
CS440/ECE 448, Lecture 6:
Constraint Satisfaction Problems

Slides by Svetlana Lazebnik, 9/2016
Modified by Mark Hasegawa-Johnson, 1/2019

8

1

8

5 1

8

4 1

8

3 1

8 5

1

8 4

1

8 3

1

8
2
5 1

8

5 1 9

Content

• What is a CSP? Why is it search? Why is it special?
• Examples: Map Coloring, N-Queens, Cryptarithmetic, Classroom

Assignment
• Formulation as a standard search
• Backtracking Search
• Heuristics to improve backtracking search
• Tree-structured CSPs
• NP-completeness of CSP in general; the SAT problem
• Local search, e.g., hill-climbing

What is search for?
• Assumptions:

single agent; deterministic, fully
observable, discrete environment
• Search for planning
• The path to the goal is the important thing
• Paths have various costs, depths

• Search for assignment
• Assign values to variables

while respecting certain constraints
• The goal (complete, consistent assignment)

is the important thing

Constraint satisfaction problems (CSPs)

• Definition:
• State is defined by N variables Xi with values from domain Di
• Goal test is a set of constraints specifying allowable combinations

of values for subsets of variables.
• Solution is a complete, consistent assignment
• True path costs are all N or ∞.

Any path that works is exactly as good as any other.
• How does this compare to the “generic” tree search formulation?
• Far more states than usual.

BFS and A* are almost never computationally feasible.
• (Hopefully) many different paths to the same solution,

therefore DFS might work.
• Structured state space allows us to use greedy search

with really good heuristics.

Examples

Example: Map Coloring

• Variables: WA, NT, Q, NSW, V, SA, T
• Domains: {red, green, blue}
• Constraints: adjacent regions must have different colors

• Logical representation: WA ≠ NT
• Set representation: (WA, NT) in {(red, green), (red, blue),

(green, red), (green, blue), (blue, red), (blue, green)}

Example: Map Coloring

• Solutions are complete and consistent assignments, e.g.,
WA = red, NT = green, Q = red, NSW = green,
V = red, SA = blue, T = green

Example: n-queens problem

Put n queens on an n × n board with no two queens on
the same row, column, or diagonal

✔✖

Example: N-Queens
Variables: Xij Domains: {0, 1}

Constraints: Set
N queens on board: Si,j Xij = N (??)
Only 1 queen/row: !"#⋀!"% = 0 (Xij, Xik) Î {(0, 0), (0, 1), (1, 0)}
Only 1 queen/column: !"#⋀!() = 0 (Xij, Xkj) Î {(0, 0), (0, 1), (1, 0)}
Only 1 queen/diagonal: !*)⋀!*+(,)+(= 0 (Xij, Xi+k, j+k) Î {(0, 0), (0, 1), (1, 0)}
Only 1 queen/diagonal:!*)⋀!*+(,)-(= 0 (Xij, Xi+k, j–k) Î {(0, 0), (0, 1), (1, 0)

Xij

N-Queens: Alternative formulation

• Variables: Qi

• Domains: {1, … , N}

• Constraints:
" i, j non-threatening (Qi , Qj)

Q2

Q1

Q3

Q4

Example: Crossword Puzzle
•Variables: 193 squares
•Domains: {a,b,…,z}
•Constraints:

Each row-segment is a word
from the dictionary.

Each column-segment is a
word
from the dictionary.

Example: Cryptarithmetic
• Variables: T, W, O, F, U, R, X, Y
• Domains: {0, 1, 2, …, 9}
• Constraints:

O + O = R + 10 * Y
W + W + Y = U + 10 * X
T + T + X = 10 * F
Alldiff(T, W, O, F, U, R, X, Y)
T ≠ 0, F ≠ 0, X ≠ 0

X Y

Real-world CSPs
• Assignment problems
• e.g., who teaches what class

• Timetable problems
• e.g., which class is offered when and where?

• Transporta9on scheduling
• Factory scheduling

•More examples of CSPs: hDp://www.csplib.org/

http://www.csplib.org/

Formulation as a standard
search

Standard search formulation (incremental)
• States: Variables and values assigned so far

• Initial state: The empty assignment

• Action: Choose any unassigned variable and assign to it
a value that does not violate any constraints

Fail if no legal assignments

• Goal test: The current assignment is complete
and satisfies all constraints

Standard search formulation (incremental)
What is the depth of any solution (assuming N variables)?

Answer: N (this is good)
Given that there are D possible values for any variable,
how many paths are there in the search tree?

Answer: N! DN (this is bad)
All paths have the same depth,
so DFS and BFS have the same complexity (O(N! DN))
Other reasons to use DFS:
• There are usually many paths to the solution (at least N!)
• Often, if a path fails, we can detect this early

• Today’s goal: develop heuristics to reduce the branching factor

Backtracking search

Backtracking search
In CSP’s, variable assignments are commuta've

For example, [WA = red then NT = green]
is the same as [NT = green then WA = red]

We only need to consider assignments to a single variable at each
level (i.e., we fix the order of assignments)

Then there are only DN paths. We have eliminated the N!
redundancy by arbitrarily choosing an order in which to assign
variables.

• Depth-first search for CSPs with single-variable assignments
is called backtracking search

Example

Example

Example

Example

Backtracking search algorithm

• Making backtracking search efficient:
• Which variable should be assigned next?
• In what order should its values be tried?
• Can we detect inevitable failure early?

Heuris'cs for making
backtracking search

more efficient

Heuris'cs for making backtracking search
more efficient

Still DFS, but we use heuristics to decide which child to expand first.
You could call it GDFS…
• Heuristics that choose the next variable to assign:
• Least Remaining Values (LRV)
• Most Constraining Variable (MCV)

• Heuristic that chooses a value for that variable:
• Least Constraining Assignment (LCA)

• Early detection of failure:
• Forward Checking
• Arc Consistency

Which variable should be assigned next?

• Least Remaining Values (LRV) Heuristic:
• Choose the variable with the fewest legal values

Which variable should be assigned next?
• Least Remaining Values (LRV) Heuristic:
• Choose the variable with the fewest legal values

??

Which variable should be assigned next?

• Most Constraining Variable (MCV) Heuris4c:
• Choose the variable that imposes the most constraints

on the remaining variables
• Tie-breaker among variables that have equal numbers of LRV

Which variable should be assigned next?

??

• Most Constraining Variable (MCV) Heuristic:
• Choose the variable that imposes the most constraints

on the remaining variables
• Tie-breaker among variables that have equal numbers of MRV

Given a variable, in which order should its
values be tried?

• Least Constraining Assignment (LCA) Heuristic:
• Try the following assignment first: to the variable you’re

studying, assign the value that rules out the fewest values
in the remaining variables

Given a variable, in which order should its
values be tried?

• Least Constraining Assignment (LCA) Heuris3c:
• Try the following assignment first: to the variable you’re

studying, the value that rules out the fewest values in the
remaining variables

Which assignment
for Q should we

choose?

Early detection of failure

Apply inference to reduce the space of possible
assignments and detect failure early

Early detection of failure: O(N) checking

• Forward Checking:
• Check to make sure that every variable still has at least one possible

assignment

Early detection of failure: O(N) checking
Forward checking

• Keep track of remaining legal values for unassigned variables
• Terminate search when any variable has no legal values

WA T NT NSW Q SA V

Early detec+on of failure: O(N) checking
Forward checking

• Keep track of remaining legal values for unassigned variables
• Terminate search when any variable has no legal values

WA T NT NSW Q SA V

Early detection of failure: O(N) checking
Forward checking

• Keep track of remaining legal values for unassigned variables
• Terminate search when any variable has no legal values

WA T NT NSW Q SA V

Early detection of failure: O(N) checking
Forward checking

• Keep track of remaining legal values for unassigned variables
• Terminate search when any variable has no legal values

WA T NT NSW Q SA V

Stop!

Early detection of failure: O(N2) checking

• Constraint propagation:
• Check to make sure that every PAIR of variables still has a pair-wise

assignment that satisfies all constraints

Early detection of failure: O(N2) checking

Apply inference to reduce the space of possible
assignments and detect failure early

(Reminder: there are only three colors, RGB…)

Constraint propagation
Forward checking propagates informa.on from assigned to
unassigned variables, but doesn't provide early detec6on
for all failures

• NT and SA cannot both be blue!
• Constraint propaga6on repeatedly enforces

constraints locally

• Simplest form of propaga/on makes each pair of variables
consistent:
• X àY is consistent iff for every value of X there is some allowed value of Y

Constraint propagation algorithm: Arc consistency

Consistent?

• Simplest form of propagation makes each pair of variables
consistent:
• X àY is consistent iff for every value of X there is some allowed value of Y

Consistent?

Constraint propagation algorithm: Arc consistency

• Simplest form of propagation makes each pair of variables
consistent:
• X àY is consistent iff for every value of X there is some allowed value of Y
• When checking X àY, throw out any values of X for which there isn’t an

allowed value of Y

Constraint propaga,on algorithm: Arc consistency

• Simplest form of propaga/on makes each pair of variables
consistent:
• X àY is consistent iff for every value of X there is some allowed value of Y
• When checking X àY, throw out any values of X for which there isn’t an

allowed value of Y

• If X loses a value, all pairs Z à X need to be rechecked

Constraint propagation algorithm: Arc consistency

• Simplest form of propagation makes each pair of variables
consistent:
• X àY is consistent iff for every value of X there is some allowed value of Y
• When checking X àY, throw out any values of X for which there isn’t an

allowed value of Y

• If X loses a value, all pairs Z à X need to be rechecked

Constraint propagation algorithm: Arc consistency

• Simplest form of propagation makes each pair of variables
consistent:
• X àY is consistent iff for every value of X there is some allowed value of Y
• When checking X àY, throw out any values of X for which there isn’t an

allowed value of Y

• Arc consistency detects failure earlier than forward checking
• Can be run before or after each assignment

Constraint propagation algorithm: Arc consistency

Arc consistency algorithm AC-3

Does arc consistency always detect the lack of
a solu4on?

• There exist stronger no-ons of consistency (path
consistency, k-consistency), but we won’t worry
about them

A
B

C
D

A

B

C

D

Tree-structured CSPs

Tree-structured CSPs
• Certain kinds of CSPs can be

solved without resorting to
backtracking search!

• Tree-structured CSP:
constraint graph does not
have any loops

Source: P. Abbeel, D. Klein, L. Zettlemoyer

Algorithm for tree-structured CSPs
• Choose one variable as root, order variables from root to leaves

such that every node's parent precedes it in the ordering

h9p://cs188ai.wikia.com/wiki/Tree_Structure_CSPs

http://cs188ai.wikia.com/wiki/Tree_Structure_CSPs

Algorithm for tree-structured CSPs
• Choose one variable as root, order variables from root to leaves

such that every node's parent precedes it in the ordering
• Create a graph listing all of the values that can be assigned to each

variable.

http://cs188ai.wikia.com/wiki/Tree_Structure_CSPs

http://cs188ai.wikia.com/wiki/Tree_Structure_CSPs

Algorithm for tree-structured CSPs
• Choose one variable as root, order variables from root to leaves

such that every node's parent precedes it in the ordering
• Create a graph listing all of the values that can be assigned to each

variable.
• BACKWARD ARC CONSISTENCY: check arc consistency starting from

the rightmost node and going backwards

http://cs188ai.wikia.com/wiki/Tree_Structure_CSPs

XXX

http://cs188ai.wikia.com/wiki/Tree_Structure_CSPs

Algorithm for tree-structured CSPs
• Choose one variable as root, order variables from root to leaves such

that every node's parent precedes it in the ordering
• Create a graph listing all of the values that can be assigned to each

variable.
• BACKWARD ARC CONSISTENCY: check arc consistency starting from the

rightmost node and going backwards
• FORWARD ASSIGNMENT PHASE: select an element from the domain of

each variable going left to right. We are guaranteed that there will be a
valid assignment because each arc is consistent

http://cs188ai.wikia.com/wiki/Tree_Structure_CSPs

http://cs188ai.wikia.com/wiki/Tree_Structure_CSPs

Algorithm for tree-structured CSPs
• If N is the number of variables and D is the domain

size, what is the running time of this algorithm?

• O(ND2): we have to check arc consistency once for every
node in the graph (every node has one parent), which
involves looking at pairs of domain values

Nearly tree-structured CSPs

• Cutset condi+oning:
find a subset of variables whose removal makes the graph a tree,
instan8ate that set in all possible ways,
prune the domains of the remaining variables
and try to solve the resul8ng tree-structured CSP
• Cutset size c gives run8me O(Dc (N – c)D2)

Source: P. Abbeel, D. Klein, L. ZeLlemoyer

NP-Completeness and the
SAT Problem

Algorithm for tree-structured CSPs
• Running time is O(ND2)

(N is the number of variables, D is the domain size)
• We have to check arc consistency once for every node in the

graph (every node has one parent), which involves looking at
pairs of domain values

• What about backtracking search for general CSPs?
• Worst case O(DN)

• Can we do better?

Computational complexity of CSPs
The satisfiability (SAT) problem:

Given a Boolean formula, is there an assignment of the variables that makes

it evaluate to true?

SAT is NP-complete
• NP: a class of decision problems for which

• the “yes” answer can be verified in polynomial time

• no known algorithm can find a “yes” answer,
from scratch, in polynomial time

• An NP-complete problem is a) in NP, and b) every other problem in NP can

be efficiently reduced to it (Cook, 1971)

• Other NP-complete problems:

graph coloring, n-puzzle, generalized sudoku

• It is not known whether P = NP,

i.e., no efficient algorithms for solving SAT in general are known

http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/Np_completeness
http://en.wikipedia.org/wiki/P_versus_NP_problem

Local search,
e.g., hill climbing

Local search for CSPs
• Start with “complete” states (all variables assigned)
• Allow states with unsa6sfied constraints (those have conflicts)
• A9empt to improve states by reassigning variable values
• Hill-climbing search:

• In each itera6on, randomly select any conflicted variable
and choose the value that violates the fewest constraints

• I.e., a9empt to greedily minimize the total number of violated constraints

h = number of conflicts

Local search for CSPs
• Start with “complete” states (all variables assigned)
• Allow states with unsatisfied constraints (those have conflicts)
• Attempt to improve states by reassigning variable values
• Hill-climbing search:

• In each iteration, randomly select any conflicted variable
and choose the value that violates the fewest constraints

• I.e., attempt to greedily minimize the total number of violated constraints
• Problem: Local minima

h = 1

Applications that look a lot
like intelligence…

CSP in computer vision:
Line drawing interpretation

An example polyhedron:

Domains:
+ (convex),
– (concave),
® (occluding),
¬ (occluding

Variables: edges

David Waltz, 1975

Desired output:

http://en.wikipedia.org/wiki/David_Waltz

CSP in computer vision:
Line drawing interpretation

Four vertex types:

Constraints imposed by each vertex type:

David Waltz, 1975

http://en.wikipedia.org/wiki/David_Waltz

CSP in computer vision: 4D Ci4es

G. Schindler, F. Dellaert, and S.B. Kang, Inferring Temporal Order of Images From 3D Structure,
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2007.

1. When was each photograph taken?
2. When did each building first appear?
3. When was each building removed?

Set of Photographs:
Set of Objects:

Buildings

http://www.cc.gatech.edu/~phlosoft/

http://www.cc.gatech.edu/~phlosoft/files/schindler07cvpr.pdf
http://www.cc.gatech.edu/~phlosoft/

CSP in computer vision: 4D Cities

• Goal: reorder images (columns) to have as few viola8ons as possible

observed missing occluded
Columns: images
Rows: points

Violates constraints:

Satisfies constraints:

CSP in computer vision: 4D Cities
• Goal: reorder images (columns) to have as few viola6ons as possible
• Local search: start with random ordering of columns, swap columns or

groups of columns to reduce the number of conflicts

• Can also reorder the rows to group together points that appear and
disappear at the same 6me – that gives you buildings

Summary
• CSPs are a special kind of search problem:
• States defined by values of a fixed set of variables
• Goal test defined by constraints on variable values

• Backtracking = depth-first search where successor states
are generated by considering assignments to a single variable
• Variable ordering and value selection heuristics can help significantly
• Forward checking prevents assignments that guarantee later failure
• Constraint propagation (e.g., arc consistency) does additional work to constrain

values and detect inconsistencies

• Complexity of CSPs
• NP-complete in general (exponential worst-case running time)
• Efficient solutions possible for special cases (e.g., tree-structured CSPs)

• Alternatives to backtracking search: local search

