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Sample space, Events, Probabilities

An experiment/trial is a procedure with a well-defined set of possible 
outcomes: flipping a coin, flipping a coin twice in a row, 
The sample space Ω is the set of all possible outcomes

Single coin flips: {Head, Tail}
Sequence of two coin flips: { (Head, Head), (Head, Tail),…}

An event is a subset of the sample space
The empty subset has probability 1
The sample space itself (the set of all outcomes) has probability 1
If A and B are disjoint events, P(A∪B) = P(A) + P(B)



Random variables
• We describe the (uncertain) state of the world using random variables

§ Denoted by capital letters
• R: Is it raining?
• W: What’s the weather?
• D: What is the outcome of rolling two dice?
• S: What is the speed of my car (in MPH)?

• Just like variables in CSPs, random variables take on values in a domain
§ Domain values must be mutually exclusive and exhaustive
• R in {True, False}
• W in {Sunny, Cloudy, Rainy, Snow}
• D in {(1,1), (1,2), … (6,6)}
• S in [0, 200]

• Because domain values are mutually exclusive and exhaustive, 
each random variable defines a partition of the sample space



Random variables

• A random variable can be seen as a function that maps outcomes 
(elements of the sample space) to numbers

f:outcomes→numbers 
• In the partition of the sample space defined by the random variable, 

each number corresponds to one equivalence class of outcomes
• The event “Speed=45mph” is the set of all outcomes for which the 

speed of my car is 45mph:
• I have my foot on the accelerator pedal, 

and I’m traveling 45mph
• My car is being towed, and the tow truck is traveling 45mph
• My car is falling off a cliff, and has reached a terminal velocity of 

45mph…



Random Variables are Uppercase, 
Instances are Lowercase

We use an UPPERCASE letter for a random variable, 
and a lowercase letter for the actual value that it takes after 
any particular experiment. 
• X1 = x1 is the event “random variable X1  takes the value x1”
• X1 is a RV, which is a function, X1:outcomes→numbers 
• x1 is just a number.
So, for example, the statement "# = 3 is a particular outcome 
of the experiment (the outcome in which the variable "# took 
the value of 3).  



Probability Mass Function (pmf) is a 
lowercase p.
• X1 = x1 is the event “random variable X1  takes the value x1”

• p(X1 = x1) is the probability that this event occurs.
• We call this number the “probability mass” of the event X1 = x1
• Shorthand: p(x1) using a small letter x1, implies X1 

• Subscript notation, which we won’t use in this class: !"# $#

• p(X1) (with a capital letter X1) is the probability mass 
function (pmf): a function from values of Xi to probabilities

This is the entire table of the probabilities X1 = x1 
for every possible value x1



Probability Mass Function

• The “Probability Mass Function” (pmf) 
of a random variable X is defined to be 
the function P(X=value), as a function of 
the different possible values.

Wikipedia: “The probability 
mass function of a fair die. All 
the numbers on the die have 
an equal chance of appearing 

on top when the die stops 
rolling.”

https://en.wikipedia.org/wiki/Dice
https://en.wikipedia.org/wiki/Dice


Requirements for a Probability Mass Function

Axioms of Probability

1. #(%) ≥ 0 for every event A

2. 1 = #(+,-.)
3. #(% Ú 0) = #(%) +

#(0) – #(% Ù 0)

Requirements for a pmf

1. #(3 = 4) ≥ 0 for every x

2. 1 = ∑6#(3 = 4)
3. #((3 = 47) Ú(3 = 48)) =

#(3 = 47) + #(3 = 48)
Notice: the last one assumes that 
3 = 47 and 3 = 48 are mutually 
exclusive events.



Expected Value

Expected Value of a random variable 
= the average value of the random variable, 

averaged over an infinite number of independent trials
= the weighted average of the values of the random variable,
where each value is weighted by its probability

NB: The expected value might not be an actual outcome
With P(D = 1) = 0.5 and P(D = 0) = 0.5:  E[D] = 0.5

E[D] = ∑"∈$ P & ×&



Expected Value

Example: D = number of pips showing on a die

Expected Value of a random variable = the average value, averaged 
over an infinite number of independent trials
![#] = lim

)→+
1
- 1× # 01234 # = 1 +⋯+ 6× # 01234 # = 6

= lim
)→+

1
- 1× -/6 +⋯+ 6× -/6 = 3.5



Center of Mass (from physics)

Center of Mass 

= sum{  position * Mass(position)  }



Expected Value = Center of Probability “Mass”

Expected Value of a random variable = the average value, averaged 
over an infinite number of independent trials

= sum{  value * P(variable=value)  }

Wikipedia: “The mass of probability distribution is 
balanced at the expected value.”



Probability Mass Function

• The “Probability Mass Function” (pmf) 
of a random variable X is defined to be 
the function P(X=value), as a function of 
the different possible values.

• Why it’s useful: expected value = center 
of mass. Wikipedia: “The probability 

mass function of a fair die. All 
the numbers on the die have 
an equal chance of appearing 

on top when the die stops 
rolling.”  The expected value is 

3.5.

https://en.wikipedia.org/wiki/Dice
https://en.wikipedia.org/wiki/Dice
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Domain of a Random Variable
• The “Domain” of a Random Variable 

is the set of its possible values.
• The domain can be numerical.  For example:
• The number of pips showing on a die
• The age, in years, of a person that you choose at random 

off the street
• The number of days of sunshine in the month of March
• The minimum temperature tonight, in degrees Celsius

• The domain can also be categorical.  For example:
• The color chosen by a spinner in the game of Twister
• The color of the shirt worn by a person chosen at random
• The type of weather tomorrow: { sunny, cloudy with no 

precipitation, raining, snowing, sleet }



Domain of a Random Variable

• The domain can also be categorical… e.g. colors, etc. 
• Hang on, didn’t you just say random variable map 

outcomes to numbers? 
• How does this work for categorical RVs?
• Solution: Thinking of the outcomes of RVs as numbers is a 

mathematical convenience
• We can map each category label to an integer:
• Red = 1, Blue = 2, … 



Expectation and PMF
• Expected Value is only well defined for numerical 

domains.  
E[X] = sum value * P(X=value)

• pmf is well defined even for categorical domains.  
Example: X = color shown on the spinner
P(X=red) = (1/4)
P(X=blue) = (1/4)
P(X=green) = (1/4)
P(X=yellow) = (1/4)



Size of the Domain = # Different Possible Values
• The domain of a random variable can be finite.

Example: D = value, in dollars, of the next coin you find.   Domain = {1.00, 
0.50, 0.25, 0.10, 0.05, 0.01}, Size of the domain=6.

• The domain of a random variable can be “countably infinite.” 

Example: X = number of words in the next Game of Thrones novel.  No 
matter how large you guess, it’s possible it might be even longer, so we 
say the domain is infinite. 

Requirement: 1 = sum P(X=x)

• The domain of a random variable can be “uncountably infinite.”

Example: a variable whose value can be ANY REAL NUMBER.

How we deal with this: P(X=x) is ill-defined, but P(a≤X<b) is well-defined.



Expectation and PMF
• Expected value can be calculated from PMF only if the 

domain is finite, or countably infinite. 
E[X] = sum value * P(X=value)

Example: X = number of words in the next GoT novel.

E[X] = P(X=1) + 2*P(X=2) + 3*P(X=3) + …

If you know P(X=x) for all x (even if “all x” is an infinite 
set), then you can compute this expectation by solving 
the infinite series.
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Joint probability mass function (joint pmf)

• p(X1=x1,X2=x2,…,XN=xN) refers to the probability of a 
particular outcome (the outcome X1=x1,…,XN=xN).
• Shorthand: p(x1, x2, …, xN)
• Subscript notation, which we won’t use in this class: !"#,…,"&((#, …, (&)

• p(X1, X2, …, XN) refers to the entire joint probability mass 
function, i.e., the entire table, listing all possible outcomes, 
and the probability of each
• P(A) (capital P) refers to the probability of an event 



Joint Random Variables

• For example, suppose W = pips showing on the red die, X 
= pips on purple die, Y = green, Z = blue.
• The following table shows !(#, %, &, '), their joint pmf.

w x y z P(W=w,X=x,Y=y,Z=z)
1 1 1 1 1/1296
1 1 1 2 1/1296

… … …
6 6 6 4 1/1296
6 6 6 5 1/1296
6 6 6 6 1/1296



Marginalization

!(# = %) ='
(
'
)
'
*
!(+ = ,,# = %, . = /, 0 = 1)

Example: if W, X, Y, Z are four independent dice, then the marginal is 
just what you would expect:

! # = % = '
(23

4
'
)23

4
'
*23

4 1
1296 = 1

6



Conditioning

!(# = %|' = () = !(# = %, ' = ()
!(' = ()

Example: if W, X, Y, Z are four independent dice, then the marginal is 
just what you would expect:

! # = 3 , = 3 = ! # = 3, , = 3
! , = 3 = 1/36

1/6 = 1
6



Conditioning

Here’s a surprise.  One of the most useful things you can do with a 
conditional probability is to turn it around, to calculate the joint pmf:

! " = $, & = ' = !(" = $|& = ')!(& = ')



Conditioning+Marginalization

Here’s a surprise.  One of the most useful things you can do with a 
conditional probability is to turn it around, to calculate the joint pmf:

! " = $, & = ' = !(" = $|& = ')!(& = ')

Remember the law for marginalization:

!(" = $) =+
,
!(" = $, & = ')



Conditioning+Marginalization
= Law of Total Probability
Here’s a surprise.  One of the most useful things you can do with a 
conditional probability is to turn it around, to calculate the joint pmf:

! " = $, & = ' = !(" = $|& = ')!(& = ')

Remember the law for marginalization:
!(" = $) =+

,
!(" = $, & = ')

Putting those two things together:
!(" = $) =+

,
!(" = $|& = ')!(& = ')



Law of Total Probability

This is called the “Law of Total Probability:”

!(# = %) ='
(
!(# = %|* = +)!(* = +)



Law of Total Probability
Example:
• Billy Bones said that there is treasure in a treasure chest 

on this island.  
• What is ! "#$%&'#$(ℎ$&* = ,'-- ?
• Two possibilities:

1. Bones lied. 
! "#$%&'#$(ℎ$&* = ,'-- ./0$& -1$2 = 0.0

2. Bones told the truth. 
! "#$%&'#$(ℎ$&* = ,'-- ./0$& */-2 *#'*ℎ = 0.7

• Law of Total Probability:
! "#$%&'#$(ℎ$&* = ,'--
= 0.0×! ./0$& -1$2 + 0.7×! ./0$& *#'$



Random Vector

A Random Vector, "⃗, is a vector of joint random 
variables "⃗ = ["%, "', … , ")].

The pmf of the random vector is defined to be the 
Joint pmf of all of its component variables:

+ "⃗ = ,⃗ = +("% = ,%, "' = ,', … , ") = ,))



Jointly Random Class and Measurement 
Variables
The most important case of joint random variables for AI:  
jointly random categorical (class) and numerical (measurement) variables.

For example, Y= type of fruit, X = weight of the fruit.

We’ll talk A LOT more about this in a few lectures (Bayesian inference).

x y P(X=x,Y=y)
10g Grape 0.68
10g Apple 0.06

100g Grape 0.02
100g Apple 0.34



Random Variables
• Random Variables

• RV = function from outcomes to numbers
• Notation
• Probability Mass Function (pmf)
• Expected Value

• Domain of a Random Variable
• Domain Type: Categorical vs. Numerical
• Domain Size: Finite vs. Countably Infinite vs. Uncountably Infinite

• Joint, Marginal, and Conditional Random Variables
• Marginalization and Conditioning
• Law of Total Probability
• Random Vectors
• Jointly Random Class and Measurement Variables

• Functions of Random Variables
• Probability Mass Function
• Expectation



Functions of Random Variables: PMF
The PMF for a function of random variables is computed the same way 
as any other marginal: by adding up the component probabilities.
Example: ! = # + % + & + '

w x y z s P(W=w,X=x,Y=y,Z=z,S=s)
1 1 1 1 4 1/1296
1 1 1 2 5 1/1296
1 1 2 1 5 1/1296
… … … … … …



Functions of Random Variables: PMF

• There is only one outcome for which S=4, so

! " = 4 = 1
1296

• There are four different outcomes for which S=5, so

! " = 5 = *
*+,- +

*
*+,- +

*
*+,- +

*
*+,- =

/
*+,-

w x y z s P(W=w,X=x,Y=y,Z=z,S=s)
1 1 1 1 4 1/1296
1 1 1 2 5 1/1296
1 1 2 1 5 1/1296
… … … … … …



Functions of Random Variables: Expectation
It’s important to know that, for any function g(X), ![# $ ] ≠ #(! $ )

! # $ = *
+
, ∗ .(# $ = ,)

# ! $ = # *
/
0 ∗ .($ = 0)

Those are not the same thing!!



Functions of Random Variables: Expectation
Example: ![#$] ≠ ![#]$

! #$ = 1$ 1
6 + 2$ 1

6 +⋯+ 6$ 1
6 = 15.1667

![#]$ = 1 1
6 + 2 1

6 +⋯+ 6 1
6

$
= 12.25

Those are not the same thing!!
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