Deep
Reinforcement
Learning

CS440/ECEA448
Lecture 24

Slides by Svetlana Lazebnik,
11/2017

Modified by Mark Hasegawa-
Johnson, 4/2019

EEf

Environment

Rwam
Interpreter
% ¥

e

Image: Megajuice, CCO,
https://commons.wikimedia.org/

w/index.php?curid=57895741 A g en t

Action

https://commons.wikimedia.org/

Last week: Q-learning for discrete s, a

« So far, we've assumed a lookup table representation for utility
function U(s) or action-utility function Q(s,a)

» This does not work if the state space is really large or continuous

This time: Function approximation

« Approximate Q(s,a) by a parameterized function, that is, by a

function Q(s, a; W) that depends on some matrix of trainable
parameters, W.

* Learn W by playing the game.

Outline

On-line Q-learning

How to make Q-learning converge to the best answer
How to make it converge more smoothly

Policy learning and actor-critic networks

mitation learning

Deep Q learning

* Train a deep neural network to output Q
values:

Q(s,a,w) S,a,,,W)

R
~)
bttt

Source: D. Silver

http://hunch.net/~beygel/deep_rl_tutorial.pdf

Deep Q learning

* SARSA update: “nudge” Q(s,a) toward value we
observe it to have in the most recent action:

O(s,a) < O(s, @)+ a(R(s) + y max,, O(s',a")f- O(s,))

* Deep Q learning: train neural network weights, w, in
order to minimize a loss function that penalizes
differences between Q(local) and Q(predicted):

L(w)=

o

R(s)+ymax _ Q(s',a';w)

—‘Q(s,a;le)2

Q(local):

s’=state you actually reach by performing a in s,
a’=action you will actually perform there.

Q(predicted):
What the network predicts
for action a in state s

Deep Q learning

* Regular TD update: “nudge” Q(s,a) towards the target
O(s,a) < O(s, @) +a(R(s) + y max,, O(s',@)|~ (s, @)

* Deep Q learning: encourage estimate to match the
target by minimizing squared error:

L(w)=(|R(s)+ymax_ QO(s',a";w) —‘Q(s,a;w1)2

target estimate
« Compare to supervised learning:

Lw)=(y-f(x;w))

— Key difference: the target in Q learning is not fixed — (s’,a’)
is just one step ahead of (s,a)!

P

Online Q learning algorithm

In state s, perform action a. Environment sends you to state s’;
choose the action a’ that you'll perform there.

Observe: Q¢?(s,a) = R(s) + y max Q(s',a’; W)

Update weights to reduce the error
LW) = (Q1¢ — Q(s,a; W)
Gradient:
VL = (Q(s, a; W) — @)V, Q

Weight update:
W — W —nVyL

This is called stochastic gradient descent (SGD)

“Stochastic” because the training sample (s,a,s’,a’) was chosen
at random by our exploration function

Outline

How to make Q-learning converge to the best answer
How to make it converge more smoothly

Policy learning and actor-critic networks

mitation learning

Convergence of neural networks

L
A

Training * A general neural net (e.g., a
Corpus Error classifier) is trained to minimize
the training corpus error.

» Test corpus error might be very
different!

« Barron showed: generalization
error is G <(#hidden
G nodes/#training tokens)

« As #training tokens— o, G = 0

W< >
0

Training the neural net finds this set of weights by
minimizing the training corpus error.

Does Q-learning Converge?

 No!

« Because:
a = argmax Q (s, a)

* |f we always choose the action that is best, according to
our current estimate of the Q-function, then we can never
learn anything about any of the other actions!

Incorporating exploration (slide from last week)

 |ldea: explore more in the beginning, become more
and more greedy over time

« Standard (“greedy”) selection of optimal action:
a= aI"gZI(l?XZP(S'| s,a) U(s")
» Modified strategy: S
a = arg max f[ZP(S' s,a)U(s'"),N(s, a')j

a'eA(s) s'

exploration Number of times
function we’ve taken action a’

f(u,n)= R™ ifn<N, (optim'igtlséarteGWSard
, u otherwise estimate)

...but that doesn’t work either:

R" ifn<N,
u otherwise

f(u,n)={

... which means that we get at least N, samples of
each action

We can estimate Q(s,a) based on N, samples
But N, is a constant, so it never —»
So Error never — 0

Epsilon-greedy exploration

e At each time step:
— With probability €, choose an action at random
— With probability 1 — €, choose a=argmax Q(s,a)
— As n - 0,6 - 0, for example, e = 1/n

* Result:

— As you play the game infinite times, each action is sampled an
infinite number of samples, so Q converges, but also,

— As you play the game infinite times, you start to exploit your
knowledge more and more frequently, so that you converge to the
best possible policy.

— ... actually, it doesn’t always work in practice. To guarantee success, you
need a few more tweaks, e.g., Re-Trace algorithm, Munos et al., 2016.

Outline

How to make it converge more smoothly
Policy learning and actor-critic networks
mitation learning

Dealing with training instability

« Challenges
— Target values are not fixed
— Successive experiences are correlated and dependent on the policy

— Policy may change rapidly with slight changes to parameters, leading to
drastic change in data distribution

« Solutions
— Freeze target Q network
— Use experience replay

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

Experience replay

« At each time step:
— Take action a; according to epsilon-greedy policy
— Store experience (s;, a;, I't+1, St+1) IN replay memory buffer

— Randomly sample mini-batch of experiences from the
buffer

S1,d1, 12,5
52,4d2,13,53
S3,4d3, 14, 54

Stydty Fpr1,5¢41 —> | Sty dt, Ft+1,St41

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

Experience replay

At each time step:
— Take action a; according to epsilon-greedy policy
— Store experience (s;, a;, I't+1, St+1) IN replay memory buffer

— Randomly sample mini-batch of experiences from the
buffer

— Perform update to reduce objective function

E . [(R(s) +ymax |Q(s',a";w)l O(s,a; w))2]

Keep parameters of target network fixed
during the entire mini-batch; only update

between mini-batches
Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

Deep Q learning in Atari

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

Deep Q learning in Atari

* End-to-end learning of Q(s,a) from pixels s
* Output is Q(s,a) for 18 joystick/button configurations
 Reward is change in score for that step

,,,,,,,,,,,
L] L]
/ g8 o\ . * EEB Q(s,aj)
o \ \ a2
/Pl |/ A \ Q(s.ay)
/ // o\ |\ e o\ |

//

~—

[®)
—
»
o)
oo
~

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

Deep Q learning in Atari

* |Input state s is stack of raw pixels from last 4 frames
» Network architecture and hyperparameters fixed for all games

32 4x4 filcers 256 hidden units Fully-connected linear
output layer
16 8x8 filters
4x84x84
=
Stack of 4 previous _ i Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

Outline

* Policy learning and actor-critic networks
 Imitation learning

Policy gradient methods

» Learning the policy directly can be much simpler than learning Q
values

 We can train a neural network to output stochastic policies, or
probabilities of taking each action in a given state

« Softmax policy:

exp(f(s,a;u))
Y exp(f(s.a'su)

a(s,a,u)=

Policy gradient: the softmax function

* Notice that the softmax is normalized so that
n(s,aq;u) =0,and Y, (s, aq;u) =1

« So we can interpret (s, a; w) as some kind of probability.
Something like “the probability that a is the best action to take from
state s.”

 |n reality, there is no such probability. There is just one correct
action. But the agent doesn’t know what itis! So n(s, a; u) is kind of

like the agent’s “degree of belief” that a is the best action (determined
by parameters u).

Actor-critic algorithm

Remember the relationship between the utility of a state, and the
quality of an action:
U(s) = maxQ(s,a)
a

If we don’t know which action is best, then we could say that

U(s) = Z (s, a;u)Q(s, a;w)

a
(s, a;u) is the “actor:” a neural net that tells the agent how to act.

Q(s,a; w) is the “critic:” a neural net that tells the agent how good or
bad that action was.

Actor-critic alg

Define objective function as total discounted reward:

orithm

J(u) = E[R1 +yR, +7°R, +]

The gradient for a stochastic policy is given by

V. J =E|V,loglr(s,a;u)

0" (s,a;w)

Actor

network
Actor network update: u<—u+

Critic network update: use Q learning (following

actor’s policy)

Critic

O{v] ue}/vork

Advantage actor-critic

* The raw Q value is less meaningful than
whether the reward is better or worse than what
you expect to get

* Introduce an advantage function that subtracts a
baseline number from all Q values

A" (s,a)=0Q"(s,a)-V"(s)

— Estimate V using a value network
» Advantage actor-critic:

V. J= E[Vu logm(s,a,u)A”™ (s,a;w)]

Asynchronous advantage
actor-critic (A3C)

Agent 1 —> Experience 1 —> Local updates

Agent 2 —> Experience 2 —> Local updates

' Agent n —> Experience n —> Local updates

Asynchronously update global parameters

Mnih et al. Asynchronous Methods for Deep Reinforcement
Learning. ICML 2016

https://arxiv.org/pdf/1602.01783.pdf

Asynchronous advantage
actor-critic (A3C

TORCS car racing simulation video

Mnih et al. Asynchronous Methods for Deep Reinforcement

L earning. ICML 2016

https://arxiv.org/pdf/1602.01783.pdf
https://www.youtube.com/watch?v=0xo1Ldx3L5Q

Outline

 Imitation learning

Imitation learning

SAMATERAA AL D

* In some applications, you cannot bootstrap
yourself from random policies

— High-dimensional state and action spaces where
most random trajectories fail miserably

— Expensive to evaluate policies in the physical world,
especially in cases of failure
« Solution: learn to imitate sample trajectories or
demonstrations

— This is also helpful when there is no natural reward
formulation

Learning visuomotor policies

* Underlying state x: true object
position, robot configuration

« Observations o: image pixels

 Two-part approach:
— Learn guiding policy =n(a|x)
using trajectory-centric RL
and control techniques

— Learn visuomotor policy
n(alo) by imitating =n(a|x)

S. Levine et al. End-to-end training of deep visuomotor policies. JMLR 2016

http://arxiv.org/pdf/1504.00702

Learning visuomotor policies

Overview video, training video

S. Levine et al. End-to-end training of deep visuomotor policies. JMLR 2016

https://www.youtube.com/watch?v=Q4bMcUk6pcw
https://www.youtube.com/watch?v=JCjTQfy0h8w
http://arxiv.org/pdf/1504.00702

Conclusions

. What is deep Q-learning?

. How to make Q-learning
converge to the best
answer?

. How to make it converge
more smoothly?

. What are policy learning
and actor-critic networks?

. What is imitation learning?

1.

Estimate Q(s,a) using a
neural net.

Epsilon-greedy usually
WOrks.

Experience replay.

Actor network: Pr(a). Critic
network: Q(s, a), to train the
actor.

Learn to imitate an expert
player.

