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Outline
• Human speech processing

• Modeling the ear: Fourier transforms and filterbanks

• Speech-to-text-to-speech (S2T2S)

• Hybrid DNN-HMM systems (*)

• Recurrent neural nets (RNNs): Connectionist Temporal Classification, Trajectory nets

• Sequence-to-sequence RNNs with attention

• Languages other than English

• Training and testing on 300 languages

• Transfer learning: from languages with data, to languages without

• Dialog systems for unwritten languages

• Distorted speech

• Motor disability

• Second-language learners

(*): Underline shows which topic you need to understand for the exam.  

Everything else in today’s lecture is considered optional background knowledge.



Speech communication

Speech communication: a message, stored in Alice’s brain, is converted 
to language, then converted to speech.  Bob hears the speech, and 
decodes it to get the message.



What sort of messages do humans send?
(Levelt, Speaking, 1989)

Experiments 
have shown at 
least three 
different ways 
that knowledge 
can be stored 
in long-term 
memory:

for x in range(0,10):
print(‘This is the %sth line’%(x))

∀p∃q: Carries(p, q)

visual/
spatial

logical/
propositional/

linguistic

procedural/
kinematic/
somatosensory 



Speaking
Experiments show that speaking 
consists of the following distinct 
mental activities, with no feedback 
from later to earlier activities:
• Step 1: convert to propositional 

form.  Experiments show that the 
starting sound and meaning of each 
word are known before the order of 
the words is known.
• Step 2: fill in the pronunciation of 

each word
• Step 3: plan a smooth articulatory 

trajectory
• Step 4: speak

1.        k….        o………..          b……….

2. the cat is on the bed

3.

visual/spatial 
source knowledge



Speech perception

1. Most structures of the ear: protect the basilar membrane

2. Basilar membrane: a mechanical continuous bank of band-pass filters

3. Inner hair cell: mechanoelectric transduction; half-wave rectification

4. Auditory nerve: dynamic range compression

5. Brainstem: source localization, source separation, echo suppression

6. Auditory cortex: continuous-to-discrete conversion, from acoustic 
spectra to probabilities of speech sound categories

7. Posterior Middle Temporal Gyrus: word sequence candidates compete 
with each other to see which one can be the most probable



Blausen.com staff (2014). "Medical gallery of Blausen Medical 2014". WikiJournal of Medicine 1(2). 
DOI:10.15347/wjm/2014.010. ISSN 2002-4436

1. The main purpose of 
most of the structures of 
the ear is just to protect 
the basilar membrane.

2. The basilar 
membrane, down 
the center of the 
cochlea, is like a 
continuous 
xylophone: tuned 
to different 
frequencies at 
different locations

By Dicklyon (talk) (Uploads) -
Own work, Public Domain, 
https://en.wikipedia.org/w/ind
ex.php?curid=12469498



3. The basilar membrane is covered 
with little hair bundles.  
• When the membrane moves upward, 

pores in the tip of each hair cell open, 
depolarizing the cell.
• When the membrane moves 

downward, no response.
• So the hair cell is like a ReLU: 

y=max(0,x)

By Bechara Kachar - http://irp.nih.gov/our-
research/research-in-action/high-fidelity-
stereocilia/slideshow, Public Domain, 
https://commons.wikimedia.org/w/index.
php?curid=24468731

4. Dynamic range compression: each 
hair cell connected to ~10 neurons, 
with thresholds distributed so that 
# cells that fire ~ log(signal amplitude)

5. Neurons from the ear go to the 
brainstem, where:
• Cochlear nucleus does echo 

cancellation.  
• Olivary complex, lateral lemniscus, & 

inferior colliculus do localization. 



After the sound reaches the cortex: final processing 
(6. Mesgarani & Chang, 2012; 7. Hickok & Poeppel, 2007;)

6. Auditory cortex: continuous-to-discrete conversion, from acoustic 
spectra to probabilities of speech sound categories

7. Posterior Middle 
Temporal Gyrus: 
word sequence 
candidates compete 
with each other to 
see which one can 
be the most 
probable
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Input Image

Convolution 
(Learned)

Non-linearity

Spatial pooling

Normalization

Feature maps

Input Feature Map

.

.

.

Reminder: Image Features
You’ve seen this slide before, in lecture 24, on Deep Learning…

O
ne

 la
ye

r o
f a

 co
nv

ol
ut

io
na

l n
eu

ra
l n

et
w

or
k

Image features 
are calculated 
by convolution, 
followed by 
ReLU.



Speech features as computed by the ear
• The basilar 

membrane is 
like 
convolution 
with a bank of 
bandpass 
filters
• The hair cell 

performs half-
wave 
rectification 
(ReLU)

Input Feature Map

.

.

.
=

=



Artificial speech features

• Option 1: Exact matching of the filter/rectify operations of the basilar 
membrane
• Option 2: Learned filters, by applying a convolution directly to the 

input speech signal
• Option 3: Fast Fourier transform of the input speech signal, then 

compute the magnitude



Artificial speech features: Experimental results
• Option 1: Exact matching of the filter/rectify operations of the basilar 

membrane
• Computationally expensive; results are sometimes better than options 2&3, 

but often not

• Option 2: Learned filters, by applying a convolution directly to the 
input speech signal
• Computationally cheap during test time, but very expensive during training
• Usually turns out to be exactly the same accuracy as option #3 --- in fact, the 

convolution kernels that are learned usually turn out to look like the kernels 
of a Fourier transform!

• Option 3: Fast Fourier transform of the input speech signal, then 
compute the magnitude



Artificial speech features: My recommendation
Spectrogram = log|X(f)| = log magnitude of the Fourier transform, 
computed with 25 millisecond windows, overlapping by 15 milliseconds



Speech synthesis from the spectrogram
• Exact reconstruction is possible 

from the complex FFT, but not from 
the FFT magnitude
• If you have the true FFT magnitude, 

and your windows overlap by at least 
50%, then exact reconstruction is 
possible

• But if you have synthetic FFT 
magnitude (e.g., generated by an 
HMM or a neural net), then it might 
not match any true speech signal.

• If you have a synthetic FFT 
magnitude, you need to synthesize 
speech that is a “good match:”
• Reconstruct a signal that matches the 

FFT with minimum squared error 
(Griffin-Lim algorithm)

• Use a neural net to estimate the 
signal from the FFTM (e.g., wavenet)

Griffin-Lim
or

wavenet
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The speech-to-text problem
From a spectrogram input (sequence of T vector observations, !" to !#), compute a 
word sequence output (sequence of L label outputs, $" to $%, ' < ))

!" !*+… … !"-+

$"
=A

$*
=ye

llo
w

$/
=riv

er

$0
=winds

$-
=am

ong
$1
=the

$2
=willo

ws



A Sequence Model you Know: HMM
You’ve seen this slide before, in lecture 20, on HMMs…

• Markov assumption for state transitions
• The current state is conditionally independent of all the other 

states given the state in the previous time step
P(Qt | Q0:t-1) = P(Qt | Qt-1) 

• Markov assumption for observations
• The evidence at time t depends only on the state at time t
P(Et | Q0:t, E1:t-1)  = P(Et | Qt) 

Q0

E1

Q1

Et-1

Qt-1

Et

Qt…
E2

Q2



HMMs for Speech Recognition
1. Decide, in advance, how many states each word will have.   For 

example, choosing # states = three times # phonemes usually works 
well.  (Get phonemes from an online dictionary, like ISLEdict)
• “yellow” = j ɛ l oʊ, 4 phonemes = 12 states
• “winds” = w ɑɪ n d z, 5 phonemes = 15 states



HMMs for Speech Recognition
1. Decide, in advance, how many states each word will have.   For 

example, choosing # states = three times # phonemes usually works 
well.  (Get phonemes from an online dictionary, like ISLEdict)
• “yellow” = j ɛ l oʊ, 4 phonemes = 12 states
• “winds” = w ɑɪ n d z, 5 phonemes = 15 states

2. Pool together, across words, the HMM states that sound similar.  
For example, the 4th state in the word “winds” might be called “the 
1st state of the phoneme ɑɪ, in words where that phoneme follows w 
and precedes n” (denoted Q=w-ɑɪ+n_1), and it would share 
parameters with all other words that have a similar-sounding ɑɪ.

3. Those pooled HMM-states are called senones.  You’ll have more or 
less senones, depending on how you define „similar-sounding,” but 
most speech recognizers have about 3000-5000 of them.



HMMs for Speech Recognition
• Now the HMM parameters depend on which word you’re recognizing!  

• For example, the transition probabilities for word W are now 

!"($%|$%&')
• W = the word being spoken

• $% = the senone being spoken at time t

Q0

E1

Q1

Et-1

Qt-1

Et

Qt…

E2

Q2

• Every word has the same 

structure, but

• Different words have 

different parameters, for 

example, 

!"($%|$%&')



The Problem of Continuous Observations
• But what about the likelihood?  How can we model   

! "#|$# ?
• The big problem: "# is continuous, not discrete, so we can’t model 
!("#|$#) using a lookup table!

Q0

E1

Q1

Et-1

Qt-1

Et

Qt…
E2

Q2



Solutions to the Problem of Continuous Observations

Most systems model ! "|# using one of these three standard methods:
1. Use a parameterized probability density, such as a Gaussian.  In this case 

you learn senone-dependent parameters ($% and &%').
2. Quantize E (using vector quantization) to one of K different code vectors.  

Then you can learn the lookup table !( " = *|# for 1 ≤ * ≤ -. 
3. Use a neural net with a softmax output to compute ! #|" , then use 

Bayes’ rule to get ! "|# from ! #|" .

Q0

E1

Q1

Et-1

Qt-1

Et

Qt…
E2

Q2



Classifier output: Softmax
You’ve seen this slide before, in lecture 24, on Deep Learning….
• We want !" to be a senone, for example, !" = “the jth type of phoneme ɑɪ”.
• In that case, we can force the neural net to learn want the neural net to compute 

a probability, 
&' = ( ! = )|*

…if we just force &' to meet the criteria for a probability, i.e., we need 

&' ≥ 0, .
'
&' = 1

• In order to do that, we use a special kind of nonlinearity in the last layer of the 
neural net, called a softmax:

&' =
012

∑4 015



•The softmax computes ! "|#
•The HMM needs to know ! #|"
•How can we get ! #|" from ! "|# ? 
•Answer: Bayes’ rule!

Hybrid DNN-HMM: the problem



Estimating p(E|Q) from p(Q|E)

Bayes rule: 

! " # = ! # " ! "
! #

… but notice, if our goal is to find the best possible state sequence 
#%,… , #(, then we don’t care about the ! " factor:

argmax
.

!("|#) = argmax
.

! # "
! #



Hybrid DNN-HMM: the solution

! "#, "%, &#, &%,… ( = !* &#|&+ ! "# &# !* &%|&# ! "% &% …

∝ !* &#|&+
! &# "#
! &#

!* &%|&#
! &% "%
! &%

…

From the neural net

HMM Parameters



Hybrid DNN-HMM: intuitive explanation

• Prior probability, p(Q), tells how frequently HMM state Q is, in normal 
conversations, if we don’t hear the speech
• DNN computes a posterior probability, p(Q|E), saying how probable Q 

is given the available evidence
• If p(Q|E) > p(Q), that means that the evidence favors Q more than 

usual, so we should consider the possibility that this rare word has 
been spoken.  

• If p(Q|E) is still a small number, that doesn’t really matter; what really 
matters is whether p(Q|E) > p(Q)



Speech synthesis using an HMM

Given the word sequence, W:

• Use !" #$|#$%& , with a random number generator, to generate a 
random state sequence that matches the given word sequence

• Run the neural net backward to generate a spectrum: 

• Set '()) to a vector with all zeros, except some gain G in the Q’th entry

• Invert the matrix at each level to find +(,%&) from '(,)
• The last level (going backward!), +(-), is the spectrum

• Use Griffin-Lim or wavenet to generate signal from spectrogram

• This method results in discontinuous jumps at HMM-state 
boundaries.  Solution: recurrent neural net
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Basic RNNs
Each time step corresponds to a feedforward net where the 
hidden layer gets its input not just from the layer below but also 
from the activations of the hidden layer at the previous time step

32



A recurrent net for speech synthesis

• Output #1 is the magnitude FFT
• Output #2 is the state vector, which is an input to the next time step
• Input is a list of all of the HMM states within a window of +/-D frames 

of the current frame, !" = [%"&',… , %", … , %"*']
• This is called a “trajectory mixture density network” (Korin Richmond, 

2007)



A recurrent net for speech recognition

• Output #1 is a softmax over 
• HMM states, Q, for DNN-HMM hybrid speech recognition
• Words, if the RNN is being used by itself for stand-alone speech recognition

• Output #2 is a state vector, which is fed back as input to the same 
neural net at time t+1



Connectionist temporal classification: Speech 
recognition using a stand-alone RNN
• The problem solved by CTC: T input frames, K<T output words
• The solution:

• Softmax outputs = {set of all known words, or “blank”}
• State sequence is Q = {$%, … , $(}
• Label sequence is the set of words W = {+%,… ,+,}
• The set of all state sequences that match W includes all state sequences that 

produce the words in W, with any combination of blanks in between them.  
This set is called B(W)

• Neural net training criterion is – log 1(3 +|5 ) =– log ∑8∈:(;) 1($|5)
• Training algorithm: Graves et al., 2006
• Speech recognition application: Miao and Metze, 2014



Outline
• Human speech processing

• Modeling the ear: Fourier transforms and filterbanks

• Speech-to-text-to-speech (S2T2S)

• Hybrid DNN-HMM systems (*)

• Recurrent neural nets (RNNs): Connectionist Temporal Classification, Trajectory nets

• Sequence-to-sequence RNNs with attention

• Languages other than English

• Training and testing on 300 languages

• Transfer learning: from languages with data, to languages without

• Dialog systems for unwritten languages

• Distorted speech

• Motor disability

• Second-language learners

(*): Underline shows which topic you need to understand for the exam.  

Everything else in today’s lecture is considered optional background knowledge.



Sequence-to-sequence with attention

• Input encoder is an RNN
• Output decoder is an RNN
• Each cell of the output decoder takes, as input, a weighted 

summation of the input encoder hidden nodes vectors, concatenated 
to the previous output-time state vector, concatenated to a unit 
indicator showing which output was generated in the previous time
• Weights for the weighted summation change, from one output-time 

to the next.  The weights themselves are computed by another neural 
net.



DecoderEncoder

Encoder-Decoder (seq2seq) model
• Task: Read an input sequence and return an output sequence

• Machine translation: translate source into target language
• Dialog system/chatbot: generate a response

• Reading the input sequence: RNN Encoder
• Generating the output sequence: RNN Decoder

38

input

hidden

output
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Can speech recognition and speech synthesis 
be trained for any language?
• As far as we know, the algorithms work for any language, as long as 

you have labeled training data
• ”Labeled data” = speech files, together with their text transcriptions
• Having audio is not enough, because usually there is no transcription.  

Having text is not enough, because usually you don’t know how it 
sounds.  You need matched text+audio.
• In how many languages do we have such corpora?



“Automatic Speech Recognition” corpora
available from the Linguistic Data Consortium
• English: ~120 distinct corpora!!!
• ≥ 10 corpora: Arabic, Chinese, Hindi, Japanese, Korean, Spanish
• 2-10 corpora: Czech, French, German, Italian, Portuguese
• 1 corpus: 24 languages
• What about all of the other languages in the world?

Suggested solution: use transfer learning, from well-resourced 
languages, to learn speech recognition for under-resourced languages.



Every phoneme system in the world 
differentiates these two categories of phonemes:

Phonemes made with the 
mouth open, 

e.g.,

Vowels,
Approximants,

(Fricatives)

Phonemes made with the 
mouth closed, 

e.g.,

Clicks,
Plosives,

(Nasals, Taps, Trills)



The acoustic consequences of mouth 
opening and closing
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Acoustic Landmark = perceptually salient 
instantaneous marker of phoneme presence.

(Stevens, Manuel, Shattuck-Hufnagel & Liu, ICSLP1992).



Articulatory Features as Linguistic 
Universals
• Articulatory features are designed to be a superset of the 

phoneme distinctions in every language (universal by design).
• The universal features “mouth open” and “mouth closed” can 

be summarized by just two features: [sonorant] and 
[continuant]
• [+continuant]: mouth is unobstructed along midline of the vocal tract
• [+sonorant]: mouth is open in the sense that there is a low-acoustic-

impedance shunt from vocal folds to air (though the shunt might go 
through the nose, or around the tongue tip)

[-sonorant] [+sonorant]
[-continuant] Plosives Nasals, Flaps, Trills
[+continuant] Fricatives Vowels, 

Approximants



“Universal by design”
continuant sonorant

- -

- +

+ -
+ +

Yupik example courtesy Lane Schwartz: /li n̥ɑq su ʍɑ ɬɪk/
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Landmarks as regularizers for training a 
DNN-HMM phone model
• Train on English (TIMIT, 14 hours): 
• Train two DNNs, one for phones, one for 

landmarks. Result: phone models get better time 
alignment during training.
• Test: phone error rate.

• Adapt to Iban (Juan, Besacier & Rossato, 8 hours):
• Automatic landmark detection, phones force-

aligned, then adapt both DNNs from English to 
Iban.
• Test: word error rate.  



Multi-task learning (MTL)
MTL = Train one neural network on multiple tasks (1 set of inputs
vs. multiple sets of labels). Can reduce overfitting, generalize
better to testing data if

a) training data limited (under-resourced), or
b) the tasks compliment each other (e.g., landmark detection &

phone recognition)



Experiments: 2 types of landmark 
defini6ons, 2 types of ASR
• Two types of landmark definitions

• Experiment 1: release/closure/middle notation
• Experiment 2: change in value of the features [continuant] 

or [sonorant]

• Two types of ASR
• Experiment 1: TDNN-HMM hybrid
• Experiment 2: CTC 



Experiment 1: closure/release/middle 
landmark notation (from phoneme labels)

Landmark Type Temporal midpoint of a…
V Vowel
G Glide

Landmark Type At the end of a… …and beginning of a…
Sc (Stop Closure) Vowel or Glide Stop Closure
Sr (Stop Release) Stop Closure Stop Release, Vowel or 

Glide
Fc (Fricative Closure) Vowel or Glide Fricative
Fr (Fricative Release) Fricative or Affricate Vowel or Glide

Nc (Nasal Closure) Vowel or Glide Nasal
Nr (Nasal Release) Nasal Vowel or Glide

MC (Manner Change) Non-vowel, non-glide Different type of non-
vowel



Experiment 1: closure/release/middle 
landmark notation (from phoneme labels)



Migrate to the Iban language, step #1: Automatically generate 
landmark labels in Iban using TIMIT-trained landmark detectors

Migrate to Iban, step #2: Multi-task learning (MTL).  Task 1 
= phone labels, Task 2 = landmarks.

!phi: 1-hot label for phone recognition of 
phone state i (forced alignment)
"la

j: posterior probability for Landmark 
detection of Landmark j (automatic)
#: a weighting factor between the 2 tasks
cx: confidence weighting for Landmark 
detect result on frame x



Experiment 1 Results
Average ASR Error rate:
○ PER for TIMIT, WER for Iban
○ Some Iban training data was randomly le= out to simulate a

very-low-resource scenario



Experiment 2 notation: change in value 
of [continuant] or [sonorant]

• Phone Label: CTC is trained to 
generate only the phone 
sequence, as given in TIMIT.

• Mixed Label 1: CTC also 
generates a landmark label 
every time [continuant] or 
[sonorant] changes value.

• Mixed Label 2: CTC generates 
a landmark label at every 
phone boundary, even if the 
values of [continuant] and 
[sonorant] don’t change.



Mixed Label Training + Phone Finetuning
1. First, Train (until convergence) to reproduce the mixed label set.

2. Then “Finetune:” continue to train, using phone labels only. 



Experiment 2 results: PER and WER are 
reduced on both TIMIT and WSJ
Training 
labels

PER 
(TIMIT)

PER (WSJ 
eval92)

PER (WSJ 
dev93)

WER (WSJ 
eval92)

WER (WSJ 
dev93)

Phones 30.36 8.7 12.38 8.75 13.15
Phones + 
finetuning 

30.36

Mixed 1 30.98
Mixed 1 + 
finetuning

28.96

Mixed 2 29.10
Mixed 2 + 
finetuning

27.72
(↓9% rel)

8.12 11.49 8.35 12.86

Train to convergence using phone labels, then
Finetune until convergence using the same phone labels: 
PER doesn’t change (confirmed experimentally).

These numbers not calculated 
because Mixed 2 + finetuning 

was best on TIMIT.



Experiment 2 results: CTC with mixed 
labels converges faster



Experiment 2 results: with mixed 
labels, CTC can be trained using a 
smaller training corpus.
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Ongoing project: landmark-based ASR for 300 
languages simultaneously
• The CMU-Wilderness corpus: Bibles, read in about 300 languages, 

transcribed by Alan Black at CMU
• General structure of the ongoing project:

• Each student develops neural nets for a different type of landmark
• We combine them all in a massively multilingual CTC-based system
• Planned start: fall 2019, if students are interested
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How 
many 
languages 
are there 
in the 
world?



Our goal: Speech technology for unwritten 
languages

• Jelinek, 1976: speech recognition is defined as a transformation from 
speech to text.

• The problem: most languages don’t have text.
• About 50% of the world’s languages: no orthography has ever been defined.
• About 40% of the world’s languages: orthography exists with multiple conflicting 

standards; native speakers type using a “chat alphabet” that has variable spelling.



Datasets
• Flickr8k: images downloaded by Hodosh, Hockenmaier & Young at UIUC in 2009, Turkers wrote 

captions for them
• Flickr-Speech: Text transcripts read out loud by Turkers

• https://groups.csail.mit.edu/sls/downloads/
• D. Harwath and J. Glass, “Deep multimodal semantic embeddings for speech and images”

in IEEE ASRU, Scottsdale, Arizona, USA, December 2015

62

-A brown and white dog is running through the snow
-A dog is running in the snow
-A dog running through snow
-A white and brown dog is running through a snow covered field
-The white and brown dog is running over the surface of the snow

● Hasegawa-Johnson et al., 2017: throw away the text, keep only the audio.

https://groups.csail.mit.edu/sls/downloads/


image2speech system components

• image representation: very large scale convolutional neural net, 
trained on imagenet classification
• image-to-phone:  neural machine translation!  Sequence-to-

sequence with attention
• phones-to-speech: ClusterGen speech synthesis, audio frames 

selected using decision trees



Image representation: CNNFEAT "⃗#$
• ImageNet = >500 images/noun of 

each of the nouns in WordNet. 
• VGG = 13-layer CNN + 2-layer FCN, 

trained on 14m images, covering 
the 1000 most numerous nouns, 
92.7% top-5 test accuracy.

• CNNFEAT: 196 feature 
vectors/image, 512d/vector, 
from the last CNN layer. Each 
receptive field covers about 
40x40 pixels in the original 
224x224 image.

• VGGFEAT (used later in today’s 
talk, not right now): 1 
vector/image, 4096d/vector, from 
penultimate FCN layer

Figure copied from Simonyan & Zisserman, 2014.

http://www.image-net.org/
https://arxiv.org/abs/1409.1556


l “Representation:” 196 
vectors/image

l “Encoder:” PyramidalLSTM with 
one 128d state vector.  Sequence 
is row-wise raster scan of the 
image.

l “Attention:” StandardAttender, 
128d input, 128d state vector, N 
hidden nodes

l “Decoder:” MlpSoftmaxDecoder, 
3 layers, 1024d hidden vectors

l Output vocabulary: synthetic 
phones (MSCOCO), force-aligned 
phones (flickr8k), or acoustic unit 
discoveries (both)

Figure copied without permission from Duong, Anastasopoulos, Chiang, Bird & 
Cohn, NAACL-HLT 2016.

Images to phonemes = machine transla2on



Phones to speech = ”TTS without the T”



image2speech
system
overview



flickr8K:
American phones

l Reference 1: “The boy +um+ laying face down on a skateboard is being 
pushed along the ground by +laugh+ another boy.” 

l Reference 2: “Two girls +um+ play on a skateboard +breath+ in a court 
+laugh+ yard.”

l Hypothesis (128d attender): SIL +BREATH+ SIL T UW M EH N AA R R AY D 
IX NG AX R EH D AE N W AY T SIL R EY S SIL

l Hypothesis (64d attender): SIL +BREATH+ SIL T UW W IH M AX N W AO K 
IX NG AA N AX S T R IY T SIL

l Reference 1: “A boy +laugh+ in a blue top +laugh+ is jumping off some 
rocks in the woods.”

l Reference 2: “A boy +um+ jumps off a tan rock.”

l Hypothesis (128d attender): SIL +BREATH+ SIL EY M AE N IH Z JH AH M P 
IX NG IH N DH AX F AO R EH S T SIL

l Hypothesis (64d attender): SIL +BREATH+ SIL EY Y AH NG B OY W EY R IX 
NG AX B L UW SH ER T SIL IH Z R AY D IX NG AX HH IH L SIL

Images and Reference Texts: Hodosh, Young & Hockenmaier, 2013.  
Waveforms: Harwath and Glass, 2015



Outline
• Human speech processing
• Modeling the ear: Fourier transforms and filterbanks
• Speech-to-text-to-speech (S2T2S)

• Hybrid DNN-HMM systems (*)
• Recurrent neural nets (RNNs): Connectionist Temporal Classification, Trajectory nets
• Sequence-to-sequence RNNs with attention

• Languages other than English
• Training and testing on 300 languages
• Transfer learning: from languages with data, to languages without
• Dialog systems for unwritten languages

• Distorted speech
• Motor disability
• Second-language learners



Types of motor disability

• Diseases you’re born with, e.g., Cerebral Palsy
• It’s hard to walk, to hold a pencil, or to type on a computer
• Speech recognition is often faster than typing, but…
• Speech is also distorted, because it’s hard to speak clearly

• Diseases that get worse over time, e.g., Parkinson’s Disease
• In the early and mid stages of the disease, speech is still perfectly intelligible, 

but…
• Speech recognition stops working.  For example, you’ve been using speech 

input on your cell phone all your life, but lately it’s been working less and less 
well. 



Speaker adaptation of neural nets

• Stack up all of the network weights in a vector w, then set w=Tv+w0

• Actually nobody does that, because the weight vector is too huge, 
e.g., 5 million trained weights.  Methods that have been used instead:
• Gaussian i-vector: 40k-dimensional Gaussian supervector, reduced to 300-d i-

vector, used as input to a neural net
• Neural i-vector: 5000-d hidden node activation vector, averaged over all 

speech of that talker, then reduced to 300-d i-vector
• Auxiliary network: trained to estimate the way a new speaker’s voice has 

shifted the hidden node activations

• 5-million-d weight vector might be useful with a large enough training 
database.  Then the i-vector, v, might be 300-d



Adaptation to speakers with disability

The set of all speakers 
without disability

i-vector for a speaker 
with CP,
but computed with a very 
small amount of data, so 
this estimate is probably 
kind of noisy 

Linear interpolation between
• Big data (multi-speaker) and
• Speaker-dependent (but small 

data)
Gives the set of speech 
recognizers that are likely to work 
best for this speaker.
(Sharma & Hasegawa-Johnson, 
2011)
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Automatic pronunciation scoring

• P(audio|native speaker) vs. P(audio|non-native)
• Might work well if we had lots of data from non-native speakers

• Goodness of pronunciation (GoP):
• P(audio|correct transcription) / P(audio| arbitrary phone sequence)



Landmark-based pronunciation scoring
(Yoon, Sproat & H-J, 2010)

• Identify the landmarks, first
• Score whether each landmark was correctly vs. incorrectly 

pronounced
• Use information about the speaker’s native language



Conclusions: research opportunities
• Take advanced courses

• Audio enhancement: CS 598PS
• Speech and video recognition & synthesis: ECE 417

• Download a software development recipe
• Hybrid DNN-HMM: Kaldi (kaldi-asr.org)
• Sequence-to-sequence with attention: XNMT (https://github.com/neulab/xnmt)

• Create your own startup company!!
• Dialog systems, e.g., for smart glasses, dishwashers, and everything else
• Audio search for domains that don’t work yet (rap music?)

• Join a research group
• Landmark-based ASR in 300 languages; dialog system for unwritten languages
• Speech interface for disability, or for second-language learners


