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Reminder: Exam 1 (“Midterm”) 
Thu, Feb 28 in class
• Review in next lecture

• Closed-book exam 
(no calculators, no cheat sheets)

• Mostly short questions



Types of game environments

Deterministic Stochastic
Perfect information
(fully observable)
Imperfect information
(partially observable)

Chess, checkers, 
go

Backgammon, 
monopoly

Battleship Scrabble, 
poker, bridge



Content of today’s lecture

• Stochastic games: the Expectiminimax algorithm
• Imperfect information
• Minimax formulation
• Expectiminimax formulation

• Stochastic search, even for deterministic games
• Learned evaluation functions
• Case study: Alpha-Go



Stochastic games

How can we incorporate dice throwing into the game 
tree?



Stochastic games



Minimax vs. Expectiminimax
• Minimax: 

• Maximize (over all possible moves I can make) the 
• Minimum (over all possible moves Min can make) of the
• Reward
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• Expectiminimax: 
• Maximize (over all possible moves I can make) the 
• Minimum (over all possible moves Min can make) of the
• Expected reward
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Stochastic games

Expectiminimax: 
Compute value of terminal, MAX and MIN nodes like minimax, 
but for CHANCE nodes, sum values of successor states weighted 
by the probability of each successor

• Value(node) = 
§ Utility(node) if node is terminal
§ maxaction Value(Succ(node, action)) if type = MAX
§ minaction Value(Succ(node, action)) if type = MIN
§ sumaction P(Succ(node, action)) * Value(Succ(node, action)) if type

= CHANCE



Expectiminimax example

• RANDOM: Max flips a coin.  It’s heads or tails.

• MAX: Max either stops, or continues.

• Stop on heads: Game ends, Max wins (value = $2).

• Stop on tails: Game ends, Max loses (value = -$2).

• Continue: Game continues.

• RANDOM: Min flips a coin.

• HH: value = $2

• TT: value = -$2

• HT or TH: value = 0

• MIN: Min decides whether to keep the current 

outcome (value as above), or pay a penalty 

(value=$1).
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Expectiminimax summary

• All of the same methods are useful:
• Alpha-Beta pruning
• Evaluation function
• Quiescence search, Singular move

• Computational complexity is pretty bad
• Branching factor of the random choice can be high
• Twice as many “levels” in the tree



Games of Imperfect Information



Imperfect information example

• Min chooses a coin:
• Penny (1 cent): Lincoln
• Nickel (5 cent): Jefferson

• I say the name of a U.S. President.
• If I guessed right, she gives me the coin.
• If I guessed wrong, I have to give her a 

coin to match the one she has.

1 -5 5-1



Imperfect information example

• The problem: I don’t know which 
state I’m in.  I only know it’s one of 
these two

1 -5 5-1



Method #1: Treat “unknown” as “random”

• Expectiminimax: treat the unknown 
information as random.
• Choose the policy that maximizes 

my expected reward.
• “Lincoln”:  !" ×1 +

!
"× −5 = −2

• “Jefferson”: !" ×(−1) +
!
" ×5 = 2

• Expectiminimax policy: say 
“Jefferson”.
• BUT WHAT IF           and          are not 

equally likely?

1 -5 5-1



Method #2: Treat “unknown” as “unknown”

• Suppose Min can choose whichever coin 
she wants.  She knows that I will pick 
Jefferson – then she will pick the penny!

• Another reasoning: I want to know what 
is my worst-case outcome (e.g., to 
decide if I should even play this game…)

• The solution: choose the policy that 
maximizes my minimum reward.
• “Lincoln”: minimum reward is -5.

• “Jefferson”: minimum reward is -1.

• Miniminimax policy: say “Jefferson”.
1 -5 5-1



How to deal with imperfect information

• If you think you know the probabilities of different settings, and if 
you want to maximize your average winnings (for example, you can 
afford to play the game many times): expectiminimax
• If you have no idea of the probabilities of different settings; or, if you 

can only afford to play once, and you can’t afford to lose: 
miniminimax
• If the unknown information has been selected intentionally by your 

opponent: use game theory



Miniminimax with imperfect information
•Minimax: 
•Maximize (over all possible moves I can make) the 
•Minimum
• (over all possible states of the information I don’t know,
• … over all possible moves Min can make) the

• Reward.
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Stochastic games of imperfect information

Source

States are grouped into 
information sets for 

each player

http://www.sciencemag.org/content/347/6218/145.abstract


Stochastic search



Stochastic search for stochastic games

• The problem with expectiminimax: huge branching factor (many possible outcomes)
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• An approximate solution: Monte Carlo search
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• Asymptotically optimal: as @ → ∞, the approximation gets better.
• Controlled computational complexity: choose n to match the amount of 

computation you can afford.



Monte Carlo Tree Search
• What about deterministic games with deep trees, large branching 

factor, and no good heuristics – like Go?

• Instead of depth-limited search with an evaluation function, 
use randomized simulations
• Starting at the current state (root of search tree), iterate:

• Select a leaf node for expansion 
using a tree policy (trading off
exploration and exploitation)

• Run a simulation using 
a default policy (e.g., random 
moves) until a terminal state 
is reached

• Back-propagate the outcome 
to update the value estimates 
of internal tree nodes

C. Browne et al., A survey of Monte Carlo Tree Search Methods, 2012

http://ccg.doc.gold.ac.uk/papers/browne_tciaig12_1.pdf


Monte Carlo Tree Search
Current state = root of tree
Node weights: wins/total playouts for current player
Leaf nodes = nodes where no simulation (”playout”) has been performed yet
1. Selection: Start from root (current state), select successive nodes until a leaf node L is reached
2. Expansion: Unless L is decisive win/loose/draw, create children for L, and choose one child C to expand
3. Simulation: keep choosing moves from C until game is finished
4. Backpropagation: update outcome of game up the tree.



Exploration vs Exploitation (briefly)

• Exploration: how much can we afford to explore the space to gather 
more information?
• Exploitation: how can we maximize expected payoff (given the 

information we have)



Learned evaluation functions



Stochastic search off-line

Training phase:
• Spend a few weeks allowing your computer to play 

billions of random games from every possible starting state
• Value of the starting state = average value of the ending states 

achieved during those billion random games

Testing phase:
• During the alpha-beta search, search until you reach a state whose 

value you have stored in your value lookup table
• Oops…. Why doesn’t this work?



Evaluation as a pattern recognition problem

Training phase:
• Spend a few weeks allowing your computer to play billions of random games from 

billions of possible starting states.
• Value of the starting state = average value of the ending states achieved during those 

billion random games
Generalization:
• Featurize (e.g., x1=number of             patterns, x2 = number of             patterns, etc.)
• Linear regression: find a1, a2, etc. so that Value(state) ≈ a1*x1+a2*x2+…

Testing phase:
• During the alpha-beta search, search as deep as you can, then estimate the value of each 

state at your horizon using Value(state) ≈ a1*x1+a2*x2+…



Pros and Cons

• Learned evaluation function
• Pro: off-line search permits lots of compute time, therefore lots of training 

data
• Con: there’s no way you can evaluate every starting state that might be 

achieved during actual game play.  Some starting states will be missed, so 
generalized evaluation function is necessary

• On-line stochastic search
• Con: limited compute time
• Pro: it’s possible to estimate the value of the state you’ve reached during 

actual game play



Case study: AlphaGo

• “Gentlemen 
should not 
waste their time 
on trivial games 
-- they should 
play go.”

• -- Confucius,
• The Analects
• ca. 500 B. C. E.

Anton Ninno Roy Laird, 
Ph.D.
antonninno@yahoo.com
roylaird@gmail.com

special thanks to Kiseido Publications 



AlphaGo
• Deep convolutional 

neural networks
• Treat the Go board as an 

image
• Powerful function 

approximation machinery
• Can be trained to predict 

distribution over possible 
moves (policy) or 
expected value of 
position

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature 529, 
January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html


AlphaGo
• SL policy network

• Idea: perform supervised learning (SL) to predict human moves

• Given state s, predict probability distribution over moves a, P(a|s)
• Trained on 30M positions, 57% accuracy on predicting human moves
• Also train a smaller, faster rollout policy network (24% accurate)

• RL policy network
• Idea: fine-tune policy network using reinforcement learning (RL)
• Initialize RL network to SL network

• Play two snapshots of the network against each other, update parameters 
to maximize expected final outcome

• RL network wins against SL network 80% of the time, wins against open-
source Pachi Go program 85% of the time

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature 529, 
January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html


AlphaGo
• SL policy network
• RL policy network
• Value network

• Idea: train network for position evaluation
• Given state s, estimate v(s), expected outcome of play starting with 

position s and following the learned policy for both players
• Train network by minimizing mean squared error between actual and 

predicted outcome
• Trained on 30M positions sampled from different self-play games

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature 529, 
January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html


AlphaGo

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature 529, 
January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html


AlphaGo
• Monte Carlo Tree Search
• Each edge in the search tree maintains prior probabilities P(s,a), 

counts N(s,a), action values Q(s,a)
• P(s,a) comes from SL policy network
• Tree traversal policy selects actions that maximize Q value plus 

exploration bonus (proportional to P but inversely proportional 
to N)
• An expanded leaf node gets a value estimate that is a 

combination of value network estimate and outcome of 
simulated game using rollout network
• At the end of each simulation, Q values are updated to the 

average of values of all simulations passing through that edge
D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature 529, 

January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html


AlphaGo
• Monte Carlo Tree Search

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature 529, 
January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html


AlphaGo

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature 529, 
January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html


Alpha-Go video



Game AI: Origins

• Minimax algorithm: Ernst Zermelo, 1912
• Chess playing with evaluation function, quiescence 

search, selective search: 
Claude Shannon, 1949 (paper)
• Alpha-beta search: John McCarthy, 1956 
• Checkers program that learns its own evaluation 

function by playing against itself: Arthur Samuel,  
1956 (Rodney Brooks blog post)

http://archive.computerhistory.org/projects/chess/related_materials/text/2-0%20and%202-1.Programming_a_computer_for_playing_chess.shannon/2-0%20and%202-1.Programming_a_computer_for_playing_chess.shannon.062303002.pdf
https://rodneybrooks.com/forai-machine-learning-explained/


Game AI: State of the art
• Computers are better than humans:
• Checkers: solved in 2007
• Chess:

• State-of-the-art search-based systems now better than humans
• Deep learning machine teaches itself chess in 72 hours, plays at 

International Master Level (arXiv, September 2015)

• Computers are competitive with top human players:
• Backgammon: TD-Gammon system (1992) used reinforcement 

learning to learn a good evaluation function
• Bridge: top systems use Monte Carlo simulation and alpha-

beta search
• Go: computers were not considered competitive until AlphaGo

in 2016

https://www.theatlantic.com/technology/archive/2017/07/marion-tinsley-checkers/534111/
http://www.technologyreview.com/view/541276/deep-learning-machine-teaches-itself-chess-in-72-hours-plays-at-international-master/
https://en.wikipedia.org/wiki/TD-Gammon


Game AI: State of the art
• Computers are not competitive with top human players:
• Poker 

• Heads-up limit hold’em poker is solved (2015) 
• Simplest variant played competitively by humans
• Smaller number of states than checkers, but partial observability makes it difficult
• Essentially weakly solved = cannot be beaten with statistical significance 

in a lifetime of playing

• CMU’s Libratus system beats four of the best human players at no-limit 
Texas Hold’em poker (2017)

http://www.sciencemag.org/content/347/6218/145.abstract
https://www.wired.com/2017/02/libratus/


http://xkcd.com/1002/

See also: http://xkcd.com/1263/

http://xkcd.com/1002/
http://xkcd.com/1263/


Calvinball:
• Play it online
• Watch an instructional video

https://insaner.com/calvinball/
https://www.youtube.com/watch?v=jr85nM9q08k

