CS440/ECE448 Lecture 16: Linear Classifiers

Mark Hasegawa-Johnson, 3/2019 and Julia Hockenmaier 3/2019 Including Slides by Svetlana Lazebnik, 10/2016

 \sim

Aliza Aufrichtig @alizauf · Mar 4 Garlic halved horizontally = nature's Voronoi diagram?

en.wikipedia.org/wiki/Voronoi_d...

Classification as a learning problem

- We want assign one of k class labels (spam/no spam; hippo/horse/...) to items (emails, images, ...)
- We assume that we have a set of labeled examples:
 (x_i, y_i).....(x_N,y_N) (x: item, y: label)
- We use a subset of these labeled examples as training data (supervised learning)
- We use a *disjoint* subset of these labeled examples as **test data** We evaluate how often we assign the correct label to *unseen* examples.
 We are not allowed to optimize our models on the test data
- We may also use a separate disjoint subset as development data to tune our models

Linear Classifiers

- Naïve Bayes/BoW classifiers
- Linear Classifiers in General
- Perceptron
- Differential Perceptron/Neural Net

Naïve Bayes

- Naïve Bayes for text classification: two modeling choices
- Parameter estimation: how do we train our model?

Naïve Bayes for text data

Task: Assign class label c (from a fixed set $C = \{c_1...c_k\}$ to document d_i

Probabilistic reasoning behind Naïve Bayes: Assign the most likely class label c to document d_i $\operatorname{argmax}_c P(C = c | D = d_i) = \operatorname{argmax}_c P(D = d_i | C = c) P(C = c)$

- c is one of k outcomes of random variable C
 P(C = c) is a categorical distribution over k outcomes.
- But what about P (D = d_i | C=c)? How do we model documents as random variables?

Learning P(C = c)

- This is the probability that a randomly chosen document from our data has class label c.
- P(C) is a categorical random variable over k outcomes $c_1...c_k$
- How do we set the parameters of this distribution?
- Given our training data of labeled documents, We can simply set P(C = c_i) to the fraction of documents that have class label c_i
- This is a maximum likelihood estimate: Among all categorical distributions over k outcomes, this assigns the highest probability (likelihood) to the training data

Documents as random variable

- We assume **a fixed vocabulary** V of M word types: V = {apple, ..., zebra}.
- A document d_i = "The lazy fox..." is a sequence of n word tokens d_i = w_{i1}...w_{iN} The same word type may appear multiple times in d_i.
- Choice 1: We model d_i as a set of word types:
 ∀ v_j ∈ V: what's the probability that v_j occurs/doesn't occur in d_i?
 We treat P(v_j) as a Bernoulli random variable
- Choice 2: We model d_i as a **sequence of word tokens**: $\forall n_{n=1...N}$: what's the probability that $w_{in} = v_j$ (rather than any other $v_{j'}$) We treat P(w_{in}) as a categorical random variable (over V)

Modeling documents as sequences of tokens

Given a vocabulary of M word types, we model each document d_i as a sequence of N categorical variables $w_{i1}...w_{iN}$

What's the probability that the n-th token in d is word type v_m ? Independence assumptions:

We ignore the position of each token

All tokens are conditionally independent given the class label

We just need a single categorical distribution $P(w = v_m | C = c)$ per class c:

$$P(D = w_{i1}...w_{iN} | C = c) = \prod_{n=1...N} P(w = v_m | C = c)$$

How do we estimate the parameters of this distribution?

 $P(w=v_m \mid C=c)$ is the fraction of tokens in documents of class c that are equal to vm

Modeling documents as sets of word types

Given a vocabulary of M word types, we model each document d_i as a set of M Bernoulli random variables: $v_m = true$ if v_m occurs in d_i

```
Define an indicator variable \mathbf{1}_{statement}:

\mathbf{1}_{statement} = 1 if the statement is true

\mathbf{1}_{statement} = 0 if the statement is false
```

$$P(D = d_i | C = c) = P(D = \{v1, \neg v2, ...\} | C = c)$$

$$\prod_{j=1}^{N} (1_{vj \text{ occurs in } di} P(v_j | C = c) + 1_{vj \text{ does not occur in } di} P(\neg v_j | C = c))$$
How do we estimate each of our P(V_j | C = c) distributions?
$$P(v_j | C = c) \text{ is the fraction of training documents of class c in which v_i occurs.}$$

Naïve Bayes/Bag-of-Words

- Model parameters: feature likelihoods P(word | class) and priors P(class)
 - How do we obtain the values of these parameters?
 - Need *training set* of labeled samples from both classes

of occurrences of this word in docs from this class

P(word | class) =

total # of words in docs from this class

• This is the *maximum likelihood* (ML) estimate, or estimate that maximizes the likelihood of the training data:

$$\prod_{d=1}^{D} \prod_{i=1}^{n_d} P(w_{d,i} \mid class_{d,i})$$

d: index of training document, i: index of a word

Indexing in BoW: Types vs. Tokens

- Indexing the training dataset: TOKENS
 - $i = \text{document token index}, 1 \le i \le m$ (there are m document tokens in the training dataset)
 - $j = \text{word token index}, 1 \le j \le n$ (there are n word tokens in each document)
- Indexing the dictionary: TYPES
 - $c = class type, 1 \le c \le C$ (there are a total of C different class types)
 - w = word type, 1 ≤ w ≤ V
 (there are a total of V words in the dictionary, i.e., V different word types)

Two Different BoW Algorithms

- One bit per document, per word type:
 - *F*_{*iw*} = 1 if word "w" occurs anywhere in the i'th document
 - F_{iw} = 0 otherwise
- One bit per word token, per word type:
 - F_{jw} = 1 if the j'th word token is "w"
 - $F_{jw} = 0$ otherwise

Example: "who saw who with who?"

$$F_{i,"who"} = 1$$

$$F_{j,"who"} = \{1,0,1,0,1\}$$

Feature = One Bit Per **Document**

- Features:
 - $F_{iw} = 1$ if word "w" occurs anywhere in the i'th document
- Parameters:
 - $\lambda_{cw} \equiv P(F_{iw} = 1 | C = c)$
 - Note this means that $P(F_{iw} = 0 | C = c) = 1 \lambda_{cw}$
- Parameter Learning:

(1 + # documents containing w)

 $\lambda_{cw} = \frac{1}{(1 + \# \text{ documents containing } w) + (1 + \# \text{ documents NOT containing } w)}$

Feature = One Bit Per Word Token

- Features:
 - $F_{jw} = 1$ if the j'th word token is word "w"
- Parameters:

•
$$\lambda_{cw} \equiv P(F_{jw} = 1 | C = c) = P(W_j = w | C = c)$$

- Note this means that $P(F_{jw} = 0 | C = c) = \sum_{v \neq w} \lambda_{cv}$
- Parameter Learning:

 $\lambda_{cw} = \frac{(1 + \# \text{ tokens of } w \text{ in the training database})}{\sum_{v=1}^{V} (1 + \# \text{ tokens of } v \text{ in the training database})}$

Feature = One Bit Per **Document**

Classification:

C* = argmax P(C=c|document)

= argmax P(C=c) P(Document|C=c)

$$= \arg \max_{c} \left(\pi_{c} \prod_{w: f_{cw}=1} \lambda_{cw} \prod_{w: f_{cw}=0} (1 - \lambda_{cw}) \right)$$

P(C=c) * prod_{words that occurred}P(word ooccus|C=c) * prod_{didn't occur} P(didn't occur|C=c)

Feature = One Bit Per Word Token

Classification:

C* = argmax P(C=c|document)

= argmax P(C=c) P(Document|C=c)

$$= \arg\max_{c} \left(\pi_{c} \prod_{j=1}^{n} \lambda_{cw_{j}} \right)$$

P(C=c) prod_{words in the document} P(get that particular word | C=c)

Feature = One Bit Per **Document**

Classification:

$$C^* = \arg\max_{c} \left(\pi_c \prod_{w=1}^{V} \left(\frac{\lambda_{cw}}{1 - \lambda_{cw}} \right)^{f_{cw}} (1 - \lambda_{cw}) \right)$$

$$C^* = \arg \max_{c} \left(\beta_c + \sum_{w=1}^{V} \alpha_{cw} f_{cw} \right)$$

$$\beta_c = \log \left(\frac{\lambda_{cw}}{1 - \lambda_{cw}} \right), \qquad \beta_c = \log \left(\pi_c \prod_{w=1}^{V} (1 - \lambda_{cw}) \right)$$

In a 2-dimensional feature space (f_{c1}, f_{c2}) , this is the equation for a line, with intercept $-\beta_c$, and with slope given by α_{c1}/α_{c2}

Feature = One Bit Per Word Token

Classification:

$$C^* = \arg\max_{c} \left(\pi_c \prod_{w=1}^{V} \lambda_{cw} s_w \right)$$

Where s_w = number of times w occurred in the document!! So...

$$C^* = \arg \max_{c} \left(\beta_c + \sum_{w=1}^{V} \alpha_{cw} s_{cw} \right)$$
$$\alpha_{cw} = \log \lambda_{cw}, \qquad \beta_c = \log \pi_c$$

In a 2-dimensional feature space (f_{c1}, f_{c2}) , this is the equation for a line, with intercept $-\beta_c$, and with slope given by α_{c1}/α_{c2}

Linear Classifiers

- Naïve Bayes/BoW classifiers
- Linear Classifiers in General
- Perceptron
- Differential Perceptron/Neural Net

The function $\beta_c + \sum_{w=1}^{V} \alpha_{cw} f_{cw}$ is an affine function of the features f_{cw} . That means that its contours are all straight lines. Here is an example of such a function, plotted as variations of color in a two-dimensional space f_1 by f_2 :

Consider the classifier

$$y = 1 \quad \text{if} \quad \beta_c + \sum_{w=1}^V \alpha_{cw} f_{cw} > 0$$
$$y = 0 \quad \text{if} \quad \beta_c + \sum_{w=1}^V \alpha_{cw} f_{cw} < 0$$

$$y = 0$$
 if $\beta_c + \sum_{w=1}^{\infty} \alpha_{cw} f_{cw} < 0$

This is called a "linear classifier" because the boundary between the two classes is a line. Here is an example of such a classifier, with its boundary plotted as a line in the two-dimensional space f_1 by f_2 :

Consider the classifier

$$y = \arg\max_{c} \left(\beta_{c} + \sum_{w=1}^{V} \alpha_{cw} f_{cw}\right)$$

- This is called a "multi-class linear classifier."
- The regions y = 0, y = 1, y = 2etc. are called "Voronoi regions."
- They are regions with piece-wise linear boundaries. Here is an example from Wikipedia of Voronoi regions plotted in the twodimensional space f₁ by f₂:

When the features are binary $(f_w \in \{0,1\})$, many (but not all!) binary functions can be re-written as linear functions. For example, the function

$$y = (f_1 \lor f_2)$$

can be re-written as

y=1 iff
$$f_1 + f_2 - 0.5 > 0$$

 f_2

Similarly, the function

$$y = (f_1 \wedge f_2)$$

can be re-written as

y=1 iff
$$f_1 + f_2 - 1.5 > 0$$

- Not all logical functions can be written as linear classifiers!
- Minsky and Papert wrote a book called *Perceptrons* in 1969. Although the book said many other things, the only thing most people remembered about the book was that:
- "A linear classifier cannot learn an XOR function."
- Because of that statement, most people gave up working on neural networks from about 1969 to about 2006.
- Minsky and Papert also proved that a two-layer neural net can learn an XOR function. But most people didn't notice.

Linear Classifiers

Classification:

$$y = \arg\max_{c} \left(\beta_{c} + \sum_{w=1}^{V} \alpha_{cw} f_{cw}\right)$$

• Where f_{cw} are the features (binary, integer, or real), α_{cw} are the feature weights, and β_c is the offset

Linear Classifiers

- Naïve Bayes/BoW classifiers
- Linear Classifiers in General
- Perceptron
- Differential Perceptron/Neural Net

The Giant Squid Axon

- 1909: Williams discovers that the giant squid has a giant neuron (axon 1mm thick)
- 1939: Young finds a giant synapse (fig. shown: Llinás, 1999, via Wikipedia).
 Hodgkin & Huxley put in voltage clamps.
- 1952: Hodgkin & Huxley publish an electrical current model for the generation of binary action potentials from real-valued inputs.

• 1959: Rosenblatt is granted a patent for the "perceptron," an electrical circuit model of a neuron.

Input

Perceptron model: action potential = signum(affine function of the features)

$$y = \operatorname{sgn}(\alpha_1 f_1 + \alpha_2 f_2 + \dots + \alpha_V f_V + \beta) = \operatorname{sgn}(\vec{w}^T \vec{f})$$

Where
$$\vec{w} = [\alpha_1, \dots, \alpha_V, \beta]^T$$

and $\vec{f} = [f_1, \dots, f_V, 1]^T$

Can incorporate bias as component of the weight vector by always including a feature with value set to 1

Rosenblatt's big innovation: the perceptron learns from examples.

- Initialize weights randomly
- Cycle through training examples in multiple passes (*epochs*)
- For each training example:
 - If classified correctly, do nothing
 - If classified incorrectly, update weights

For each training instance \vec{f} with label $y \in \{-1,1\}$:

- Classify with current weights: $y' = \operatorname{sgn}(\vec{w}^T \vec{f})$
 - Notice $y' \in \{-1,1\}$ too.
- Update weights:
 - if y = y' then do nothing
 - if $y \neq y'$ then $\vec{w} = \vec{w} + \eta y \vec{f}$
 - η (eta) is a "learning rate." More about that later.

- If the data are linearly separable (if there exists a \vec{w} vector such that the true label is given by $y' = \text{sgn}(\vec{w}^T \vec{f})$), then the perceptron algorithm is guarantee to converge, even with a constant learning rate, even $\eta=1$.
- In fact, training a perceptron is often the fastest way to find out if the data are linearly separable. If \vec{w} converges, then the data are separable; if \vec{w} diverges toward infinity, then no.
- If the data are not linearly separable, then perceptron converges iff the learning rate decreases, e.g., η=1/n for the n'th training sample.

Suppose the data are linearly separable. For example, suppose red dots are the class y=1, and blue dots are the class y=-1:

- Instead of plotting \vec{f} , plot $y \times \vec{f}$. The red dots are unchanged; the blue dots are multiplied by -1.
- Since the original data were linearly separable, the new data are all in the same half of the feature space.

- Remember the perceptron training rule: if any example is misclassified, then we use it to update $\vec{w} = \vec{w} + y \vec{f}$.
- So eventually, \vec{w} becomes just a weighted average of $y\vec{f}$.
- ... and the perpendicular line, $\vec{w}^T \vec{f} = 0$, is the classifier boundary.

Perceptron: Proof of Convergence: Conclusion

- If the data are linearly separable, then the perceptron will eventually find the equation for a line that separates them.
- If the data are NOT linearly separable, then perceptron converges iff the learning rate decreases, e.g., $\eta=1/n$ for the n'th training sample. In this case, convergence is trivially obvious, because y and \vec{f} are finite, therefore the weight updates $\eta y \vec{f}$ approach 0 as η approaches 0.

Implementation details

- Bias (add feature dimension with value fixed to 1) vs. no bias
- Initialization of weights: all zeros vs. random
- Learning rate decay function
- Number of epochs (passes through the training data)
- Order of cycling through training examples (random)

Multi-class perceptrons

- One-vs-others framework: Need to keep a weight vector ${\bf w}_{\rm c}$ for each class c
- Decision rule: y = argmax_c w_c· f
- Update rule: suppose example from class c gets misclassified as c'
 - Update for c: $\mathbf{w}_{c} \leftarrow \mathbf{w}_{c} + \eta \mathbf{f}$
 - Update for c': $\mathbf{w}_{c'} \leftarrow \mathbf{w}_{c'} \eta \mathbf{f}$
 - Update for all classes other than c and c': no change

Review: Multi-class perceptrons

- One-vs-others framework: Need to keep a weight vector w_c for each class c
- Decision rule: y = argmax_c w_c· f

Linear Classifiers

- Naïve Bayes/BoW classifiers
- Linear Classifiers in General
- Perceptron
- Differential Perceptron/Neural Net

Differentiable Perceptron

- Also known as a "one-layer feedforward neural network," also known as "logistic regression." Has been re-invented many times by many different people.
- Basic idea: replace the non-differentiable decision function

 $y' = \operatorname{sign}(\vec{w}^T \vec{f})$

with a differentiable decision function

$$y' = \tanh(\vec{w}^T \vec{f})$$

Differentiable Perceptron

• Suppose we have n training vectors, $\vec{f_1}$ through $\vec{f_n}$. Each one has an associated label $y_i \in \{-1,1\}$. Then we replace the true loss function,

$$L(y_1, \dots, y_n, \vec{f_1}, \dots, \vec{f_n}) = \sum_{i=1}^{n} \left(y_i - \operatorname{sign}(\vec{w}^T \vec{f_i}) \right)^2$$

with a differentiable error

$$L(y_1, ..., y_n, \vec{f_1}, ..., \vec{f_n}) = \sum_{i=1}^n (y_i - \tanh(\vec{w}^T \vec{f_i}))^2$$

Why Differentiable?

• Why do we want a differentiable loss function?

$$L(y_1, ..., y_n, \vec{f_1}, ..., \vec{f_n}) = \sum_{i=1}^{n} (y_i - \tanh(\vec{w}^T \vec{f_i}))^2$$

• Answer: because if we want to improve it, we can adjust the weight vector in order to reduce the error:

$$\vec{w} = \vec{w} - \eta \nabla_{\vec{w}} L$$

• This is called "gradient descent." We move \vec{w} "downhill," i.e., in the direction that reduces the value of the loss L.

Differential Perceptron

The weights get updated according

to

$$\vec{w} = \vec{w} - \eta \nabla_{\vec{w}} L$$

Differentiable Multi-class perceptrons

Same idea works for multi-class perceptrons. We replace the nondifferentiable decision rule $c = \operatorname{argmax}_c \mathbf{w}_c \cdot \mathbf{f}$ with the differentiable decision rule $c = \operatorname{softmax}_c \mathbf{w}_c \cdot \mathbf{f}$, where the softmax function is defined as

Differentiable Multi-Class Perceptron

• Then we can define the loss to be:

$$L(y_1, ..., y_n, \vec{f_1}, ..., \vec{f_n}) = -\sum_{i=1}^n \ln p(c = y_i | \vec{f_i})$$

n

• And because the probability term on the inside is differentiable, we can reduce the loss using gradient descent:

$$\vec{w} = \vec{w} - \eta \nabla_{\vec{w}} L$$

Summary

You now know SEVEN!! different types of linear classifiers. These 5 types are things you should completely understand already now:

- One bit per document Naïve Bayes
- One bit per word token Naïve Bayes
- Linear classifier can implement some logical functions, like AND and OR, but not others, like XOR
- Perceptron
- Multi-class Perceptron

<u>These 2 types of linear classifiers have been introduced today, and you should know the</u> <u>general idea, but you don't need to understand the equations yet.</u> We will spend lots <u>more time talking about those equations later in the semester.</u>

- Differentiable Perceptron a.k.a. Logistic Regression
- Differentiable Multi-class perceptron