Perceptron versus Softmax
So the key difference between perceptron and softmax is that, for a 
perceptron, 

!"#$ = &1 network thinks the correct class is 5
0 otherwise

Whereas, for a softmax,

0 ≤ !"#$ ≤ 1, 9
$:;

<
!"#$ = 1



Summary: Perceptron versus Softmax
…or, to put it another way, for a perceptron, 

!"#$ = &1 if * = argmax
01ℓ13

4ℓ 5 7⃗#
0 otherwise

Whereas, for a softmax network,
!"#$ = softmax

$
4ℓ 5 7⃗#

Inputs
Perceptrons w/ 

weights 4ℓ

Argmax or Softmax


