CS440/ECE448 Lecture 16:

Linear Classifiers

Aliza Aufrichtig @ @alizauf - Mar 4
Garlic halved horizontally = nature's Voronoi diagram?

en.wikipedia.org/wiki/Voronoi_d...

Q 12

1 234

) 878

&

Mark Hasegawa-Johnson, 3/2019
and Julia Hockenmaier 3/2019
Including Slides by

Svetlana Lazebnik, 10/2016

A4

Classification as a learning problem

* We want assign one of k class labels (spam/no spam; hippo/horse/...)
to items (emails, images, ...)

* We assume that we have a set of labeled examples:
(X, Vi)oooo(Xp,¥n) (X2 item, y: label)

* We use a subset of these labeled examples as training data
(supervised learning)

* We use a disjoint subset of these labeled examples as test data
We evaluate how often we assign the correct label to unseen examples.
We are not allowed to optimize our models on the test data

* We may also use a separate disjoint subset as development data
to tune our models

Linear Classifiers

* Naive Bayes/BoW classifiers
* Linear Classifiers in General
* Perceptron

* Differential Perceptron/Neural Net

Nalve Bayes

* Naive Bayes for text classification: two modeling choices
* Parameter estimation: how do we train our model?

Naive Bayes for text data

Task: Assign class label ¢ (from a fixed set C ={c;,...c,} to document d.

Probabilistic reasoning behind Naive Bayes:
Assign the most likely class label ¢ to document d.

argmax,. P(C=c|D =d,) = argmax.P(D =d, |C = c)P(C = ¢)

e cis one of k outcomes of random variable C

P(C =c)is a categorical distribution over k outcomes.
* But what about P (D =d, | C=c)?

How do we model documents as random variables?

Learning P(C = c)

* This is the probability that a randomly chosen document
from our data has class label c.

* P(C) is a categorical random variable over k outcomes c;...c,
* How do we set the parameters of this distribution?

e Given our training data of labeled documents,
We can simply set P(C = ¢;) to the fraction of documents
that have class label ¢

* This is a maximum likelihood estimate:
Among all categorical distributions over k outcomes,
this assigns the highest probability (likelihood) to the training data

Documents as random variable

* We assume a fixed vocabulary V of M word types: V = {apple, ..., zebra}.

* Adocument d. = “The lazy fox...” is a sequence of n word tokens
d, = wWii.. Wiy
The same word type may appear multiple times in d..

* Choice 1: We model d. as a set of word types:
V v; € V: what’s the probability that v; occurs/doesn’t occur in d;?
We treat P(v;) as a Bernoulli random variable

* Choice 2: We model d, as a sequence of word tokens:
Vn,.1 N What's the probability that w;, = v (rather than any other v;)
We treat P(w;,) as a categorical random variable (over V)

Modeling documents as sequences of tokens

Given a vocabulary of M word types, we model each document d,
as a sequence of N categorical variables Wig... Wiy

What'’s the probability that the n-th token in d is word type v,,?
Independence assumptions:
We ignore the position of each token
All tokens are conditionally independent given the class label
We just need a single categorical distribution P(w =v,, | C=c) per class c:
P(D = Wig...WiN | C= C) = anl...N P(W = Vm | C= C)
How do we estimate the parameters of this distribution?

P(w =v,, | C=c) is the fraction of tokens in documents of class c
that are equal to vm

Modeling documents as sets of word types

Given a vocabulary of M word types, we model each document d;
as a set of M Bernoulli random variables: v,, = true if v,, occurs in d,

Define an indicator variable 1, ement:
1iatement = 1 if the statement is true
1..tement = O if the statement is false

P(D=di|C_=C)=P(D={V1,—|V2, ..} |C=c)

yzl(lvj occurs in di P(vj |C — C) + 1vj does not occur in di P (_'vjl C = C))
How do we estimate each of our P(V; | C = c) distributions?

P(v; | C=c) isthe fraction of training documents of class c
in which v; occurs.

Naive Bayes/Bag-of-Words

* Model parameters: feature likelihoods P(word | class) and priors
P(class)
* How do we obtain the values of these parameters?
* Need training set of labeled samples from both classes

of occurrences of this word in docs from this class

P | =] .
(word | class) total # of words in docs from this class

* This is the maximum likelihood (ML) estimate, or estimate that
maximizes the likelihood of the training data:

D

HﬁP(Wd,i | class, ;)

d=1 i=1
d: index of training document, i: index of a word

Indexing in BoW: Types vs. Tokens

* Indexing the training dataset: TOKENS

i =document tokenindex, 1 <i <m

(there are m document tokens in the training dataset)
*j=word tokenindex, 1 <j <n

(there are n word tokens in each document)

* Indexing the dictionary: TYPES
ec=classtype, 1 <c<C
(there are a total of C different class types)
ew=wordtype, 1 <w<V
(there are a total of V words in the dictionary,
i.e., V different word types)

Two Different BoW Algorithms

* One bit per document, per word type:

(o ’)

* F;,, =1 if word “w” occurs anywhere in the i'th
document

* F;,, = 0 otherwise

* One bit per word token, per word type:
* F;, = 1if the j'th word token is “w”
* F;, = 0 otherwise

Example: “who saw who with who?”

Fiownor = 1

Fwhor = {1,0,1,0,13

Feature = One Bit Per Document

* Features:
* F;, =1if word “w” occurs anywhere in the i"th document

* Parameters:
* Adew = P(Fyy, = 1|C = ¢)
* Note this means that P(F;,, =0|C =c) =1—A,,

* Parameter Learning:
(1 + # documents containing w)

A, =
““ (1 + # documents containing w) + (1 + # documents NOT containing w)

Feature = One Bit Per Word Token

* Features:
* Fjy = 1if the j"th word token is word “w”

* Parameters:
* dew =P(Fw=1|C=c)=PW;=w|C =)
* Note this means that P(Fjw = O|C = c) = Yipzw Acp

* Parameter Learning:
(1 + # tokens of w in the training database)

cw —

5=1(1 + # tokens of v in the training database)

Feature = One Bit Per Document

Classification:
C* = argmax P(C=c|document)

= argmax P(C=c) P(Document|C=c)

= arg max (nc 1_[Aew 1_[(1- Acw))

w: few=1 w: few=0

P(C=c) * prod_{words that occurred}P(word ooccus|C=c) * prod_{didn’t occur} P(didn’t occur|C=c)

Feature = One Bit Per Word Token

Classification:
* = argmax P(C=c|document)

= argmax P(C=c) P(Document|C=c)

n
= arg max | T, ‘ ‘ ACW].
Cc
j=1

P(C=c) prod_{words in the document} P(get that particular word | C=c)

Feature = One Bit Per Document

Classification:
4 few

C* = arg max nl (tew)
c “11\1-2,,

(1 _ Acw))

In a 2-dimensional

| | feature space (f.1, fc2), this
) is the equation for a line, with

' %4
C* = argmax + 2 a
g (ﬁc - cewfew intercept —f., and with slope
_ given by a¢1/ac;

1 V
Aew = log(_CW)» Bc = log| m, 1_[(1 — Acew)
1—Acw

w=1

Feature = One Bit Per Word Token

Classification: ,
C* = arg max (ﬂc l y)
C

w=1
Where s,, = number of times w occurred in the document!! So...

v | |Ina2-dimensional

. feature space (f.1, fs2), this
(" = arg mcax ('BC t z aCWSCW) is the equation for a line, with
w=1 [|intercept —f., and with slope

aew = log ey, . = logm, given by acq/ac;

Linear Classifiers

e Linear Classifiers in General
* Perceptron

* Differential Perceptron/Neural Net

Linear Classifiers in General

The function B, + XV _1 & few is an affine function of the features
few- That means that its contours are all straight lines. Here is an

example of such a function, plotted as variations of color in a two-
dimensional space f; by f>:

1

-0.5

Linear Classifiers in General

Consider the classifier
y=1 if IBC + 21‘//11=1 acwfcw >0
1%

y=0 if ﬁc+zacwfcw<0

w=1
This is called a “linear classifier” because the boundary between the two classes is a line.
Here is an example of such a classifier, with its boundary plotted as a line in the two-dimensional

space f1 by fa:

5 [I I I I I I I
y =20 —
fzo0 —
// y=1
_5-‘1 0|8 0|6 OI4 0|2 0 012 OI4 0|6 0|8 1

Linear Classifiers in General

Consider the classifier

V
y = arg mCaX <.8c + z acwfcw)

w=1
 This is called a “multi-class linear
classifier.”

* Theregionsy=0,y=1,y =2 fz
etc. are called “Voronoi regions.”

* They are regions with piece-wise
linear boundaries. Here is an
example from Wikipedia of
Voronoi regions plotted in the two-
dimensional space f; by f5:

Linear Classifiers in General

When the features are binary Similarly, the function

(f,, € {0,1}), many (but not all!) binary _
functions can be re-written as linear y=U1N]2)

functions. For example, the function
y=(fiVf,) y=1iff f; +f, —1.5>0
can be re-written as
y=1iff f; +/,—05>0

f2 />
O O

can be re-written as

\‘ - fi - ® - 1

Linear Classi

* Not all logica
classifiers!

ilers in Gene

functions can

ral

oe written as linear

* Minsky and Papert wrote a book called Perceptrons in
1969. Although the book said many other things, the only
thing most people remembered about the book was that:

* “A linear classifier cannot learn an XOR function.”

* Because of that statement, most people gave up working
on neural networks from about 1969 to about 2006.

* Minsky and Papert also proved that a two-layer neural net
can learn an XOR function. But most people didn’t notice.

Linear Classifiers

Classification:)
y = arg mCaX (ﬁc T 2 acwfcw)

w=1

* Where f.,, are the features (binary, integer, or real), a.,, are the
feature weights, and 3, is the offset

Linear Classifiers

* Perceptron
* Differential Perceptron/Neural Net

: : * 1909: Williams discovers that
The Giant SC]UId Axon the giant squid has a giant

neuron (axon 1mm thick)

* 1939: Young finds a giant
synapse (fig. shown: Llinas,
1999, via Wikipedia).
Hodgkin & Huxley put in
voltage clamps.

* 1952: Hodgkin & Huxley
publish an electrical current
model for the generation of
binary action potentials from
real-valued inputs.

e 1959: Rosenblatt is granted a
patent for the “perceptron,”
an electrical circuit model of
a neuron.

Perceptron

N MRS BT B ool v wsa N

i
|
L
f
i
|
:
b

Perceptron model:

Perceptron action potential =
signum(affine function of the
Input features)
Weights
X1 y =sgn(a,f; + of, + ... + o fy, + B) =
" sgn(w’ f)
— Output: sgn(w-x + b) Where W — [al, . aV,,B]T

W3 | and f) — [fl; ---:fVl 1]T

Can incorporate bias as
component of the weight
vector by always including a
feature with value set to 1

Perceptron

Rosenblatt’s big innovation: the
perceptron learns from ;

examples.
* Initialize weights randomly

* Cycle through training
examples in multiple passes
(epochs)

* For each training example:

* If classified correctly, do
nothing

* If classified incorrectly, O
update weights

Perceptron

For each training instance 7 with label y € {—1,1}:
» Classify with current weights: ' = sgn(w’ f)
* Notice y' € {—1,1} too.
* Update weights:
*if y = y’ then do nothing

cify =y thenwW=w+nyf
*n (eta) is a “learning rate.” More about that later.

Perceptron: Proof of Convergence

* |f the data are linearly separable (if there exists a w vector

such that the true label is given by y’ = sgn(wa)) then
the perceptron algorithm is guarantee to converge, even
with a constant learning rate, even n=1.

* In fact, training a perceptron is often the fastest way to
find out if the data are linearly separable. If w converges,
then the data are separable; if w diverges toward infinity,
then no.

* If the data are not linearly separable, then perceptron
converges iff the learning rate decreases, e.g., n=1/n for
the n’th training sample.

Perceptron: Proof of Convergence

Suppose the data are linearly separable. For example,
suppose red dots are the class y=1, and blue dots are the
class y=-1:

12
® o
O ® ¢
_ O
. - fi
O S O
O
O

Perceptron: Proof of Convergence

* Instead of plotting f, plot yxf. The red dots are
unchanged; the blue dots are multiplied by -1.

* Since the original data were linearly separable, the new
data are all in the same half of the feature space.

’ A
V2 ®
O O
® O O
O

-y

Perceptron: Proof of Convergence

* Remember the perceptron training rule: if any example is
misclassified, then we use it to update w =w +y f.

* So eventually, w becomes just a weighted average of yf.

e ...and the perpendicular line, V7Tf = (0, is the classifier
boundary. ®

Perceptron: Proof of Convergence: Conclusion

* If the data are linearly separable, then the perceptron will
eventually find the equation for a line that separates

them.

* If the data are NOT linearly separable, then perceptron
converges iff the learning rate decreases, e.g., n=1/n for
the n’th training sample. In this case, convergence is

trivially obvious, because y and]? are finite, therefore the
weight updates ny f approach 0 as n approaches O.

Implementation details

e Bias (add feature dimension with value fixed to 1) vs.
no bias

* Initialization of weights: all zeros vs. random

* Learning rate decay function

 Number of epochs (passes through the training data)
* Order of cycling through training examples (random)

Multi-class perceptrons

* One-vs-others framework: Need to keep a weight vector w, for each
class c

* Decision rule: y = argmax, w_ f

e Update rule: suppose example from class c gets misclassified as ¢’
* Update for c: w, € w_ + nf
* Update forc’: w, € w, —nf
* Update for all classes other than c and ¢’: no change

Review: Multi-class perceptrons

* One-vs-others framework: Need to keep a weight vector w, for each
class c

* Decision rule: y = argmax, w_ f

Max

Perceptrons w/
|nputs Weights W,

Linear Classifiers

* Differential Perceptron/Neural Net

Differentiable Perceptron

* Also known as a “one-layer feedforward neural network,” also known
as “logistic regression.” Has been re-invented many times by many

different people.
* Basic idea: replace the non-differentiable decision function
y' = sign(w’f)

with a differentiable decision function
Tanh: g(b)=(e®-e™)/(eP+e™®)

Signum: g(b)=sign(b)) T
15 ‘ ‘ y = tanh(w f) 1.5
1r 1L
0.5 0.5
0 2 0
(@)
0.5 -0.5
1 1l
1.5 2 0 2 4 1.5

Differentiable Perceptron

e Suppose we have n training vectors, flthrough fn Each one has an
associated label y; € {—1,1}. Then we replace the true loss function,

5 5 o p 282
L s Y for oo fo) =) (i = sign @7 1)
i=1
with a differentiable error

L s Y fov s fo) =) (v = tanh 7 f))

Why Differentiable?

* Why do we want a differentiable Ios% function?

L oo For e o) = 3 (1 = tanh 7))’

* Answer: because if we want to improve it, we can adjust the weight
vector in order to reduce the error:

W=W—nVWL

* This is called “gradient descent.” We move w “downhill,” i.e., in the
direction that reduces the value of the loss L.

Differential Perceptron

The weights get updated according

tO Neural Net Error Surface (Schematic)
3 T T T T
—> —>
w=w —nVyL 21
> 1r
<
~ /\
2 0 f
(11 W
(@)}
=
=
®
= -1r \/
2F
-3

0 0.5 1 1.5 2 2.5
Network Weight Uy

Differentiable Multi-class perceptrons

Same idea works for multi-class perceptrons. We replace the non-
differentiable decision rule c = argmax. w.- f with the differentiable
decision rule c = softmax_, w. f, where the softmax function is defined

as
Softmax:
ev_‘;c°f
c|7) = %
p(‘f ﬁfaasses ev_‘;k.f

Perceptrons w/
Inputs Weights W,

Differentiable Multi-Class Perceptron

* Then we can define the loss to be:

n
LtV) = = Inp(e = il f)
=1

* And because the probability term on the inside is differentiable, we
can reduce the loss using gradient descent:

W=W—nVWL

Summary

You now know SEVEN!! different types of linear classifiers. These 5 types are things you
should completely understand already now:

* One bit per document Naive Bayes

One bit per word token Naive Bayes

Linear classifier can implement some logical functions, like AND and OR, but not others,
like XOR

* Perceptron
* Multi-class Perceptron

These 2 types of linear classifiers have been introduced today, and you should know the
general idea, but you don’t need to understand the equations yet. We will spend lots
more time talking about those equations later in the semester.

» Differentiable Perceptron a.k.a. Logistic Regression

» Differentiable Multi-class perceptron

