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Motivation: Planning under uncertainty

• Recall: representation for planning
• States are specified as conjunctions of predicates
• Start state: At(Me, UIUC) Ù TravelTime(35min,UIUC,CMI) Ù Now(12:45)
• Goal state: At(Me, CMI, 15:30)

• Actions are described in terms of preconditions and effects:
• Go(t, src, dst)
• Precond: At(Me,src) Ù TravelTime(dt,src,dst) Ù Now(≤t)
• Effect: At(Me, dst, t+dt)



Motivation: Planning under uncertainty
• Let action Go(t) = leave for airport at time t

• Will Go(t) succeed, i.e., get me to the airport in time for the flight?

• Problems:
• Partial observability (road state, other drivers' plans, etc.)
• Noisy sensors (traffic reports)
• Uncertainty in action outcomes (flat tire, etc.)
• Complexity of modeling and predicting traffic

• Hence a purely logical approach either
• Risks falsehood: “Go(14:30) will get me there on time,” or 
• Leads to conclusions that are too weak for decision making:

• Go(14:30) will get me there on time if there's no accident, it doesn't rain, my tires remain intact, etc., etc.
• Go(04:30) will get me there on time



Probability

Probabilistic assertions summarize effects of
• Laziness: reluctance to enumerate exceptions, qualifications, etc.  --- possibly 

a deterministic and known environment, but with computational complexity 
limitations
• Ignorance: lack of explicit theories, relevant facts, initial conditions, etc. ---

environment that is unknown (we don’t know the transition function) or 
partially observable (we can’t measure the current state)
• Intrinsically random phenomena – environment is stochastic, i.e., given a 

particular (action,current state), the (next state) is drawn at random with a 
particular probability distribution
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Making decisions under uncertainty
• Suppose the agent believes the following:

P(Go(deadline-25) gets me there on time) = 0.04 
P(Go(deadline-90) gets me there on time) = 0.70 
P(Go(deadline-120) gets me there on time) = 0.95 
P(Go(deadline-180) gets me there on time) = 0.9999 

• Which action should the agent choose?
• Depends on preferences for missing flight vs. time spent waiting
• Encapsulated by a utility function

• The agent should choose the action that maximizes the expected utility:
Prob(A succeeds) × Utility(A succeeds) + Prob(A fails) × Utility(A fails)



Making decisions under uncertainty
• More generally: the expected utility of an action is defined as:

E Utility Action = ,
-./0-123

4 567859: ;87<5= >7<?<7@(567859:)

• Utility theory is used to represent and infer preferences
• Decision theory = probability theory + utility theory



Where do probabilities come from?
• Frequentism
• Probabilities are relative frequencies
• For example, if we toss a coin many times, 

P(heads) is the proportion of the time the coin will come up heads
• But what if we’re dealing with an event that has never happened before?
• What’s the probability that the Earth will warm by 0.15*F this year?

• Subjectivism
• Probabilities are degrees of belief 
• But then, how do we assign belief values to statements?

• A theoretical problem with Subjectivism: 
Why do “beliefs” need to follow the laws of probability?



The Rational Bettor Theorem
• Why should the beliefs of a rational agent be consistent with the axioms of 

probability?

• For example: why should P(A) + P(¬A) = 1 ?

• Suppose an agent believes that P(A)=0.7, and P(¬A)=0.7

• 1. Bet: if A occurs, agent wins $100.  If A doesn’t occur, agent loses $105.

• Agent believes P(A) = .7 >100/(100+105) = .48, so agent accepts this bet.

• 2. Bet: if ¬A occurs, agent wins $100.  If ¬A doesn’t occur, agent loses $105.

• Agent believes P(¬A) = .7 >100/(100+105) = .48, so agent accepts this bet. Oops…

• Theorem: An agent who holds beliefs inconsistent with axioms of probability 

can be convinced to accept a combination of bets that is guaranteed to lose 

them money



Are humans “rational bettors”?
• Humans are pretty good at estimating some probabilities, 

and pretty bad at estimating others.  
•What might cause humans to mis-estimate the probability of 

an event?
•What are some of the ways in which a “rational bettor” 

might take advantage of humans who mis-estimate 
probabilities?
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Events

• Probabilistic statements are defined over events, or sets of 
world states
§ A = “It is raining”
§ B = “The weather is either cloudy or snowy”
§ C = “I roll two dice, and the result is 11”
§ D = “My car is going between 30 and 50 miles per hour”

• An EVENT is a SET of OUTCOMES
§ B = { outcomes : cloudy OR snowy }
§ C = { outcome tuples (d1,d2) such that d1+d2 = 11 }

§ Notation: P(A) is the probability of the set of world states 
(outcomes) in which proposition A holds



Kolmogorov’s axioms of probability
• For any propositions (events) A, B

§ 0 ≤ P(A) ≤ 1

§ P(True) = 1 and P(False) = 0

§ P(A Ú B) = P(A) + P(B) – P(A Ù B)
– Subtraction accounts for double-counting

• Based on these axioms, what is P(¬A)?

• These axioms are sufficient to completely specify probability theory 
for discrete random variables
• For continuous variables, need density functions

A BAÙB



Outcomes = Atomic events

• OUTCOME or ATOMIC EVENT: is a complete specification of the state 
of the world, or a complete assignment of domain values to all 
random variables
• Atomic events are mutually exclusive and exhaustive

• E.g., if the world consists of only two Boolean variables Cavity and 
Toothache, then there are four outcomes:

Outcome #1: ¬Cavity Ù ¬Toothache
Outcome #2: ¬Cavity Ù Toothache
Outcome #3: Cavity Ù ¬Toothache
Outcome #4: Cavity Ù Toothache
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Joint probability distributions

• A joint distribution is an assignment of probabilities to every possible 
atomic event such that the probabilities sum to 1

• Why does it follow from the axioms of probability that the probabilities of all 
possible atomic events must sum to 1?

Atomic event P
¬Cavity Ù ¬Toothache 0.8
¬Cavity Ù Toothache 0.1
Cavity Ù ¬Toothache 0.05
Cavity Ù Toothache 0.05



Joint probability distributions P(X1, X2, …, XN)

• P(X1, X2, …, XN) refers to the probability of a particular 
outcome (the outcome in which the events X1, X2, …, and 
XN all occur at the same time) 

• P(X1, X2, …, XN) can also refer to the complete TABLE, with 
2" entries, listing the probabilities of X1 either occurring or 
not occurring, X2 either occurring or not occurring, and so 
on.

• This ambiguity, between the probability VALUE and the 
probability TABLE, will be eliminated next lecture, when we 
introduce random variables.



• Suppose we have a joint distribution of N random variables, 
each of which takes values from a domain of size D:
•What is the size of the probability table?
• Impossible to write out completely for all but the smallest 

distributions
•We’ll return to this when we talk about independence 

assumptions

Joint probability distributions P(X1, X2, …, XN)



Marginal distributions: 
from P(X1, …, Xk,… XN) to P(Xk)
• Assume you are given a joint distribution (full table of 

outcomes) P(X1,…, Xk, …, XN) and you want to compute P(Xk) 
• By summing over all possible outcomes of Xi!=k you can 

compute P(Xk). 
• This summation is called marginalization
• The resulting distribution is called a marginal probability 

(although it’s just P(Xk))
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Marginal probability distributions
• From the joint distribution p(X,Y) we can find 

the marginal distributions p(X) and p(Y)

P(Cavity, Toothache)
¬Cavity Ù ¬Toothache 0.8
¬Cavity Ù Toothache 0.1
Cavity Ù ¬Toothache 0.05
Cavity Ù Toothache 0.05

P(Cavity)
¬Cavity ?
Cavity ?

P(Toothache)
¬Toothache ?
Toochache ?



Joint -> Marginal by adding the outcomes
• From the joint distribution p(X,Y) we can find the 

marginal distributions p(X) and p(Y)
• To find p(X = x), sum the probabilities of all atomic 

events where X = x:

• This is called marginalization (we are marginalizing 
out all the variables except X)

! " = 1 = ! " = 1, & = 1
+! " = 1, & = 2
+! " = 1, & = 3
+⋯



Conditional distributions P(Xk | Xi)
• The conditional probability of event Xk, given event Xj, is the probability 

that Xk has occurred if you already know/assume that Xj has occurred.

• The conditional distribution is written P(Xk| Xj). 

• The probability that both Xj and Xk occurred was, originally, P(Xj, Xk).

• But now you know/assume that Xj has occurred.  
So all of the other events are no longer possible.
• Other events: probability used to be P(¬Xj), but now their probability is 0.
• Events in which Xj occurred: probability used to be P(Xj), but now their 

probability is 1.

• So we need to renormalize: the probability that both Xj and Xk occurred, 
GIVEN that Xj has occurred, is P(Xk| Xj)=P(Xj, Xk)/P(Xj).



Conditional Probability: renormalize (divide)
• Probability of cavity given toothache: 

P(Cavity = true | Toothache = true)

• For any two events A and B,  
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P(A Ù B)

If we don’t condition
on A, the set of all 
possible events is this 
rectangle, so the 
whole rectangle has 
probability=1.

If we know/assume that 
B has occurred, the set 
of all possible events 
becomes restricted to  
the set of events in 
which B occurred. So we 
renormalize to make the 
area of this circle = 1.



Conditional probability

• What is p(Cavity = true | Toothache = false)?
p(Cavity|¬Toothache) = 0.05/0.85 = 1/17

• What is p(Cavity = false | Toothache = true)?
p(¬Cavity|Toothache) = 0.1/0.15 = 2/3

P(Cavity, Toothache)
¬Cavity Ù ¬Toothache 0.8
¬Cavity Ù Toothache 0.1
Cavity Ù ¬Toothache 0.05
Cavity Ù Toothache 0.05

P(Cavity)
¬Cavity 0.9
Cavity 0.1

P(Toothache)
¬Toothache 0.85
Toothache 0.15



Conditional distributions
• A conditional distribution is a distribution over the values of 

one variable given fixed values of other variables
P(Cavity, Toothache)
¬Cavity Ù ¬Toothache 0.8
¬Cavity Ù Toothache 0.1
Cavity Ù ¬Toothache 0.05
Cavity Ù Toothache 0.05

P(Cavity | Toothache = true)
¬Cavity 0.667
Cavity 0.333

P(Cavity|Toothache = false)
¬Cavity 0.941
Cavity 0.059

P(Toothache | Cavity = true)
¬Toothache 0.5
Toochache 0.5

P(Toothache | Cavity = false)
¬Toothache 0.889
Toochache 0.111



Normalization trick
• To get the whole conditional distribution p(X | Y = y)

at once, select all entries in the joint distribution table 
matching Y = y and renormalize them to sum to one

P(Cavity, Toothache)

¬Cavity Ù ¬Toothache 0.8

¬Cavity Ù Toothache 0.1

Cavity Ù ¬Toothache 0.05

Cavity Ù Toothache 0.05

Toothache, Cavity = false

¬Toothache 0.8

Toochache 0.1

P(Toothache | Cavity = false)

¬Toothache 0.889

Toochache 0.111

Select

Renormalize



Normalization trick
• To get the whole conditional distribution p(X | Y = y)

at once, select all entries in the joint distribution table 
matching Y = y and renormalize them to sum to one
• Why does it work?
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Product rule and chain rule
• Definition of conditional probability: 

•We can also obtain the joint from the conditional probability

•More generally (the chain rule):
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Product Rule Example: The Birthday problem
•We have a set of n people. What is the probability 

that two of them share the same birthday?
• Easier to calculate the probability that n people do
not share the same birthday

! "#,… , "& distinct
= ! "#, ". distinct ! "#, "., "/distinct|"#, ". distinct …

! "#, "., …"& distinct|"#, …"&1# distinct
!("#, … , "& distinct) = /45

/46
/4/
/46 … /461&7#

/46



The Birthday problem

• For 23 people, the probability of sharing a 
birthday is above 0.5!

http://en.wikipedia.org/wiki/Birthday_problem

http://en.wikipedia.org/wiki/Birthday_problem
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Independence ≠ Mutually Exclusive

• Two events A and B are independent
if and only if p(A Ù B) = p(A, B) = p(A) p(B)
• In other words, p(A | B) = p(A) and p(B | A) = p(B)

•We often make independence assumptions when 
designing models. 
• e.g., Toothache and Weather may be assumed to be 

independent

• Are two mutually exclusive events independent?
• No!  Quite the opposite!  If A and B are mutually exclusive,

and you know A happened, then you know that B didn’t
happen!! Also, 
p(A Ú B) = p(A) + p(B) only if A, B mutually exclusive



Independence ≠ Conditional Independence

• Two events A and B are independent
if and only if p(A Ù B) = p(A) p(B)
• In other words, p(A | B) = p(A) and p(B | A) = p(B)

• Conditional independence: 
A and B are conditionally independent given C iff
p(A Ù B | C) = p(A | C) p(B | C) 
• Equivalent:

p(A | B, C) = p(A | C) 
• Equivalent:

p(B | A, C) = p(B | C) 



Toothache: Boolean 
variable indicating 

whether the patient 
has a toothache

By William Brassey Hole(Died:1917)

Independence ≠ Conditional Independence
Cavity: Boolean 

variable indicating 
whether the 

patient has a cavity

By Aduran, CC-SA 3.0

Catch: whether the 
dentist’s probe 

catches in the cavity

By Dozenist, CC-SA 3.0



These Events are not Independent

• If the patient has a toothache, then it’s likely he has a cavity.  
Having a cavity makes it more likely that the probe will catch on something.

! "#$%ℎ '(($ℎ#%ℎ)) > !("#$%ℎ)
• If the probe catches on something, then it’s likely that the patient has a 

cavity.  If he has a cavity, then he might also have a toothache.
! '(($ℎ#%ℎ) "#$%ℎ) > !('(($ℎ#%ℎ))

• So Catch and Toothache are not independent



…but they are Conditionally Independent

• Here are some reasons the probe might not catch, 
despite having a cavity:
• The dentist might be really careless
• The cavity might be really small

• Those reasons have nothing to do with the toothache!
! "#$%ℎ "#'($), +,,$ℎ#%ℎ- = !("#$%ℎ|"#'($))

• Catch and Toothache are conditionally independent 
given knowledge of Cavity

Dependent Dependent

Conditionally Dependent given knowledge of Cavity



…but they are Conditionally Independent

These	statements	are	all	equivalent:
1 2345ℎ 237849, ;<<4ℎ35ℎ= = 1 2345ℎ 237849

1 ;<<4ℎ35ℎ= 237849, 2345ℎ = 1(;<<4ℎ35ℎ=|237849)
1 ;<<4ℎ35ℎ=, 2345ℎ 237849 = 1(;<<4ℎ35ℎ=|237849) 1 2345ℎ 237849

…and they all mean that Catch and Toothache are conditionally independent 
given knowledge of Cavity

Dependent Dependent

Conditionally Dependent given knowledge of Cavity
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