
Lecture 5: Search
informed by
lookahead heuristics:
Greedy, Admissible
A*, Consistent A*
Mark Hasegawa-Johnson, January 2019

With some slides by Svetlana Lazebnik, 9/2016
Distributed under CC-BY 3.0

Title image: By Harrison Weir - From reuseableart.com,
Public Domain,
https://commons.wikimedia.org/w/index.php?curid=47
879234

Outline of lecture

1. Search heuristics

2. Greedy best-first search: minimum h(n)

3. Nearly-A*: f(n)=h(n)+g(n)

4. A*: Optimal search

5. Bad interaction between A* and the explored set

6. Dijkstra = A* with h(n)=0

7. Designing heuristics: Relaxed problem, Sub-problem, Dominance

Review: DFS and BFS

• Depth-first search
• LIFO: expand the deepest node (farthest from START)
• Pro: reach the end of the path as quickly as possible (space is !{#$}).

Good if there are many paths to goal.
• Con: not optimal, or even complete. Time is !{#&}.

• Breadth-first search
• FIFO: expand the shallowest node (closest to START)
• Pro: complete and optimal. Time is !{#'}
• Con: no path is found until the best path is found. Space is !{#'}.

Why don’t we just measure…

Instead of FARTHEST FROM START (DFS):
why not choose the node that’s CLOSEST TO GOAL?

Why not choose the node CLOSEST TO GOAL?

• Answer: because we don’t know
which node that is!!

• Example: which of these two is
closest to goal?

Start state

Goal state

We don’t know which state is closest to goal

• Finding the shortest path is
the whole point of the search
• If we already knew which state

was closest to goal, there would
be no reason to do the search
• Figuring out which one is closest,

in general, is a complexity ! "#
problem.

Start state

Goal state

Search heuristics: estimates of distance-to-goal
• Often, even if we don’t know

the distance to the goal,
we can estimate it.
• This estimate is called a
heuristic.
• A heuristic is useful if:

1. Accurate: ℎ(#) ≈ &(#), where
ℎ(#) is the heuristic estimate,
and &(#) is the true distance to
the goal

2. Cheap: It can be computed in
complexity less than ' ()

Start state

Goal state

Example heuristic: Manhattan distance

If there were no walls in the maze,
then the number of steps from
position ("#, %#) to the goal
position ("', %') would be

ℎ()) = |"# − "'| + |%# − %'|

Start state

Goal state

""# "'

%'

%#

If there were no walls, this would
be the path to goal: straight down,
then straight right.

Outline of lecture

1. Search heuristics

2. Greedy best-first search: minimum h(n)

3. Nearly-A*: f(n)=h(n)+g(n)

4. A*: Optimal search

5. Bad interaction between A* and the explored set

6. Dijkstra = A* with h(n)=0

7. Designing heuristics: Relaxed problem, Sub-problem, Dominance

Greedy Best-First Search

Instead of FARTHEST FROM START (DFS):
why not choose the node whose

HEURISTIC ESTIMATE
indicates that it might be

CLOSEST TO GOAL?

Greedy Search Example

According to the Manhattan
distance heuristic, these two
nodes are equally far from the
goal, so we have to choose one at
random.

Start state

Goal state

Greedy Search Example

If our random choice goes badly,
we might end up very far from the
goal.

= states in the explored set

= states on the frontier

Start state

Goal state

The problem with Greedy Search

Having gone down a bad path, it’s
very hard to recover, because
now, the frontier node closest to
goal (according to the Manhattan
distance heuristic) is this one:

Start state

Goal state

The problem with Greedy Search

That’s not a useful path… Start state

Goal state

The problem with Greedy Search

Neither is that one… Start state

Goal state

What went wrong?

Outline of lecture

1. Search heuristics

2. Greedy best-first search: minimum h(n)

3. Nearly-A*: f(n)=h(n)+g(n)

4. A*: Optimal search

5. Bad interaction between A* and the explored set

6. Dijkstra = A* with h(n)=0

7. Designing heuristics: Relaxed problem, Sub-problem, Dominance

The problem with Greedy Search
Among nodes on the frontier,
this one seems closest to goal
(smallest ℎ(#), where ℎ(#) ≈ &(#)).

But it’s also farthest from the start.
Let’s say '(#) = total path cost so far.

So the total distance from start to goal,
going through node #, is

(# = ' # + & #
≈ ' # + ℎ(#)

Start state

Goal state

The problem with Greedy Search
Of these three nodes, this one has
the smallest ! " + ℎ(").

So if we want to find the lowest-
cost path, then it would be better
to try that node at the top,
instead of this one at the bottom.

Start state

Goal state

Smart Greedy Search
In fact, let’s back up. Already, at
this point in the search, this node
has the smallest ! " + ℎ(").

Start state

Goal state

Smart Greedy Search
So we move forward along THAT
path instead, until we reach this
point, where all three nodes have
the same ! " + ℎ(").

Start state

Goal state

Smart Greedy Search
Moving forward on all three
paths…

Start state

Goal state

Smart Greedy Search
All of the new star nodes here had
EXACTLY THE SAME value of
! " + ℎ " = 34.

Now these four circles, shown
here, are the new frontier, the set
of nodes with ! " + ℎ " = 35

Start state

Goal state

Smart Greedy Search
! " + ℎ " = 36 Start state

Goal state

Smart Greedy Search
! " + ℎ " = 37 Start state

Goal state

Smart Greedy Search
! " + ℎ " = 41 Start state

Goal state

And so on…

I’m going to stop using this maze, at this point,
because this maze was designed (by an author on

Wikipedia) to be uniquely bad for A* search.
A* search, on this maze, is just as bad as BFS.

Usually, A* search is much better than BFS.
But not always.

“Almost-A* Search”
• Idea: avoid expanding paths that are already expensive
• The evaluation function f(n) is the estimated total cost of the

path through node n to the goal:

f(n) = g(n) + h(n)

g(n): cost so far to reach n (path cost)
h(n): estimated cost from n to goal (heuristic)

• This is called A* search if and only if the heuristic, h(n),
is admissible. That’s a term I’ll define a few slides from now.
But first, let’s look at an example where A* is much better
than BFS.

BFS vs. A* Search
The heuristic h(n)=Manhattan distance favors nodes on the main diagonal.
Those nodes all have the same g(n)+h(n), so A* evaluates them first.

Source: Wikipedia

http://en.wikipedia.org/wiki/File:Astar_progress_animation.gif

Outline of lecture

1. Search heuristics

2. Greedy best-first search: minimum h(n)

3. Nearly-A*: f(n)=h(n)+g(n)

4. A*: Optimal search

5. Bad interaction between A* and the explored set

6. Dijkstra = A* with h(n)=0

7. Designing heuristics: Relaxed problem, Sub-problem, Dominance

Problems with “Almost-A*”

• “Almost-A*” search looks pretty good! So are we done?

• There’s one more problem. What, exactly, do we mean by the
squiggly lines in these two equations:

Distance from n to Goal is “approximately” h(n):
!(#) ≈ ℎ(#)

Total cost of the path through n is “approximately” g(n)+h(n)
'(#) ≈ (# + ℎ(#)

Problems with “Almost A*”

• Suppose we’ve found one path to !; the path goes through node ".
Since we’ve calculated the whole path, we know its total path cost to
be # " .
• Suppose that, for every other node on the frontier % , we have

& % + ℎ(%) > # "
Does that mean that # " is really the best path?

• No!! Because all we know is that #(%) ≈ & % + ℎ(%).
• “Approximately” allows the possibility that # % < & % + ℎ(%).
• Therefore it’s possible that #(%) < # " .

S
n

m
G

"

≈ ℎ %& %

Admissible heuristic

• We want to guarantee that
! " ≥ $ " + ℎ(")

• Then if we can find a best path,), such that for every node " left on
the frontier,

ℎ " + $ " ≥ !())
• Then we are guaranteed that there is no better node. We are

guaranteed that for every node " that is not on the path),
!(") ≥ ℎ " + $ " ≥ !())

S
n

m
G

!)

≥ ℎ "$ "

Admissible heuristic

• Remember that the total path cost is ! " = $ " + &("). So in
order to guarantee that

! " ≥ $ " + ℎ(")
we just need

&(") ≥ ℎ "
Definition: A heuristic ℎ " is admissible if &(") ≥ ℎ " ,
i.e., if the heuristic is guaranteed to be less than or equal to the
remaining path cost from node n to the goal state.

S
n

m
G

! +

≥ ℎ "$ "

A* Search

Definition: A* SEARCH
• If ℎ " is admissible ($(") ≥ ℎ "), and
• if the frontier is a priority queue sorted according to ' " + ℎ("),

then
• the FIRST path to goal uncovered by the tree search, path),

is guaranteed to be the SHORTEST path to goal
(ℎ " + ' " ≥ *()) for every node " that is not on path))

S
n

m
G

*)

≥ ℎ "' "

Example A* Search: Manhattan Distance

• Manhattan distance is
guaranteed to be less than or
equal to the true path to goal
• Therefore, “smart greedy”

search with Manhattan distance
heuristic = A* Search

Outline of lecture

1. Search heuristics

2. Greedy best-first search: minimum h(n)

3. Smart greedy: f(n)=h(n)+g(n)

4. A*: Optimal search

5. Bad interaction between A* and the explored set

6. Dijkstra = A* with h(n)=0

7. Designing heuristics: Relaxed problem, Sub-problem, Dominance

Bad interaction between A* and the explored set

Frontier
S: g(n)+h(n)=2, parent=none

Explored Set

Select from the frontier: S

Bad interaction between A* and the explored set

Frontier
A: g(n)+h(n)=5, parent=S
B: g(n)+h(n)=2, parent=S

Explored Set
S

Select from the frontier: B

Bad interaction between A* and the explored set

Frontier
A: g(n)+h(n)=5, parent=S
C: g(n)+h(n)=4, parent=B

Explored Set
S, B

Select from the frontier: C

Bad interaction between A* and the explored set

Frontier
A: g(n)+h(n)=5, parent=S
G: g(n)+h(n)=6, parent=C

Explored Set
S, B, C

Select from the frontier: A

Bad interaction between A* and the explored set

Frontier
G: g(n)+h(n)=6, parent=C
• Now we would place C in the

frontier, with parent=A and
h(n)+g(n)=3, except that C was
already in the explored set!

Explored Set
S, B, C

Select from the frontier: Would be
C, but instead it’s G

Bad interaction between A* and the explored set

Return the path S,B,C,G
Path cost = 6

OOPS

Bad interaction between A* and the explored set:
Three possible solutions

1. Don’t use an explored set
• This option is OK for any finite state space, as long as you check for loops.

2. Nodes on the explored set are tagged by their h(n)+g(n).
If you find a node that’s already in the explored set,
test to see if the new h(n)+g(n) is smaller than the old one.
• If so, put the node back on the frontier

• If not, leave the node off the frontier

3. Use a heuristic that’s not only admissible, but also consistent.

Consistent (monotonic) heuristic

Definition: A consistent heuristic is one for which,
for every pair of nodes in the graph,
! " − ! $ ≥ ℎ " − ℎ $.

In words: the distance between any pair of nodes is greater than or equal
to the difference in their heuristics.

S
n

m
p

g '

! " − !($)
≥ ℎ " − ℎ($)

* "

! ' − !($)

A* with an inconsistent heuristic

Frontier
A: g(n)+h(n)=5, parent=S
C: g(n)+h(n)=4, parent=B

Explored Set
S, B

Select from the frontier: C

A* with a consistent heuristic

Frontier
A: g(n)+h(n)=2, parent=S
C: g(n)+h(n)=4, parent=B

Explored Set
S, B

Select from the frontier: A

h=1

A* with a consistent heuristic

Frontier
.
C: g(n)+h(n)=2, parent=A

Explored Set
S, B, A

Select from the frontier: C

h=1

A* with a consistent heuristic

Frontier
.
G: g(n)+h(n)=5, parent=C

Explored Set
S, B, A, C

Select from the frontier: G

h=1

How consistency works

Suppose that, on the best path from start to node !, node " is !’s parent, and say that # ") − #(! is the
distance between them. Then the distance from start to node ! is

' ! = ' " + (# ") − #(!) ≤ ' + + (# +) − #(!)

Definition: A consistent heuristic is one for which, for every pair of nodes in the graph, # +) − #(! ≥ ℎ + −
ℎ ! .
Implication:

' ! ≥ ' " + ℎ ") − ℎ(!

' ! + ℎ(!) ≥ ' " + ℎ(")

• ' ! + ℎ ! is	monotonically	non-decreasing	along	the	path!!		So	it	is	guaranteed	that	node	m	is	expanded	
before	node	p.		(We	have	no	such	guarantees	about	node	n).

• By the time node p is popped from the frontier, it might have been inserted onto the frontier by many different
paths. Each path uses the same h(p), but computes a different g(p). The shortest one (through node m) is
guaranteed to already be on the frontier by that time, and is guaranteed to have inserted the best g(p).

S
n

m
p

g "

' +

" − #(!)

? ≥ ℎ + − ℎ(!)

Bad interaction between A* and the explored set:
Three possible solutions
1. Don’t use an explored set.

This works for the MP!
2. If you find a node that’s already in the explored set, test to see if

the new h(n)+g(n) is smaller than the old one.
Most students find that this is the most computationally efficient

solution to the multi-dots problem.
3. Use a consistent heuristic.
This works for the single-dot problem, because Manhattan distance is

a consistent heuristic.

Outline of lecture

1. Search heuristics

2. Greedy best-first search: minimum h(n)

3. Smart greedy: f(n)=h(n)+g(n)

4. A*: Optimal search

5. Bad interaction between A* and the explored set

6. Dijkstra = A* with h(n)=0

7. Designing heuristics: Relaxed problem, Sub-problem, Dominance

The trivial case: h(n)=0

• A heuristic is admissible if and only if
!(#) ≥ ℎ # for every #.

• A heuristic is consistent if and only if
! #, (≥ ℎ # − ℎ (for every # and (.

• Both criteria are satisfied by ℎ # = 0.

Dijkstra = A* with h(n)=0

• Suppose we choose ℎ " = 0
• Then the frontier is a priority queue sorted by

% " + ℎ " = %(")
• In other words, the first node we pull from the queue is the

one that’s closest to START!! (The one with minimum % ").
• So this is just Dijkstra’s algorithm!

Outline of lecture

1. Search heuristics

2. Greedy best-first search: minimum h(n)

3. Smart greedy: f(n)=h(n)+g(n)

4. A*: Optimal search

5. Bad interaction between A* and the explored set

6. Dijkstra = A* with h(n)=0

7. Designing heuristics: Relaxed problem, Sub-problem, Dominance

Designing heuristic functions
Now we start to see things that actually resemble the multi-dot problem…

• Heuristics for the 8-puzzle
h1(n) = number of misplaced tiles
h2(n) = total Manhattan distance (number of squares from

desired location of each tile)

h1(start) = 8
h2(start) = 3+1+2+2+2+3+3+2 = 18

• Are h1 and h2 admissible?

Heuristics from relaxed problems

• A problem with fewer restrictions on the actions
is called a relaxed problem
• The cost of an optimal solution to a relaxed problem

is an admissible heuristic for the original problem
• If the rules of the 8-puzzle are relaxed so that a tile

can move anywhere, then h1(n) gives the shortest
solution
• If the rules are relaxed so that a tile can move to any

adjacent square, then h2(n) gives the shortest solution

Heuristics from subproblems
This is also a trick that many students find useful for the multi-dot problem.

• Let h3(n) be the cost of getting a subset of tiles
(say, 1,2,3,4) into their correct positions

• Can precompute and save the exact solution cost for every possible subproblem
instance – pattern database

• If the subproblem is O{9^4}, and the full problem is O{9^9}, then you can solve as
many as 9^5 subproblems without increasing the complexity of the problem!!

Dominance
• If h1 and h2 are both admissible heuristics and
h2(n) ≥ h1(n) for all n, (both admissible)
then h2 dominates h1

• Which one is better for search?
• A* search expands every node with f(n) < C* or
h(n) < C* – g(n)

• Therefore, A* search with h1 will expand more nodes
= h1 is more computationally expensive.

Dominance

• Typical search costs for the 8-puzzle
(average number of nodes expanded for different solution depths):

• d=12 BFS expands 3,644,035 nodes
A*(h1) expands 227 nodes
A*(h2) expands 73 nodes

• d=24 BFS expands 54,000,000,000 nodes
A*(h1) expands 39,135 nodes
A*(h2) expands 1,641 nodes

Combining heuristics

• Suppose we have a collection of admissible heuristics
h1(n), h2(n), …, hm(n), but none of them dominates the others

• How can we combine them?

h(n) = max{h1(n), h2(n), …, hm(n)}

All search strategies. C*=cost of best path.
Algorithm Complete? Optimal? Time

complexity
Space

complexity
Implement the
Frontier as a…

BFS Yes
If all step costs are

equal
O(b^d) O(b^d) Queue

DFS No No O(b^m) O(bm) Stack

IDS Yes
If all step costs are

equal
O(b^d) O(bd) Stack

UCS Yes Yes
Number of nodes

w/
g(n) ≤ C*

Number of nodes
w/

g(n) ≤ C*

Priority Queue
sorted by g(n)

Greedy No No
Worst case:

O(b^m)
Best case: O(bd)

Worse case:
O(b^m)

Best case: O(bd)

Priority Queue
sorted by h(n)

A* Yes Yes
Number of nodes

w/
g(n)+h(n) ≤ C*

Number of nodes
w/

g(n)+h(n) ≤ C*

Priority Queue
sorted by
h(n)+g(n)

