CS440/ECE448 Lecture 26:
Speech

Mark Hasegawa-Johnson, 4/17/2019, CC-By 3.0



https://creativecommons.org/licenses/by/3.0/

Outline

* Human speech processing
Modeling the ear: Fourier transforms and filterbanks

Speech-to-text-to-speech (S2T2S)
* Hybrid DNN-HMM systems (*)
* Recurrent neural nets (RNNs): Connectionist Temporal Classification, Trajectory nets
* Sequence-to-sequence RNNs with attention

Languages other than English
* Training and testing on 300 languages
* Transfer learning: from languages with data, to languages without
* Dialog systems for unwritten languages

Distorted speech

* Motor disability
* Second-language learners

(*): Underline shows which topic you need to understand for the exam.
Everything else in today’s lecture is considered optional background knowledge.



Speech communication

Speech communication: a message, stored in Alice’s brain, is converted
to language, then converted to speech. Bob hears the speech, and
decodes it to get the message.

‘ ™|l
A

= [t $




Speaking
What sort of messages do humans send?
(Levelt, Speaking, 1989) A '
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. Speaking
Spea ki ng visual/spatial T
Experiments show that speaking source knowledge
consists of the following distinct
mental activities, with no feedback
from later to earlier activities:

* Step 1: convert to propositional | ,
form. Experiments show that the v ________________________
starting sound and meaning of each 57 T T T
word are known before the order of
the words is known.

* Step 2: fill in the pronunciation of

i [}
GESTHRAL-PATTERN 1
LY TUINAL T ATTENN

ea C h WO rd i "CLg 1 VECT_OR"""‘

[ |
T8CD - I ] P- protrusion, fast

TBCL- pharyngeal, slowd—i
1

* Step 3: plan a smooth articulatory 3. TICL eoi st |
trajectory § S AW e
' |
|

\VEL- closure, fast ... .}
GLO- wide, fast

* Step 4: speak | -

______________________________________________




Speech perception

Most structures of the ear: protect the basilar membrane

Basilar membrane: a mechanical continuous bank of band-pass filters
Inner hair cell: mechanoelectric transduction; half-wave rectification
Auditory nerve: dynamic range compression

Brainstem: source localization, source separation, echo suppression

SR A o

Auditory cortex: continuous-to-discrete conversion, from acoustic
spectra to probabilities of speech sound categories

7. Posterior Middle Temporal Gyrus: word sequence candidates compete
with each other to see which one can be the most probable



The Internal Ear

1. The main purpose of

most of the structures of
the ear is just to protect 2 The basilar
 the basilar membrane.
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3. The basilar membrane is covered
with little hair bundles.

* When the membrane moves upward,
pores in the tip of each hair cell open,
depolarizing the cell.

4. Dynamic range compression: each
hair cell connected to ~10 neurons,
with thresholds distributed so that

# cells that fire ~ log(signal amplitude)

colliculus
Lateral lemniscus

superior
olivary
complex

Cochlear
nucleus

5. Neurons from the ear go to the
brainstem, where:

* When the membrane moves

downward, no response.

* Cochlear nucleus does echo
cancellation.

e So the hair cell is like a ReLU:

y=max(0,x)

* Olivary complex, lateral lemniscus, &
inferior colliculus do localization.



After the sound reaches the cortex: final processing
(6. Mesgarani & Chang, 2012; 7. Hickok & Poeppel, 2007;)
6. Auditory cortex: continuous-to-discrete conversion, from acoustic
spectra to probabilities of speech sound categories
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Outline

Modeling the ear: Fourier transforms and filterbanks

Speech-to-text-to-speech (S2T2S)
* Hybrid DNN-HMM systems (*)
* Recurrent neural nets (RNNs): Connectionist Temporal Classification, Trajectory nets
* Sequence-to-sequence RNNs with attention

Languages other than English

* Training and testing on 300 languages
* Transfer learning: from languages with data, to languages without
* Dialog systems for unwritten languages

Distorted speech
* Motor disability
* Second-language learners

(*): Underline shows which topic you need to understand for the exam.
Everything else in today’s lecture is considered optional background knowledge.



Reminder: Image Features
You’ve seen this slide before, in lecture 24, on Deep Learning...

Feature maps J

i

Normalization ’

i

Spatial pooling J

{}

One layer of a convolutional neural network

Convolution
(Learned)

T+

Input Image

Image features
are calculated

by convolution,
followed by
RelU.

Feature Map



Speech features as computed by the ear

* The basilar
membrane is
like
convolution
with a bank of
bandpass
filters

* The hair cell
performs half-
wave
rectification
(ReLU)
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Artificial speech features

* Option 1: Exact matching of the filter/rectify operations of the basilar
membrane

* Option 2: Learned filters, by applying a convolution directly to the
input speech signal

* Option 3: Fast Fourier transform of the input speech signal, then
compute the magnitude



Artificial speech features: Experimental results

* Option 1: Exact matching of the filter/rectify operations of the basilar
membrane

* Computationally expensive; results are sometimes better than options 2&3,
but often not

* Option 2: Learned filters, by applying a convolution directly to the
input speech signal
* Computationally cheap during test time, but very expensive during training

* Usually turns out to be exactly the same accuracy as option #3 --- in fact, the
convolution kernels that are learned usually turn out to look like the kernels
of a Fourier transform!

* Option 3: Fast Fourier transform of the input speech signal, then
compute the magnitude



Artificial speech features: My recommendation

Spectrogram = log | X(f)| = log magnitude of the Fourier transform,
computed with 25 millisecond windows, overlapping by 15 milliseconds

Waveform
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Speech synthesis from the spectrogram

* Exact reconstruction is possible
from the complex FFT, but not from
the FFT magnitude

* If you have the true FFT magnitude,
and your windows overlap by at least
50%, then exact reconstruction is
possible

e But if you have synthetic FFT
magnitude (e.g., generated by an
HMM or a neural net), then it might
not match any true speech signal.

* |f you have a synthetic FFT
magnitude, you need to synthesize
speech that is a “good match:”

* Reconstruct a signal that matches the

FFT with minimum squared error
(Griffin-Lim algorithm)

e Use a neural net to estimate the
signal from the FFTM (e.g., wavenet)

Spectrogram
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* Speech-to-text-to-speech (S2T2S)
* Hybrid DNN-HMM systems (*)
* Recurrent neural nets (RNNs): Connectionist Temporal Classification, Trajectory nets
* Sequence-to-sequence RNNs with attention

e Languages other than English
* Training and testing on 300 languages
* Transfer learning: from languages with data, to languages without
* Dialog systems for unwritten languages

* Distorted speech
* Motor disability
* Second-language learners

(*): Underline shows which topic you need to understand for the exam.
Everything else in today’s lecture is considered optional background knowledge.



The speech-to-text problem

From a spectrogram input (sequence of T vector observations, E; to E}), compute a
word sequence output (sequence of L label outputs, W, to W;,L < T)
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A Sequence Model you Know: HMM

You’ve seen this slide before, in lecture 20, on HMMs...

 Markov assumption for state transitions

* The current state is conditionally independent of all the other
states given the state in the previous time step

P(Qt | QO:t-l) = P(Qt | Qt-l)

* Markov assumption for observations
* The evidence at time t depends only on the state at time t

P(Et | Q.. El:t-l) = P(Et | Qt)

O ® @




HMMs for Speech Recognition

1. Decide, in advance, how many states each word will have. For
example, choosing # states = three times # phonemes usually works
well. (Get phonemes from an online dictionary, like ISLEdict)

* “vellow” =j el ouv, 4 phonemes = 12 states
* “winds” =w arndz, 5 phonemes = 15 states

m iS|e.iIlinOIs.edU/ss‘/datalgsz/Eng‘ X _

® isle.illinois.edu/sst/data/g2ps/English/ISLEdict.html E 170% o X%

yYcliicutryclLarLru,yvvu,,vvILL ) T [« A

yellen(nnp surname 0.000) # j '& . 1 n #

yeller(+yell+er,nn) # j e . 1 = # |

yellin() # j 'e . 1 1 n #

yelling(+yell+ing,vbg) # j 'e . 1 1 n #
yellow(jj,nn,nnp surname 0.000,vb) # j 'e . 1 ov #
yellow alert() # j 'e . Los #a2 . 1 '3 1t #
yellow bell() # j 'e . 1 os # b e 1 #

yellow bile() # j 'e . 1 os # b ar 1 #

vellow hireh(Y # 4 ' . 1 as # h & 1 + #

X | Q yellow N | Vv Highlight All Match Case Whole Words 22 of 250 matches



HMMs for Speech Recognition

1. Decide, in advance, how many states each word will have. For
example, choosing # states = three times # phonemes usually works
well. (Get phonemes from an online dictionary, like ISLEdict)

* “vellow” =j el ouv, 4 phonemes = 12 states
* “winds” =w arndz, 5 phonemes = 15 states

2. Pool together, across words, the HMM states that sound similar.
For example, the 4t state in the word “winds” might be called “the
15t state of the phoneme a1, in words where that phoneme follows w
and precedes n” (denoted Q=w-a1+n_1), and it would share
parameters with all other words that have a similar-sounding ax.

3. Those pooled HMM-states are called senones. You’ll have more or
less senones, depending on how you define ,,similar-sounding,” but
most speech recognizers have about 3000-5000 of them.




HMMs for Speech Recognition

* Now the HMM parameters depend on which word you’re recognizing!
* For example, the transition probabilities for word W are now

Py (Qe | Q¢-1)

* W = the word being spoken
* (; = the senone being spoken at time t

* Every word has the same
structure, but

@ o @ e Different words have
different parameters, for
COREY ( %j)

example,

Py (Qe | Q¢-1)



The Problem of Continuous Observations

* But what about the likelihood? How can we model
P(E¢|Q¢)?
* The big problem: E; is continuous, not discrete, so we can’t model
P(E:|Q;) using a lookup table!



Solutions to the Problem of Continuous Observations

Most systems model P(E'| Q) using one of these three standard methods:

1. Use a parameterized probability density, such as a Gaussian. In this case
you learn senone-dependent parameters (1, and 05).

2. Quantize E (using vector quantization) to one of K different code vectors.
Then you can learn the lookup table Py, (E = k|Q) for1 < k < K.

3. Use a neural net with a softmax output to compute P(Q|E), then use
Bayes’ rule to get P(E|Q) from P(Q|E).

(e Cao




Classifier output: Softmax

You’ve seen this slide before, in lecture 24, on Deep Learning....

* We want Q; to be a senone, for example, Q; = “the jth type of phoneme a1”.
* In that case, we can force the neural net to learn want the neural net to compute

a probability,
F;=P(Q =J|E)

..if we just force F; to meet the criteria for a probability, i.e., we need

Fzo, ) F=1
J

* In order to do that, we use a special kind of nonlinearity in the last layer of the
neural net, called a softmax:

eZi
F; =
]

Zk ek




Hybrid DNN-HMM: the problem

*The softmax computes P(Q|E)
*The HMM needs to know P(E| Q)

*How can we get P(E|Q) from P(Q|E)?
* Answer: Bayes’ rule!



Estimating p(E|Q) from p(Q|E)

Bayes rule:

PQIE)P(E)
P(Q)

P(E|Q) =

... but notice, if our goal is to find the best possible state sequence
Q4, ..., Qr, then we don’t care about the P(E) factor:

P(QIE)
P(Q)

argmaXP(E Q) = argmax



Hybrid DNN-HMM: the solution

P(E1» E>, Q1, Q7 ... |W) — PW(QlIQO)P(EllQl)PW(QZ | Q1)P(E2|Q2)

From the neural net

P(Q1|E1)
P(Q1)

P(Q2|Ez)>

)PW(szl) P03

X PW(Q1|Q0)(

HMM Parameters



Hybrid DNN-HMM: intuitive explanation

* Prior probability, p(Q), tells how frequently HMM state Q is, in normal
conversations, if we don’t hear the speech

 DNN computes a posterior probability, p(Q|E), saying how probable Q
is given the available evidence

* If p(Q|E) > p(Q), that means that the evidence favors Q more than
usual, so we should consider the possibility that this rare word has
been spoken.

* If p(Q|E) is still a small number, that doesn’t really matter; what really
matters is whether p(Q|E) > p(Q)




Speech synthesis using an HMM

Given the word sequence, W:

* Use Py, (Qf| Qs—1), with a random number generator, to generate a
random state sequence that matches the given word sequence
* Run the neural net backward to generate a spectrum:
« Set Z() to a vector with all zeros, except some gain G in the Q’th entry

« Invert the matrix at each level to find A4~ from Z®
« The last level (going backward!), A9, is the spectrum

* Use Griffin-Lim or wavenet to generate signal from spectrogram

* This method results in discontinuous jumps at HMM-state
boundaries. Solution: recurrent neural net



Outline

* Recurrent neural nets (RNNs): Connectionist Temporal Classification, Trajectory nets
* Sequence-to-sequence RNNs with attention

e Languages other than English
* Training and testing on 300 languages
* Transfer learning: from languages with data, to languages without
* Dialog systems for unwritten languages

* Distorted speech
* Motor disability
* Second-language learners

(*): Underline shows which topic you need to understand for the exam.
Everything else in today’s lecture is considered optional background knowledge.



Basic RNNs

Each time step corresponds to a feedforward net where the
hidden layer gets its input not just from the layer below but also
from the activations of the hidden layer at the previous time step

32



A recurrent net for speech synthesis

* Output #1 is the magnitude FFT

e Output #2 is the state vector, which is an input to the next time step

* Input is a list of all of the HMM states within a window of +/-D frames
of the current frame, X; = [Q¢—_p, ..., O, .., Q¢4p]

* This is called a “trajectory mixture density network” (Korin Richmond,
2007)



A recurrent net for speech recognition

e Output #1 is a softmax over
* HMM states, Q, for DNN-HMM hybrid speech recognition
* Words, if the RNN is being used by itself for stand-alone speech recognition

* Output #2 is a state vector, which is fed back as input to the same
neural net at time t+1



Connectionist temporal classification: Speech
recognition using a stand-alone RNN

* The problem solved by CTC: T input frames, K<T output words

* The solution:
e Softmax outputs = {set of all known words, or “blank”}

* State sequenceis Q = {Q4, ..., Qr}
 Label sequence is the set of words W = {W,, ..., W;}

* The set of all state sequences that match W includes all state sequences that

produce the words in W, with any combination of blanks in between them.
This set is called B(W)

* Neural net training criterion is —log P(B(W|E)) =-1og X.gepw) P(Q|E)
* Training algorithm: Graves et al., 2006
* Speech recognition application: Miao and Metze, 2014



Outline

* Sequence-to-sequence RNNs with attention

e Languages other than English
* Training and testing on 300 languages
* Transfer learning: from languages with data, to languages without
* Dialog systems for unwritten languages

* Distorted speech
* Motor disability
* Second-language learners

(*): Underline shows which topic you need to understand for the exam.
Everything else in today’s lecture is considered optional background knowledge.



Sequence-to-sequence with attention

* Input encoder is an RNN
e OQutput decoder is an RNN

 Each cell of the output decoder takes, as input, a weighted
summation of the input encoder hidden nodes vectors, concatenated
to the previous output-time state vector, concatenated to a unit
indicator showing which output was generated in the previous time

* Weights for the weighted summation change, from one output-time
to the next. The weights themselves are computed by another neural
net.



Encoder-Decoder (seq2seq) model

 Task: Read an input sequence and return an output sequence

« Machine translation: translate source into target language
 Dialog system/chatbot: generate a response

« Reading the input sequence: RNN Encoder
» Generating the output sequence: RNN Decoder

Encoder Decode

["0‘[0“0‘[0"‘
ween - [000 m m ‘ @ 000

(1 " output
-

input
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Outline

e Languages other than English
* Training and testing on 300 languages
* Transfer learning: from languages with data, to languages without
* Dialog systems for unwritten languages

* Distorted speech
* Motor disability
* Second-language learners

(*): Underline shows which topic you need to understand for the exam.
Everything else in today’s lecture is considered optional background knowledge.



Can speech recognition and speech synthesis
be trained for any language?

* As far as we know, the algorithms work for any language, as long as
you have labeled training data

* "Labeled data” = speech files, together with their text transcriptions

* Having audio is not enough, because usually there is no transcription.
Having text is not enough, because usually you don’t know how it
sounds. You need matched text+audio.

* In how many languages do we have such corpora?



“Automatic Speech Recognition” corpora
available from the Linguistic Data Consortium

* English: ~120 distinct corpora!!!
* > 10 corpora: Arabic, Chinese, Hindi, Japanese, Korean, Spanish
e 2-10 corpora: Czech, French, German, Italian, Portuguese

* 1 corpus: 24 languages
* What about all of the other languages in the world?

Suggested solution: use transfer learning, from well-resourced
languages, to learn speech recognition for under-resourced languages.



Every phoneme system in the world
differentiates these two categories of phonemes:

0 00
&/ W
Phonemes made with the Phonemes made with the
mouth open, mouth closed,
e.g., e.g.,
Vowels, Clicks,
Approximants, Plosives,

(Fricatives) (Nasals, Taps, Trills)



The acoustic consequences of mouth

opening and closing
Acoustic Landmark = perceptually salient
instantaneous marker of phoneme presence.

: k s‘ _ ”,;F;"T;r———;
CEfiEEEE T EEE e ’M'z
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2 ﬂ‘"'“ o - i&'m ’y » ‘ ”. .. "
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100 200 300 400 50? ) 600 700 800 600 1000 1300 1200 1300 1300
ns
Fig. 1 Spectrogram of the utterance "They bought ten bags." The vertical lines indicate times of
implosion or release of articulators when consonants are produced.

(Stevens, Manuel, Shattuck-Hufnagel & Liu, ICSLP1992).



Articulatory Features as Linguistic
Universals

* Articulatory features are designed to be a superset of the
phoneme distinctions in every language (universal by design).

* The universal features “mouth open” and “mouth closed” can
be summarized by just two features: [sonorant] and

[continuant]
* [+continuant]: mouth is unobstructed along midline of the vocal tract

* [+sonorant]: mouth is open in the sense that there is a low-acoustic-
impedance shunt from vocal folds to air (though the shunt might go
through the nose, or around the tongue tip)

__________[sonorant] ___[#sonorant] ____

[-continuant] Plosives Nasals, Flaps, Trills

[+continuant] Fricatives Vowels,
Approximants



“Universal by design”
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Landmarks as regularizers for training a
DNN-HMM phone model

* Train on English (TIMIT, 14 hours):

e Train two DNNs, one for phones, one for
landmarks. Result: phone models get better time

alignment during training.
e Test: phone error rate.
» Adapt to Iban (Juan, Besacier & Rossato, 8 hours):

e Automatic landmark detection, phones force-
aligned, then adapt both DNNs from English to
lban.

e Test: word error rate.



Multi-task learning (MTL)

MTL = Train one neural network on multiple tasks (1 set of inputs
vs. multiple sets of labels). Can reduce overfitting, generalize
better to testing data if

a) training data limited (under-resourced), or

b) the tasks compliment each other (e.g., landmark detection &
phone recognition)

Input

(speech features) Hidden layers

Primary output
(phone states)

SRR

Vv.@ SO
/) O\
= ‘:o:H’/’:o:‘a‘ A8

V"\V V"\V
M’.‘M’dﬂ' — Secondary output

(landmark types)




Experiments: 2 types of landmark
definitions, 2 types of ASR

* Two types of landmark definitions
 Experiment 1: release/closure/middle notation
 Experiment 2: change in value of the features [continuant]
or [sonorant]

* Two types of ASR
 Experiment 1: TDNN-HMM hybrid

e Experiment 2: CTC




Experiment 1: closure/release/middle
landmark notation (from phoneme labels)

Landmark Type Temporal midpoint of a...

Vv
G

Vowel
Glide

Landmark Type At the end of a... ...and beginning of a...

Sc (Stop Closure)
Sr (Stop Release)

Fc (Fricative Closure)
Fr (Fricative Release)
Nc (Nasal Closure)
Nr (Nasal Release)
MC (Manner Change)

Vowel or Glide

Stop Closure

Vowel or Glide
Fricative or Affricate
Vowel or Glide
Nasal

Non-vowel, non-glide

Stop Closure

Stop Release, Vowel or
Glide

Fricative
Vowel or Glide
Nasal
Vowel or Glide

Different type of non-
vowel



Experiment 1: closure/release/middle
landmark notation (from phoneme labels)

1
Fc Fr V Nc MC Sr Vv ) Fc Fr G V Nc Nr
Symposium




Migrate to the Iban language, step #1: Automatically generate
landmark labels in Iban using TIMIT-trained landmark detectors

) - .. ‘;E.‘... ) .. 'l‘.

“\ Wi ;m

fc

J
s|f
c|c

sC

e g efvle] st | e

0.411708 |
0.150458 Visible part 0.783750 seconds 0.934208
Total duration 1.045000 seconds

Migrate to Iban, step #2: Multi-task learning (MTL). Task 1
= phone labels, Task 2 = landmarks.

(-_«ph
L:=(1—ac)y (" log(P " (x))) Ieh;: 1-hot label for phone recognition of
=1 phone state i (forced alignment)
cla P'e;: posterior probability for Landmark
t+acy Z( l,l;a log( ;)__f‘l(:,,))_) detectio_n 01_’ Landmark j (automatic)
= a: a weighting factor between the 2 tasks
it c,. confidence weighting for Landmark
A ey 1 Susdory detect result on frame x
¢z = Py (J) - m Z (Ik (41-"))

k=1 k#m



Experiment 1 Results

Average ASR Error rate:
O PER for TIMIT, WER for Iban
O Some Iban training data was randomly left out to simulate a
very-low-resource scenario

Corpus AM Baseline MTL MTL w/ | (‘Assume TIMIT )
Confid boundaries are
PN 100% correct,
TIMIT Mono 24.6 24.2 NA \—A no need for
(PER) Tri 20.6 20.0 NA confidence
- — .‘ ~— Qvelghtlng Y,
Iban-full Mono 24.62 24.22 24.18
(WER) Tn 18.40 18.03 1793 []
Iban-25% Mono 28.87 27.97 27.64 As
(WER) Tn 21.31 20.70 20.63 Training
Iban-10% | Mono 31.16 28.49 28.48 data _
(WER) Tri 25.12 23,64 2357 o Lreduce;
i error rate
MTL error rate is always lower than baseline; reduction
MTL with confidence always returns slightly increases

lower error rate for MTL



Experiment 2 notation: change in value
of [continuant] or [sonorant]

Phone Label: CTC is trained to
generate only the phone
sequence, as given in TIMIT.

Mixed Label 1: CTC also
generates a landmark label
every time [continuant] or
[sonorant] changes value.

Mixed Label 2: CTC generates
a landmark label at every
phone boundary, even if the
values of [continuant] and
[sonorant] don’t change.

mpnag v ps

phone label pcl p ' I H ey s

-+cont ++cont ++cont

mixed | 11 |
ed labe pc --S0N0 -+S0N0 +-S0N0

-+cont ++cont | ++cont e ++cont
--S0No -+SON0 __ ++S0Nh0 +-S0N0

mixed label 2 pcl




Mixed Label Training + Phone Finetuning

1. First, Train (until convergence) to reproduce the mixed label set.

Input \
(speech features)

Output layer for mixed
label sequence

(phones & landmarks)

Output layer for phone
label sequence

(phones alone)

Hidden layers

2. Then “Finetune:” continue to train, using phone labels only.




Experiment 2 results: PER and WER are
reduced on both TIMIT and WSJ

Training PER PER (WSJ | PER (WSJ | WER (WSJ | WER (WS)J
labels (TIMIT) eval92) dev93) eval92) dev93)
8.7

Phones 30.36 : 12.38 8.75 13.15
Phones + 30.36 Train to convergence using phone labels, then

Finetune until convergence using the same phone labels:

ﬁnetuning PER doesn’t change (confirmed experimentally).
Mixed 1 30.98
) These numbers not calculated
Mixed 1 + 28.96 because Mixed 2 + finetuning
finetuning was best on TIMIT.
Mixed 2 29.10
Mixed 2 + 27.72 8.12 11.49 8.35 12.86

finetuning (19% rel)



Experiment 2 results: CTC with mixed

labels converges faster

Phone Error Rate %
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Experiment 2 results: with mixed
labels, CTC can be trained using a
smaller training corpus.
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—— Baseline
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N
o

(S

Phone Error Rate (Test Set)
o))
o

N
o

60 70 80 90 100
Percentage of Training Dataset Used (100% = 14hrs)



Ongoing project: landmark-based ASR for 300
languages simultaneously

* The CMU-Wilderness corpus: Bibles, read in about 300 languages,
transcribed by Alan Black at CMU

* General structure of the ongoing project:
* Each student develops neural nets for a different type of landmark
* We combine them all in a massively multilingual CTC-based system
* Planned start: fall 2019, if students are interested



Outline

* Dialog systems for unwritten languages

* Distorted speech
* Motor disability
» Second-language learners



I . How many languages are therc X

_| O W https://www.ethnologue.com/guides/how-many-languages B -9 % N @
f l I h n()l()("uc Hello, University of lllinois at Urbana-Champaign Find a language or country...
Languages of the World
in the
world:

Languages Countries About

« Back to all Guides

O Welcome, University of lllinois at Urbana-Champaign. You have been automatically logged into Ethnologue.

How many languages are there in the world?

7,111 languages are spoken today. ¥

That number is constantly in flux, because we're learning more about the world's languages every
day. And beyond that, the languages themselves are in flux. They're living and dynamic, spoken by
communities whose lives are shaped by our rapidly changing world. This is a fragile time: Roughly
a third of languages are now endangered, often with less than 1,000 speakers remaining.
Meanwhile, just 23 languages account for more than half the world’s population.

Living Languages, 2019

by Ethnologue

ASIA
AFRICA
PACIFIC
AMERICAS
EUROPE

EUROPE

o000




Our goal: Speech technology for unwritten
languages

* Jelinek, 1976: speech recognition is defined as a transformation from
speech to text.

* The problem: most languages don’t have text.
e About 50% of the world’s languages: no orthography has ever been defined.

* About 40% of the world’s languages: orthography exists with multiple conflicting
standards; native speakers type using a “chat alphabet” that has variable spelling.



Datasets

*  Flickr8k: images downloaded by Hodosh, Hockenmaier & Young at UIUC in 2009, Turkers wrote
captions for them

*  Flickr-Speech: Text transcripts read out loud by Turkers

https://groups.csail.mit.edu/sls/downloads/

D. Harwath and J. Glass, “Deep multimodal semantic embeddings for speech and images”
in IEEE ASRU, Scottsdale, Arizona, USA, December 2015

e Hasegawa-Johnson et al., 2017: throw away the text, keep only the audio.

-A brown and white dog is running through the snow

-A dog is running in the snow

-A dog running through snow

-A white and brown dog is running through a snow covered field
-The white and brown dog is running over the surface of the snow

62



https://groups.csail.mit.edu/sls/downloads/

image2speech system components

* image representation: very large scale convolutional neural net,
trained on imagenet classification

* image-to-phone: neural machine translation! Sequence-to-
sequence with attention

* phones-to-speech: ClusterGen speech synthesis, audio frames
selected using decision trees



Image representation: CNNFEAT s,,,,

=19 N\ Tx512

11 % 1000

ﬂ convolution+ReLU

( 1 max pooling

| softmax

o

Figure copied from Simonyan & Zisserman, 2014.

L[> 56 x 256
24 :x:'.'ix:.nl_] w14 x b1°
/7 PR x1OxPI L 1x1x4096
=TS

fully connected+ReL.U

ImageNet = >500 images/noun of
each of the nouns in WordNet.

VGG = 13-layer CNN + 2-layer FCN,
trained on 14m images, covering
the 1000 most numerous nouns,
92.7% top-5 test accuracy.

CNNFEAT: 196 feature
vectors/image, 512d/vector,
from the last CNN layer. Each
receptive field covers about
40x40 pixels in the original
224x224 image.

VGGFEAT (used later in today’s
talk, not right now): 1
vector/image, 4096d/vector, from
penultimate FCN layer



http://www.image-net.org/
https://arxiv.org/abs/1409.1556

Images to phonemes = machine translation

<s> W o W. w . W

Decoder HT

Attention

Encoder HS

Representation | S, 2 3 m

Figure copied without permission from Duong, Anastasopoulos, Chiang, Bird &
Cohn, NAACL-HLT 2016.

® “Representation:” 196
vectors/image

® “Encoder:” PyramidalLSTM with
one 128d state vector. Sequence
is row-wise raster scan of the
image.

® “Attention:” StandardAttender,
128d input, 128d state vector, N
hidden nodes

® “Decoder:” MlpSoftmaxDecoder,
3 layers, 1024d hidden vectors

® Output vocabulary: synthetic
phones (MSCOCO), force-aligned
phones (fIickrSkL, or acoustic unit
discoveries (both)



Phones to speech = “"TTS without the T”

ZeroSpeech 2019

News

Getting started

Results

ZeroSpeech 2019: TTS without T

Task and intended goal

Young children learn to talk long before they learn to read and write. They can conduct a dialogue and produce novel sentences,
without being trained on an annotated corpus of speech and text or aligned phonetic symbols. Presumably, they achieve this by
recoding the input speech in their own internal phonetic representations (proto-phonemes or proto-text), which encode linguistic units
in a speaker-invariant representation, and use this representation to generate output speech.

Duplicating the child's ability would be useful for the thousands of so-called low-resource languages, which lack the textual resources
and/or linguistic expertise required to build a traditional speech synthesis system. The ZeroSpeech 2019 challenge addresses this
problem by proposing to build a speech synthesizer without any text or phonetic labels, hence TTS without T (text-to-speech
without text). We provide raw audio for the target voice(s) in an unknown language (the Voice Dataset), but no alignment, text or
labels. Participants must discover subword units in an unsupervised way (using the Unit Discovery Dataset) and align them to the
voice recording in a way that works best for the purpose of synthesizing novel utterances from novel speakers (see Figure 1).

The ZeroSpeech 2019 is a continuation and a logical extension of the sub-word unit discovery track of ZeroSpeech 2017 and
ZeroSpeech 2015, as it demands of participants to discover such units, and then evaluate them by assessing their performance on a
novel speech synthesis task. We provide a baseline system which performs the task using two off-the-shelf components: (1) a system
which discovers discrete acoustic units automatically in the spirit of Track 1 of the Zero Resource Challenges 2015 [1] and 2017 [2], and
(2) a standard TTS system.

A submission to the challenge will replace at least one of these systems. Participants can construct their own end-to-end system with
the joint objective of discovering sub-word units and producing a waveform from them. Participants can, alternatively, make use of one
of the two baseline systems, and improve the other. The challenge is therefore therefore open to ASR-only systems which make a
contribution primarily to unit discovery, focusing on improving the embedding evaluation scores (see Evaluation metrics). Vice versa, the
challenge is open to TTS-only systems which concentrate primarily on improving the quality of the synthesis on the baseline sub-word
units. (All submissions must be complete, however, including both resynthesized audio and the embeddings used to generate them.)

- - MOS
>~ Intelligibility
~ « Speaker similarity

Waveform

5 eneration 5

: & Bitrate

: Machine-ABX
' ! A
Discovered : A

[ NN PR | PN



image2speech
system
overview

224x224x3 Image

VGG16 ConvNet
ending in...

196 Sub-Image Vectors,
512d each

H ImageNet
Cross-Entropy

Pyramidal LSTM
Encoder

Attention

LSTM Decoder ')—» ')—. })—.% I i
sil ey w ay é ae — Cross-Entropy

Context
Stacking
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Trees
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Distortion

Spectrogram
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flickr8K:
American phones
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Images and Reference Texts: Hodosh, Young & Hockenmaier, 2013.

Waveforms: Harwath and Glass, 2015

Reference 1: “The boy +um+ laying face down on a skateboard is being
pushed along the ground by +laugh+ another boy.”

Reference 2: “Two girls +um+ play on a skateboard +breath+ in a court
+laugh+ yard.”

Hypothesis (128d attender): SIL +BREATH+ SILT UW M EHNAARRAYD
IXNGAXREHDAENWAYTSILREYSSIL

Hypothesis (64d attender): SIL +BREATH+ SILT UW W IH M AX N W AO K
IXNGAANAXSTRIYTSIL

Reference 1: “A boy +laugh+ in a blue top +laugh+ is jumping off some
rocks in the woods.”

Reference 2: “A boy +um+ jumps off a tan rock.”

Hypothesis (128d attender): SIL +BREATH+ SILEY MAENIHZJHAH M P
IXNGIHNDHAXFAOREHSTSIL

Hypothesis (64d attender): SIL +BREATH+ SIL EY Y AH NG B OY W EY R IX
NGAXBLUWSHERTSILIHZRAYDIXNGAXHHIHLSIL



Outline

* Distorted speech
* Motor disability
* Second-language learners



Types of motor disability

* Diseases you're born with, e.g., Cerebral Palsy
* It’s hard to walk, to hold a pencil, or to type on a computer
* Speech recognition is often faster than typing, but...
* Speech is also distorted, because it’s hard to speak clearly

* Diseases that get worse over time, e.g., Parkinson’s Disease
* In the early and mid stages of the disease, speech is still perfectly intelligible,
but...

* Speech recognition stops working. For example, you’ve been using speech
input on your cell phone all your life, but lately it’s been working less and less

well.



Speaker adaptation of neural nets

e Stack up all of the network weights in a vector w, then set w=Tv+wO

 Actually nobody does that, because the weight vector is too huge,
e.g., 5 million trained weights. Methods that have been used instead:

e Gaussian i-vector: 40k-dimensional Gaussian supervector, reduced to 300-d i-
vector, used as input to a neural net

* Neural i-vector: 5000-d hidden node activation vector, averaged over all
speech of that talker, then reduced to 300-d i-vector

* Auxiliary network: trained to estimate the way a new speaker’s voice has
shifted the hidden node activations

* 5-million-d weight vector might be useful with a large enough training
database. Then the i-vector, v, might be 300-d



Adaptation to speakers with disability

Linear interpolation between
* Big data (multi-speaker) and
» Speaker-dependent (but small
data)
/\ Gives the set of speech

The set of all Spea kers / recognizers that are likely to work
I i ili best for thi ker.
without disability p est for this speaker

(Sharma & Hasegawa-Johnson,
2011)

i-vector for a speaker
with CP,
but computed with a very

\ 4

A

small amount of data, so
this estimate is probably
kind of noisy



Outline

* Human speech processing
Modeling the ear: Fourier transforms and filterbanks

Speech-to-text-to-speech (S2T2S)
e Hybrid DNN-HMM systems (*)
e Recurrent neural nets (RNNs): Connectionist Temporal Classification, Trajectory nets
e Sequence-to-sequence RNNs with attention

Languages other than English
* Training and testing on 300 languages
* Transfer learning: from languages with data, to languages without
* Dialog systems for unwritten languages

Distorted speech
* Motor disability
» Second-language learners




Automatic pronunciation scoring

* P(audio|native speaker) vs. P(audio|non-native)
* Might work well if we had lots of data from non-native speakers

* Goodness of pronunciation (GoP):
* P(audio|correct transcription) / P(audio| arbitrary phone sequence)



Landmark-based pronunciation scoring
(Yoon, Sproat & H-J, 2010)

* |[dentify the landmarks, first

* Score whether each landmark was correctly vs. incorrectly
pronounced

* Use information about the speaker’s native language



Conclusions: research opportunities

* Take advanced courses
e Audio enhancement: CS 598PS
* Speech and video recognition & synthesis: ECE 417

* Download a software development recipe
* Hybrid DNN-HMM: Kaldi (kaldi-asr.org)
* Sequence-to-sequence with attention: XNMT (https://github.com/neulab/xnmt)

* Create your own startup company!!
* Dialog systems, e.g., for smart glasses, dishwashers, and everything else
* Audio search for domains that don’t work yet (rap music?)

* Join a research group
* Landmark-based ASR in 300 languages; dialog system for unwritten languages
* Speech interface for disability, or for second-language learners



