CS440/ECE448 Lecture 8: Two-Player Games

Slides by Svetlana Lazebnik 9/2016
Modified by Mark Hasegawa-Johnson 2/2019
Why study games?

• Games are a traditional hallmark of intelligence
• Games are easy to formalize
• Games can be a good model of real-world competitive or cooperative activities
 • Military confrontations, negotiation, auctions, etc.
Game AI: Origins

- Minimax algorithm: Ernst Zermelo, 1912
- Chess playing with evaluation function, quiescence search, selective search: Claude Shannon, 1949 (paper)
- Alpha-beta search: John McCarthy, 1956
- Checkers program that learns its own evaluation function by playing against itself: Arthur Samuel, 1956
Types of game environments

<table>
<thead>
<tr>
<th></th>
<th>Deterministic</th>
<th>Stochastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfect information</td>
<td>Chess, checkers, go</td>
<td>Backgammon, monopoly</td>
</tr>
<tr>
<td>(fully observable)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imperfect information</td>
<td>Battleship</td>
<td>Scrabble, poker, bridge</td>
</tr>
<tr>
<td>(partially observable)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Zero-sum Games
Alternating two-player zero-sum games

- Players take **turns**
- Each game **outcome** or **terminal state**
 has a **utility for each player** (e.g., 1 for win, 0 for loss)
- The **sum of both players’ utilities is a constant**
Games vs. single-agent search

We don’t know how the opponent will act

The solution is not a fixed sequence of actions from start state to goal state, but a strategy or policy (a mapping from state to best move in that state)
Game tree

A game of tic-tac-toe between two players, “max” and “min”
COMPLETE MAP OF OPTIMAL TIC-TAC-TOE MOVES

YOUR MOVE IS GIVEN BY THE POSITION OF THE LARGEST RED SYMBOL
ON THE GRID. WHEN YOUR OPPONENT POKS A MOVE, ZOOM IN ON
THE REGION OF THE GRID WHERE THEY WENT. REPEAT.

MAP FOR X:
A more abstract game tree

MAX

A_1 A_2 A_3
A more abstract game tree

MAX

A_1 A_2 A_3

MIN
A more abstract game tree
A more abstract game tree

Terminal utilities (for MAX)

A two-ply game

ply = one move taken by one player
= one layer in the search tree
Minimax Search
Minimax assumptions

• I am MAX and my opponent is MIN

• Every possible outcome has a value (or “utility”) for me (MAX).

• **Zero-sum game:**
 if the value to me is +V, then the value to my opponent (MIN) is –V.

• Phrased another way:
 • *My (MAX’s) rational action*, on each move, is to choose a move that will **MAXIMIZE** the value of the outcome
 • *My opponent (MIN)’s rational action* is to choose a move that will **MINIMIZE** the value of the outcome

• **MAX and MIN will always choose the best (most rational) actions**
Game tree search

- Minimax value of a node: the utility (for MAX) of being in the corresponding state, assuming perfect play on both sides

- Minimax strategy:
 Choose the move that gives the best worst-case payoff

Terminal utilities (for MAX)

3 = max(3, 2, 2)
3 = min(3, 12, 8)
2 = min(2, 4, 6)
2 = min(14, 5, 2)
Computing the minimax value of a node

Minimax(node) =
- Utility(node) if node is terminal
- min_{action} Minimax(Succ(node, action)) if player = MIN
- max_{action} Minimax(Succ(node, action)) if player = MAX
Optimality of minimax

• The minimax strategy is **optimal** against an **optimal opponent**

• What if your opponent is **suboptimal**?
 • Your utility will ALWAYS BE HIGHER than if you were playing an optimal opponent!
 • A different strategy may work better for a sub-optimal opponent, but it will necessarily be worse against an optimal opponent

Example from D. Klein and P. Abbeel
More general games

- More than two players (e.g. red, greed, blue), non-zero-sum
- Utilities are now tuples
- Each player maximizes their own utility at their node
- Utilities get propagated (*backed up*) from children to parents
Alpha-Beta Pruning
Alpha-beta pruning

It is possible to compute the *exact* minimax decision *without expanding every node in the game tree*
Alpha-beta pruning

It is possible to compute the *exact* minimax decision *without expanding every node in the game tree*.
Alpha-beta pruning

It is possible to compute the exact minimax decision without expanding every node in the game tree.
Alpha-beta pruning

It is possible to compute the exact minimax decision without expanding every node in the game tree.
Alpha-beta pruning

It is possible to compute the exact minimax decision without expanding every node in the game tree.
Alpha-beta pruning

It is possible to compute the *exact* minimax decision *without expanding every node in the game tree*.
Alpha-Beta Pruning

Key point that I find most counter-intuitive:

• MIN needs to calculate which move MAX will make.
• MAX would never choose a suboptimal move.
• So if MIN discovers that, at a particular node in the tree, she can make a move that’s REALLY REALLY GOOD for her...
• She can assume that MAX will never let her reach that node.
• ... and she can prune it away from the search, and never consider it again.
Alpha-beta pruning: MIN nodes

• We’re at a **MIN node** n

• α is the value of the **best choice for MAX** found so far at any choice point **above** node n

• More precisely: α is the highest number that MAX knows how to force MIN to accept

• We want to **compute the MIN-value at** n

• As we loop over n’s children, the MIN-value decreases

• If it drops below α, MAX will never choose n, so we can ignore n’s remaining children
Alpha-beta pruning: MAX nodes

- We’re at a **MAX node** m
- β is the value of the **best choice for MIN** found so far at any choice point above node n
- More precisely: β is the **lowest number that MIN knows how to force MAX to accept**
- We want to **compute the MAX-value at m**
- As we loop over m’s children, the MAX-value increases
- If it rises above β, MIN will never choose m, so we can ignore m’s remaining children
Alpha-beta pruning

An unexpected result:

- \(\alpha \) (current best choice for MAX) is the highest number that MAX knows how to force MIN to accept.
- \(\beta \) (current best choice for MIN) is the lowest number that MIN knows how to force MAX to accept.

So \(\alpha \leq \beta \)
Alpha-beta pruning: MIN nodes

Function \(action = \text{Alpha-Beta-Search}(node) \)

\[
v = \text{Min-Value}(node, -\infty, \infty)
\]

return the \(action \) from \(node \) with value \(v \)

\(\alpha\): best alternative available to the Max player

\(\beta\): best alternative available to the Min player

Function \(v = \text{Min-Value}(node, \alpha, \beta) \)

if Terminal(\(node \)) return Utility(\(node \))

\(v = +\infty \)

for each \(action \) from \(node \)

\[
v = \text{Min}(v, \text{Max-Value}(\text{Succ}(node, action), \alpha, \beta))
\]

if \(v \leq \alpha \) return \(v \)

\(\beta = \text{Min}(\beta, v) \)

end for

return \(v \)
Alpha-beta pruning: MAX nodes

Function \(\text{action} = \text{Alpha-Beta-Search}(\text{node}) \)

\[
v = \text{Max-Value}(\text{node}, -\infty, \infty)
\]

return the \(\text{action} \) from \(\text{node} \) with value \(v \)

\(\alpha \): best alternative available to the Max player
\(\beta \): best alternative available to the Min player

Function \(v = \text{Max-Value}(\text{node}, \alpha, \beta) \)

if Terminal(\(\text{node} \)) return Utility(\(\text{node} \))

\[
v = -\infty
\]

for each \(\text{action} \) from \(\text{node} \)

\[
v = \text{Max}(v, \text{Min-Value}(\text{Succ}(\text{node}, \text{action}), \alpha, \beta))
\]

if \(v \geq \beta \) return \(v \)

\[
\alpha = \text{Max}(\alpha, v)
\]

end for

return \(v \)
Alpha-beta pruning

• Pruning does not affect final result
• Amount of pruning depends on move ordering
 • Should start with the “best” moves (highest-value for MAX or lowest-value for MIN)
 • For chess, can try captures first, then threats, then forward moves, then backward moves
 • Can also try to remember “killer moves” from other branches of the tree
• With perfect ordering, the time to find the best move is reduced to $O(b^{m/2})$ from $O(b^m)$
 • Depth of search is effectively doubled
Limited-Horizon Computation
Games vs. single-agent search

We don’t know how the opponent will act

The solution is not a fixed sequence of actions from start state to goal state, but a *strategy* or *policy* (a mapping from state to best move in that state)

Efficiency is critical to playing well

• The time to make a move is limited
• The branching factor, search depth, and number of terminal configurations are huge

 Chess: branching factor ≈ 35 and depth $\approx 100 \Rightarrow$ search tree of 10^{154} nodes

 (Number of atoms in the observable universe $\approx 10^{80}$)
• This rules out searching all the way to the end of the game
Evaluation function

• Cut off search at a certain depth and compute the value of an evaluation function for a state instead of its minimax value
 The evaluation function may be thought of as the probability of winning from a given state or the expected value of that state

• A common evaluation function is a weighted sum of features:

\[
\text{Eval}(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)
\]

For chess, \(w_k \) may be the material value of a piece (pawn = 1, knight = 3, rook = 5, queen = 9) and \(f_k(s) \) may be the advantage in terms of that piece

• Evaluation functions may be learned from game databases or by having the program play many games against itself
Cutting off search

Horizon effect:
You may incorrectly estimate the value of a state by overlooking an event that is just beyond the depth limit
 For example, a damaging move by the opponent that can be delayed but not avoided

Possible remedies
 • Quiescence search: do not cut off search at positions that are unstable – for example, are you about to lose an important piece?
 • Singular extension: a strong move that should be tried when the normal depth limit is reached
Advanced techniques

- **Transposition table** to store previously expanded states
- **Forward pruning** to avoid considering all possible moves
- **Lookup tables** for opening moves and endgames
Chess playing systems

Baseline system: 200 million node evaluations per move (3 min), minimax with a decent evaluation function and quiescence search

5-ply \approx human novice

Add alpha-beta pruning

10-ply \approx typical PC, experienced player

Deep Blue: 30 billion evaluations per move, singular extensions, evaluation function with 8000 features, large databases of opening and endgame moves

14-ply \approx Garry Kasparov

More recent state of the art ([Hydra](#), ca. 2006): 36 billion evaluations per second, advanced pruning techniques

18-ply \approx better than any human alive?
Summary

• A zero-sum game can be expressed as a minimax tree

• Alpha-beta pruning finds the correct solution.
 In the best case, it has half the exponent of minimax
 (can search twice as deeply with a given computational complexity).

• Limited-horizon search is always necessary
 (you can’t search to the end of the game), and always suboptimal.
 • Estimate your utility, at the end of your horizon,
 using some type of learned utility function
 • Quiescence search: don’t cut off the search in an unstable position
 (need some way to measure “stability”)
 • Singular extension: have one or two “super-moves” that you can test at the
 end of your horizon