
CS440/ECE448 Lecture 12:
Stochastic Games, Stochastic Search,

and Learned Evaluation Functions
Slides by Svetlana Lazebnik, 9/2016
Modified by Mark Hasegawa-Johnson, 2/2019

Reminder: Exam 1 (“Midterm”)
Thu, Feb 28 in class
• Review in next lecture

• Closed-book exam
(no calculators, no cheat sheets)

• Mostly short questions

Types of game environments

Deterministic Stochastic
Perfect information
(fully observable)
Imperfect information
(partially observable)

Chess, checkers,
go

Backgammon,
monopoly

Battleship Scrabble,
poker, bridge

Content of today’s lecture

• Stochastic games: the Expectiminimax algorithm
• Imperfect information
• Minimax formulation
• Expectiminimax formulation

• Stochastic search, even for deterministic games
• Learned evaluation functions
• Case study: Alpha-Go

Stochastic games

How can we incorporate dice throwing into the game
tree?

Stochastic games

Minimax vs. Expectiminimax
• Minimax:

• Maximize (over all possible moves I can make) the
• Minimum (over all possible moves Min can make) of the
• Reward

!"#$%('()%) = max
/0 /1234

min
789:4 /1234

;%<"=)

• Expectiminimax:
• Maximize (over all possible moves I can make) the
• Minimum (over all possible moves Min can make) of the
• Expected reward

!"#$%('()%) = max
/0 /1234

min
789:4 /1234

> ;%<"=)

> ;%<"=) = ?
1@AB1/34

C=(D"DE#EFG ($FH(I% ×;%<"=)(($FH(I%)

Stochastic games

Expectiminimax:
Compute value of terminal, MAX and MIN nodes like minimax,
but for CHANCE nodes, sum values of successor states weighted
by the probability of each successor

• Value(node) =
§ Utility(node) if node is terminal
§ maxaction Value(Succ(node, action)) if type = MAX
§ minaction Value(Succ(node, action)) if type = MIN
§ sumaction P(Succ(node, action)) * Value(Succ(node, action)) if type

= CHANCE

Expectiminimax example

• RANDOM: Max flips a coin. It’s heads or tails.

• MAX: Max either stops, or continues.

• Stop on heads: Game ends, Max wins (value = $2).

• Stop on tails: Game ends, Max loses (value = -$2).

• Continue: Game continues.

• RANDOM: Min flips a coin.

• HH: value = $2

• TT: value = -$2

• HT or TH: value = 0

• MIN: Min decides whether to keep the current

outcome (value as above), or pay a penalty

(value=$1).

TH

H H TT

2 -2

02 1 1 0 1 -2 1

1 0 0 -2

½ -1

2 -1

½

Expectiminimax summary

• All of the same methods are useful:
• Alpha-Beta pruning
• Evaluation function
• Quiescence search, Singular move

• Computational complexity is pretty bad
• Branching factor of the random choice can be high
• Twice as many “levels” in the tree

Games of Imperfect Information

Imperfect information example

• Min chooses a coin:
• Penny (1 cent): Lincoln
• Nickel (5 cent): Jefferson

• I say the name of a U.S. President.
• If I guessed right, she gives me the coin.
• If I guessed wrong, I have to give her a

coin to match the one she has.

1 -5 5-1

Imperfect information example

• The problem: I don’t know which
state I’m in. I only know it’s one of
these two

1 -5 5-1

Method #1: Treat “unknown” as “random”

• Expectiminimax: treat the unknown
information as random.
• Choose the policy that maximizes

my expected reward.
• “Lincoln”: !" ×1 +

!
"× −5 = −2

• “Jefferson”: !" ×(−1) +
!
" ×5 = 2

• Expectiminimax policy: say
“Jefferson”.
• BUT WHAT IF and are not

equally likely?

1 -5 5-1

Method #2: Treat “unknown” as “unknown”

• Suppose Min can choose whichever coin
she wants. She knows that I will pick
Jefferson – then she will pick the penny!

• Another reasoning: I want to know what
is my worst-case outcome (e.g., to
decide if I should even play this game…)

• The solution: choose the policy that
maximizes my minimum reward.
• “Lincoln”: minimum reward is -5.

• “Jefferson”: minimum reward is -1.

• Miniminimax policy: say “Jefferson”.
1 -5 5-1

How to deal with imperfect information

• If you think you know the probabilities of different settings, and if
you want to maximize your average winnings (for example, you can
afford to play the game many times): expectiminimax
• If you have no idea of the probabilities of different settings; or, if you

can only afford to play once, and you can’t afford to lose:
miniminimax
• If the unknown information has been selected intentionally by your

opponent: use game theory

Miniminimax with imperfect information
•Minimax:
•Maximize (over all possible moves I can make) the
•Minimum
• (over all possible states of the information I don’t know,
• … over all possible moves Min can make) the

• Reward.

!"#$%('()%) = max
/012345673

min
/:;2345673

min4:33:;<
:;=5

>%?"@)

Stochastic games of imperfect information

Source

States are grouped into
information sets for

each player

http://www.sciencemag.org/content/347/6218/145.abstract

Stochastic search

Stochastic search for stochastic games

• The problem with expectiminimax: huge branching factor (many possible outcomes)

! "#$%&' =)
+,-./0

1&23%345467 28692:# ×"#$%&'(28692:#)

• An approximate solution: Monte Carlo search

! "#$%&' ≈
1
@
)
ABC

D

"#$%&'(4E6ℎ &%@'2: G%:#)

• Asymptotically optimal: as @ → ∞, the approximation gets better.
• Controlled computational complexity: choose n to match the amount of

computation you can afford.

Monte Carlo Tree Search
• What about deterministic games with deep trees, large branching

factor, and no good heuristics – like Go?

• Instead of depth-limited search with an evaluation function,
use randomized simulations
• Starting at the current state (root of search tree), iterate:

• Select a leaf node for expansion
using a tree policy (trading off
exploration and exploitation)

• Run a simulation using
a default policy (e.g., random
moves) until a terminal state
is reached

• Back-propagate the outcome
to update the value estimates
of internal tree nodes

C. Browne et al., A survey of Monte Carlo Tree Search Methods, 2012

http://ccg.doc.gold.ac.uk/papers/browne_tciaig12_1.pdf

Monte Carlo Tree Search
Current state = root of tree
Node weights: wins/total playouts for current player
Leaf nodes = nodes where no simulation (”playout”) has been performed yet
1. Selection: Start from root (current state), select successive nodes until a leaf node L is reached
2. Expansion: Unless L is decisive win/loose/draw, create children for L, and choose one child C to expand
3. Simulation: keep choosing moves from C until game is finished
4. Backpropagation: update outcome of game up the tree.

Exploration vs Exploitation (briefly)

• Exploration: how much can we afford to explore the space to gather
more information?
• Exploitation: how can we maximize expected payoff (given the

information we have)

Learned evaluation functions

Stochastic search off-line

Training phase:
• Spend a few weeks allowing your computer to play

billions of random games from every possible starting state
• Value of the starting state = average value of the ending states

achieved during those billion random games

Testing phase:
• During the alpha-beta search, search until you reach a state whose

value you have stored in your value lookup table
• Oops…. Why doesn’t this work?

Evaluation as a pattern recognition problem

Training phase:
• Spend a few weeks allowing your computer to play billions of random games from

billions of possible starting states.
• Value of the starting state = average value of the ending states achieved during those

billion random games
Generalization:
• Featurize (e.g., x1=number of patterns, x2 = number of patterns, etc.)
• Linear regression: find a1, a2, etc. so that Value(state) ≈ a1*x1+a2*x2+…

Testing phase:
• During the alpha-beta search, search as deep as you can, then estimate the value of each

state at your horizon using Value(state) ≈ a1*x1+a2*x2+…

Pros and Cons

• Learned evaluation function
• Pro: off-line search permits lots of compute time, therefore lots of training

data
• Con: there’s no way you can evaluate every starting state that might be

achieved during actual game play. Some starting states will be missed, so
generalized evaluation function is necessary

• On-line stochastic search
• Con: limited compute time
• Pro: it’s possible to estimate the value of the state you’ve reached during

actual game play

Case study: AlphaGo

• “Gentlemen
should not
waste their time
on trivial games
-- they should
play go.”

• -- Confucius,
• The Analects
• ca. 500 B. C. E.

Anton Ninno Roy Laird,
Ph.D.
antonninno@yahoo.com
roylaird@gmail.com

special thanks to Kiseido Publications

AlphaGo
• Deep convolutional

neural networks
• Treat the Go board as an

image
• Powerful function

approximation machinery
• Can be trained to predict

distribution over possible
moves (policy) or
expected value of
position

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature 529,
January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html

AlphaGo
• SL policy network

• Idea: perform supervised learning (SL) to predict human moves

• Given state s, predict probability distribution over moves a, P(a|s)
• Trained on 30M positions, 57% accuracy on predicting human moves
• Also train a smaller, faster rollout policy network (24% accurate)

• RL policy network
• Idea: fine-tune policy network using reinforcement learning (RL)
• Initialize RL network to SL network

• Play two snapshots of the network against each other, update parameters
to maximize expected final outcome

• RL network wins against SL network 80% of the time, wins against open-
source Pachi Go program 85% of the time

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature 529,
January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html

AlphaGo
• SL policy network
• RL policy network
• Value network

• Idea: train network for position evaluation
• Given state s, estimate v(s), expected outcome of play starting with

position s and following the learned policy for both players
• Train network by minimizing mean squared error between actual and

predicted outcome
• Trained on 30M positions sampled from different self-play games

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature 529,
January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html

AlphaGo

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature 529,
January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html

AlphaGo
• Monte Carlo Tree Search
• Each edge in the search tree maintains prior probabilities P(s,a),

counts N(s,a), action values Q(s,a)
• P(s,a) comes from SL policy network
• Tree traversal policy selects actions that maximize Q value plus

exploration bonus (proportional to P but inversely proportional
to N)
• An expanded leaf node gets a value estimate that is a

combination of value network estimate and outcome of
simulated game using rollout network
• At the end of each simulation, Q values are updated to the

average of values of all simulations passing through that edge
D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature 529,

January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html

AlphaGo
• Monte Carlo Tree Search

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature 529,
January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html

AlphaGo

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature 529,
January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html

Alpha-Go video

Game AI: Origins

• Minimax algorithm: Ernst Zermelo, 1912
• Chess playing with evaluation function, quiescence

search, selective search:
Claude Shannon, 1949 (paper)
• Alpha-beta search: John McCarthy, 1956
• Checkers program that learns its own evaluation

function by playing against itself: Arthur Samuel,
1956 (Rodney Brooks blog post)

http://archive.computerhistory.org/projects/chess/related_materials/text/2-0%20and%202-1.Programming_a_computer_for_playing_chess.shannon/2-0%20and%202-1.Programming_a_computer_for_playing_chess.shannon.062303002.pdf
https://rodneybrooks.com/forai-machine-learning-explained/

Game AI: State of the art
• Computers are better than humans:
• Checkers: solved in 2007
• Chess:

• State-of-the-art search-based systems now better than humans
• Deep learning machine teaches itself chess in 72 hours, plays at

International Master Level (arXiv, September 2015)

• Computers are competitive with top human players:
• Backgammon: TD-Gammon system (1992) used reinforcement

learning to learn a good evaluation function
• Bridge: top systems use Monte Carlo simulation and alpha-

beta search
• Go: computers were not considered competitive until AlphaGo

in 2016

https://www.theatlantic.com/technology/archive/2017/07/marion-tinsley-checkers/534111/
http://www.technologyreview.com/view/541276/deep-learning-machine-teaches-itself-chess-in-72-hours-plays-at-international-master/
https://en.wikipedia.org/wiki/TD-Gammon

Game AI: State of the art
• Computers are not competitive with top human players:
• Poker

• Heads-up limit hold’em poker is solved (2015)
• Simplest variant played competitively by humans
• Smaller number of states than checkers, but partial observability makes it difficult
• Essentially weakly solved = cannot be beaten with statistical significance

in a lifetime of playing

• CMU’s Libratus system beats four of the best human players at no-limit
Texas Hold’em poker (2017)

http://www.sciencemag.org/content/347/6218/145.abstract
https://www.wired.com/2017/02/libratus/

http://xkcd.com/1002/

See also: http://xkcd.com/1263/

http://xkcd.com/1002/
http://xkcd.com/1263/

Calvinball:
• Play it online
• Watch an instructional video

https://insaner.com/calvinball/
https://www.youtube.com/watch?v=jr85nM9q08k

