Planning and Theorem Proving

Slides by Svetlana Lazebnik, 9/2016
with modifications by Mark Hasegawa-Johnson, 1/2019

Planning and Theorem Proving

- Examples
- Automatic Theorem Proving: forward-chaining, backward-chaining
- Planning: forward-chaining, backward-chaining
- Admissible Heuristics for Planning and Theorem Proving
- Number of Steps
- Planning Graph
- Computational Complexity

Example: River Crossing Problems

- A farmer has a fox, a goat, and a bag of beans to get across the river
- His boat will only carry him + one object
- He can't leave the fox with
 the goat
- He can't leave the goat with the bag of beans

Solution

https://en.wikipedia.org/wiki/River crossing puzzle
lower case: on this side of the river upper case: across the river
fgb -----(farmer, goat)----- FGb
fGb $\leftarrow----$ (farmer)
-----(farmer,fox)------ FGb
Fgb Һ--(farmer,goat)------
$----(f a r m e r, b e a n s)---\rightarrow$ FgB
FgB <-------(farmer)--------
$----(f a r m e r, g o a t)----\rightarrow$ FGB

Example: Cargo delivery problem

- You have packages waiting for pickup at Atlanta, Boston, Charlotte, Denver, Edmonton, and Fairbanks
- They must be delivered to Albuquerque, Baltimore, Chicago, Des Moines, El Paso, and Frisco
- You have two trucks. Each truck can hold only two packages at a time.

Example: Design for Disassembly

"Simultaneous Selective Disassembly and End-of-Life Decision Making for Multiple Products That Share Disassembly Operations," Sara Behdad, Minjung Kwak, Harrison Kim and Deborah Thurston. J. Mech. Des 132(4), 2010, doi:10.1115/1.4001207

- Design decisions limit the sequence in which you can disassemble a product at the end of its life
- Problem statement: design the product in order to make disassembly as cheap as possible

(a)

(b)

(c)

Fig. 1 Simple assembly (a), its connection diagram (b), and its disassembly graph (c) [23]

Application of planning: the Gale-Church alignment algorithm for machine translation

Table 2
Output from alignment program.

English
 French

According to our survey, 1988 sales of mineral water and soft drinks were much higher than in 1987, reflecting the growing popularity of these products. Cola drink manufacturers in particular achieved above-average

Quant aux eaux minérales et aux limonades, elles rencontrent toujours plus d'adeptes. En effet, notre sondage fait ressortir des ventes nettement supérieures à celles de 1987, pour les boissons à base de cola notamment. growth rates.
The higher turnover was largely due to an increase in the sales volume.

La progression des chiffres d'affaires résulte en grande partie de l'accroissement du volume des ventes.
Employment and investment levels also L'emploi et les investissements ont égaleclimbed. ment augmenté.

Application of planning: the Gale-Church alignment algorithm for machine translation

1. Let $d\left(x_{1}, y_{1} ; 0,0\right)$ be the cost of substituting x_{1} with y_{1},
2. $d\left(x_{1}, 0 ; 0,0\right)$ be the cost of deleting x_{1},
3. $d\left(0, y_{1} ; 0,0\right)$ be the cost of insertion of y_{1},
4. $d\left(x_{1}, y_{1} ; x_{2}, 0\right)$ be the cost of contracting x_{1} and x_{2} to y_{1},
5. $d\left(x_{1}, y_{1} ; 0, y_{2}\right)$ be the cost of expanding x_{1} to y_{1} and y_{2}, and
6. $d\left(x_{1}, y_{1} ; x_{2}, y_{2}\right)$ be the cost of merging x_{1} and x_{2} and matching with y_{1} and y_{2}.

Example: Tower of Hanoi

https://en.wikipedia.org/wiki/Tower of Hanoi

Description English: This is a visualization generated with the
walnut based on my implementation at [1] of the iterative algorithm described in Tower of Hanoi
Date 30 April 2015
Source I designed this using http://thewalnut.io/
Author Trixx

Planning and Theorem Proving

- Examples
- Automatic Theorem Proving: forward-chaining, backward-chaining
- Planning: forward-chaining, backward-chaining
- Admissible Heuristics for Planning and Theorem Proving
- Number of Steps
- Planning Graph
- Computational Complexity

The Syntax of First-Order Logic (Textbook p. 293)

$$
\begin{gathered}
\text { Sentence } \rightarrow \\
\text { Predicate }(\text { Term, ... }) \\
\mid \neg \text { Sentence } \\
\mid \text { Sentence } \wedge \text { Sentence } \\
\mid \text { Sentence } \vee \text { Sentence } \\
\mid \text { Sentence } \Rightarrow \text { Sentence } \\
\mid \text { Sentence } \Leftrightarrow \text { Sentence } \\
\text { Quantifier Variable, ...Sentence }
\end{gathered}
$$

A "sentence" is

- an predicate applied to a set of terms, or
- a negated sentence, or
- the conjunction of 2 sentences, or
- the disjunction of 2 sentences, or
- an implication, or
- an equivalence, or
- a sentence with a quantified variable.

Term \rightarrow Function(Term)
| Variable |Constant
A "term" is an evaluated function, or a variable, or a constant.

$$
\text { Quantifier } \rightarrow \exists \mid \forall
$$

Terms, Sentences, predicates, functions

- Terms (variables, constants) refer to entities
- Sentences have truth values: they can be true or false
- Predicates and functions look the same -- both are applied to terms: American(x), FatherOf(x),
- When Predicates are applied to terms, the result is a sentence that can be true or false
- When Functions are applied to terms, the result is another entity

Examples (Textbook, p. 330)

English

First-Order Logic Notation

It is a crime for Americans to sell weapons to hostile nations.

Colonel West sold missiles to Ganymede.
Colonel West is American.
Ganymede is an enemy of America.

An enemy of America is a hostile nation.
$\operatorname{Missile}(x) \Rightarrow$ Weapon (x)
Enemy (x, America)
$\Rightarrow \operatorname{Hostile}(x)$

Automatic Theorem Proving

First-Order Logic Notation

American $(x) \wedge$ Weapon $(y) \wedge$
$\operatorname{Sells}(x, y, z) \wedge \operatorname{Hostile}(z)$
$\Rightarrow \operatorname{Criminal}(x)$
$\exists x \operatorname{Missile}(x)$
\wedge Sells(West, x, Ganymede)
American(West)
Enemy(Ganymede, America)
$\operatorname{Missile}(x) \Rightarrow$ Weapon (x)
Enemy (x, America)
$\Rightarrow \operatorname{Hostile}(x)$

Can we prove the theorem:

Criminal(West)?

Actions that a Theorem Prover can Take

- Universal Instantiation:
- given the sentence $\forall x, \operatorname{Predicate}(x)$,
- for any known constant C,
- it is possible to generate the sentence Predicate (C)
- Existential Instantiation:
- given the proposition $\exists x, \operatorname{Predicate}(x)$,
- if no known constant A is known to satisfy $\operatorname{Predicate}(A)$, then
- it is possible to define a new, otherwise unspecified constant B, and
- to generate the sentence Predicate (B).
- Generalized Modus Ponens:
- Given the sentence $p_{1}\left(x_{1}\right) \wedge p_{2}\left(x_{2}\right) \wedge \ldots \wedge p_{n}\left(x_{n}\right) \Rightarrow q\left(x_{1}, \ldots, x_{n}\right)$, and
- given the sentences $p_{1}\left(C_{1}\right), \ldots, p_{n}\left(C_{n}\right)$ for any constants C_{1}, \ldots, C_{n},
- it is possible to generate the sentence $q\left(C_{1}, \ldots, C_{n}\right)$

Automatic Theorem Proving Example

- Existential Instantiation:
- Input: $\exists x, \operatorname{Missile}(x) \wedge \operatorname{Sells}(W e s t, x$, Ganymede)
- Output: Missile $(M) \wedge \operatorname{Sells}(W e s t, M, G a n y m e d e)$
- Generalized Modus Ponens:
- Input: $\operatorname{Missile}(M)$ and $\operatorname{Missile}(x) \Longrightarrow \operatorname{Weapon}(x)$
- Output: Weapon(M)

- Generalized Modus Ponens:

- Input: Enemy(Ganymede,America) and Enemy(x,America) $\Rightarrow \operatorname{Hostile}(x)$
- Output: Hostile(Ganymede)
- Generalized Modus Ponens:
- Input: American $(x) \wedge \operatorname{Weapon}(y) \wedge \operatorname{Sells}(x, y, z) \wedge \operatorname{Hostile}(z) \Longrightarrow \operatorname{Criminal}(x)$ and
American(West),Weapon(M),Sells(West, M, Ganymede), Hostile(Ganymede)
- Output: Criminal(West)

Automatic Theorem Proving as Search

- State = the set of all currently known sentences
- Action = generate a new sentence
- Goal State = a set of sentences that includes the target sentence
(Question to ponder: how do you disprove a target sentence?)

Forward Chaining

- What's Special About Theorem Proving:
- A state, at level n, can be generated by the combination of several states at level $\mathrm{n}-1$.
- Definition: Forward Chaining is a search algorithm in which each action
- generates a new sentence,
- by combining as many different preceding states as necessary.

Example: Forward Chaining to prove q_{3}

Backward Chaining

- What Else is Special About Theorem Proving:
- The "Goal State" is defined to be any set of sentences that includes the target sentence
- Definition: Backward Chaining is a search algorithm in which
- State = \{set of known sentences\}, \{set of desired sentences\}
- Action = apply a known sentence, backward, to a target sentence, in order to generate a new set of desired sentences
- Goal = all "desired sentences" are part of the set of "known sentences"

Example: Backward Chaining to prove q_{3}

KNOWN: $\left\{p_{1}, p_{2}, p_{1} \Rightarrow q_{1}, p_{2} \Rightarrow q_{2}, q_{1} \wedge q_{2} \Rightarrow q_{3}\right\}$

Initial State

 DESIRED: $\left\{q_{3}\right\}$

DESIRED: $\left\{q_{1}, q_{2}\right\}$
Search Tree Level 1

Goal Achieved

Planning and Theorem Proving

- Examples
- Automatic Theorem Proving: forward-chaining, backward-chaining
- Planning: forward-chaining, backward-chaining
- Admissible Heuristics for Planning and Theorem Proving
- Number of Steps
- Planning Graph
- Computational Complexity

Search review

- A search problem is defined by:
- Initial state
- Goal state
- Actions
- Transition model
- Cost

A representation for planning

- STRIPS (Stanford Research Institute Problem Solver): classical planning framework from the 1970s
- States are specified as conjunctions of predicates
- Start state: At(home) \wedge Sells(SM, Milk) \wedge Sells(SM, Bananas) \wedge Sells(HW, drill)
- Goal state: At(home) ^Have(Milk) ^Have(Banana) ^ Have(drill)
- Actions are described in terms of preconditions and effects:
- Go(x, y)
- Precond: At(x)
- Effect: $\neg A t(x) \wedge A t(y)$
- Buy(x, store)
- Precond: At(store) \wedge Sells(store, x)
- Effect: Have(x)
- Planning is "just" a search problem

Planning as Theorem Proving

- A planning action is like a " $p \Rightarrow q$ " statement.
- In order to be applied, it requires certain input sentences to be true. For example, the action "put the goat in the boat" requires, as its precondition, that the boat is empty.
- The result of the action is the generation of an output sentence. For example: "the goat is now in the boat."
- The initial state is a set of sentences that are initially true.
- The goal state is a set of sentences that we want to "prove."

Important differences between Planning and Theorem Proving, \#1: Negating your preconditions

- A planning action may NEGATE some of its preconditions.
- Example: the action "put the goat in the boat" requires, as its precondition, the sentence \neg Boat(goat).
- It generates, as its output, the sentence: Boat(goat).
- No action can combine two world states that contain contradictory sentences.
For example, you can't combine the states $\{p, q\}$ and $\{p, \neg q\}$ to get the state $\{p, q, \neg q\}$.

Algorithms for planning: Forward Chaining

Starting with the start state, find all applicable actions (actions for which preconditions are satisfied), compute the successor state based on the effects, keep searching until goals are met

- Can work well with good heuristics

> At(Home)...

Forward-Chaining Example: Fox, Goat \& Beans

Algorithms for planning: Backward Chaining

Starting with the goal state (a set of target sentences),

- find all applicable actions (actions that would generate a sentence in the goal state).
- For each applicable action, generate the predecessor state as a new set of target sentences.
- Keep searching until all target sentences are in the initial state.

Backward-Chaining Example: Fox, Goat \& Beans

$\{\operatorname{Right}($ Fox), Right(Goat), $\operatorname{Right}($ Beans $)\}$

$\left\{\begin{array}{l}\text { Right(Fox), } \\ \text { Right (Foat), } \\ \text { Boat(Beans) }\end{array}\right\}$

Planning and Theorem Proving

- Examples
- Automatic Theorem Proving: forward-chaining, backward-chaining
- Planning: forward-chaining, backward-chaining
- Admissible Heuristics for Planning and Theorem Proving
- Number of Steps
- Planning Graph
- Computational Complexity

A* Heuristics by Constraint Relaxation

- Heuristics from Constraint Relaxation:

The heuristic $\mathrm{h}(\mathrm{n})$ is the number of steps it would take to get from n to G, if problem constraints were relaxed --- this guarantees that $h(n)$ is admissible

- $h_{1}(n)$ dominates $h_{2}(n)\left(h_{1}(n) \geq h_{2}(n)\right)$
if $h_{1}(n)$ is computed by relaxing fewer constraints.

First heuristic: number of goal sentences left to achieve

Heuristic \#1: Count the number of actions necessary to generate all of the sentences in the goal state that aren't already true.

- What got relaxed: we ignore action pre-requisites.

Example: 6 people on left side of the river, we want 6 people on the right side, we have a 2-person boat.
Minimum \# actions: $h(n)=3$.

Second heuristic: planning graph

A planning graph is a trellis whose stages are:

- Action stages $\left(A_{n}\right)$: list all of the actions whose prerequisites are available in "Sentences stage" S_{n}
- Sentence stages $\left(S_{n+1}\right)$: list all of the sentences that were available in S_{n}, plus any new sentences that could have been generated by any action in A_{n}
And within each stage, we have:
- Mutex links: If ALL actions that generate output sentence p also generate $\neg q$, then the sentences p and q become mutex (mutually exclusive).

Example planning graph

- A_{0} has only two possible actions:
- Do nothing: reproduces the initial state, \{Have(Cake), \neg Eaten(Cake)\}
- Eat(Cake): generates $\{\neg$ Have(Cake), Eaten(Cake)\}
- Therefore, at S_{1}, Have(Cake) is mutex with Eaten(Cake)
- $A_{1}:$ Bake(Cake) \rightarrow Have(Cake), without generating \neg Eaten(Cake), so...
- S_{1} : Have(Cake) and Eaten(Cake) are no longer mutex.

Convergence of the Planning Graph

- \# of mutex links is monotonically non-increasing:

If a pair of sentences are not mutex at stage S_{n}, then they are also not mutex at S_{n+1}

- \# possible actions is monotonically non-decreasing: If an action is possible at stage A_{n}, then it is also possible at A_{n+1}

Heuristic \#2: Number of stages until target sentences are non-mutex

Heuristic: \# stages between the current stage and the first stage at which all of the goal-state sentences are no longer mutex

Planning and Theorem Proving

- Examples
- Automatic Theorem Proving: forward-chaining, backward-chaining
- Planning: forward-chaining, backward-chaining
- Admissible Heuristics for Planning and Theorem Proving
- Number of Steps
- Planning Graph
- Computational Complexity

Complexity

- Planning is PSPACE-complete $>$ NP-complete
- The computational complexity of finding a plan is exponential
- The length of the plan is exponential
- Space necessary to represent it
- Time necessary to implement it
- The only thing that's polynomial: the amount of space necessary to represent the world state while finding or implementing a plan
- Example: towers of Hanoi

Complexity of planning

- Planning is PSPACE-complete
- The length of a plan can be exponential in the number of "objects" in the problem!
- So is game search
- Archetypal PSPACE-complete problem: quantified boolean formula (QBF)
- Example: is this formula true?

$$
\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4}\left(x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(\neg x_{2} \vee x_{3} \vee \neg x_{4}\right)
$$

- Compare to SAT:

$$
\exists x_{1} \exists x_{2} \exists x_{3} \exists x_{4}\left(x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(\neg x_{2} \vee x_{3} \vee \neg x_{4}\right)
$$

- Relationship between SAT and QBF is akin to the relationship between puzzles and games

Real-world planning

- Resource constraints
- Instead of "static," the world is "semidynamic:" we can't think forever
- Actions at different levels of granularity: hierarchical planning
- In order to make the depth of the search smaller, we might convert the world from "fully observable" to "partially observable"
- Contingencies: actions failing
- Instead of being "deterministic," maybe the world is "stochastic"
- Incorporating sensing and feedback
- Possibly necessary to address stochastic or multi-agent environments

