
Deep

Reinforcement

Learning

CS440/ECE448

Lecture 24

Slides by Svetlana Lazebnik,

11/2017

Modified by Mark Hasegawa-

Johnson, 4/2019

Image: Megajuice, CC0,

https://commons.wikimedia.org/

w/index.php?curid=57895741

https://commons.wikimedia.org/

Last week: Q-learning for discrete s, a
• So far, we’ve assumed a lookup table representation for utility

function U(s) or action-utility function Q(s,a)
• This does not work if the state space is really large or continuous

This time: Function approximation
• Approximate ! ", $ by a parameterized function, that is, by a

function %!(", $;() that depends on some matrix of trainable
parameters, W.

• Learn W by playing the game.

Outline

• On-line Q-learning
• How to make Q-learning converge to the best answer
• How to make it converge more smoothly
• Policy learning and actor-critic networks
• Imitation learning

Deep Q learning

• Train a deep neural network to output Q
values:

Source: D. Silver

http://hunch.net/~beygel/deep_rl_tutorial.pdf

Deep Q learning
• SARSA update: “nudge” Q(s,a) toward value we

observe it to have in the most recent action:

• Deep Q learning: train neural network weights, w, in
order to minimize a loss function that penalizes
differences between Q(local) and Q(predicted):

()),()','(max)(),(),(' asQasQsRasQasQ a -++¬ ga

L(w) = R(s)+γmaxa 'Q(s ',a ';w)−Q(s,a;w)()2

Q(local):
s’=state you actually reach by performing a in s,

a’=action you will actually perform there.

Q(predicted):
What the network predicts
for action a in state s

Deep Q learning
• Regular TD update: “nudge” Q(s,a) towards the target

• Deep Q learning: encourage estimate to match the
target by minimizing squared error:

• Compare to supervised learning:

– Key difference: the target in Q learning is not fixed – (s’,a’)
is just one step ahead of (s,a)!

()),()','(max)(),(),(' asQasQsRasQasQ a -++¬ ga

L(w) = R(s)+γmaxa 'Q(s ',a ';w)−Q(s,a;w)()2

L(w) = y− f (x;w)()2

target estimate

Online Q learning algorithm
• In state s, perform action a. Environment sends you to state s’;

choose the action a’ that you’ll perform there.
• Observe: !"#$%"(',)) = , ' + .max%2 !('2,)2;4)
• Update weights to reduce the error

5 4 = !"#$%" − !(',);4) 7

• Gradient:
∇95 = ! ',);4 −!"#$%" ∇9!

• Weight update:
4⟵4−;∇95

• This is called stochastic gradient descent (SGD)
• “Stochastic” because the training sample (s,a,s’,a’) was chosen

at random by our exploration function

Outline

• On-line Q-learning
• How to make Q-learning converge to the best answer
• How to make it converge more smoothly
• Policy learning and actor-critic networks
• Imitation learning

Convergence of neural networks
• A general neural net (e.g., a

classifier) is trained to minimize
the training corpus error.

• Test corpus error might be very
different!

• Barron showed: generalization
error is ! <(#hidden
nodes/#training tokens)

• As #training tokens→ ∞, ! → 0

Training
Corpus Error

Test
Corpus
Error

!

&

'
Training the neural net finds this set of weights by

minimizing the training corpus error.

Does Q-learning Converge?

• No!
• Because:

! = argmax((*, !)
• If we always choose the action that is best, according to

our current estimate of the Q-function, then we can never
learn anything about any of the other actions!

Incorporating exploration (slide from last week)
• Idea: explore more in the beginning, become more

and more greedy over time
• Standard (“greedy”) selection of optimal action:

• Modified strategy:

÷
ø

ö
ç
è

æ
= å

Î ')('
)',(),'()',|'(maxarg

ssAa
asNsUassPfa

î
í
ì <

=
+

otherwise
if),(

u
NnR

nuf e

exploration
function

Number of times
we’ve taken action a’

in state s

å
Î

=
')('

)'()',|'(maxarg
ssAa

sUassPa

(optimistic reward
estimate)

…but that doesn’t work either:

• … which means that we get at least !" samples of
each action

• We can estimate Q(s,a) based on !" samples
• But !" is a constant, so it never → ∞
• So Error never → 0

î
í
ì <

=
+

otherwise
if),(

u
NnR

nuf e

Epsilon-greedy exploration

• At each time step:

– With probability !, choose an action at random

– With probability 1 − !, choose a=argmax Q(s,a)

– As n → ∞,! → 0, for example, ! = 1/*
• Result:

– As you play the game infinite times, each action is sampled an

infinite number of samples, so Q converges, but also,

– As you play the game infinite times, you start to exploit your

knowledge more and more frequently, so that you converge to the

best possible policy.

– … actually, it doesn’t always work in practice. To guarantee success, you

need a few more tweaks, e.g., Re-Trace algorithm, Munos et al., 2016.

Outline

• On-line Q-learning
• How to make Q-learning converge to the best answer
• How to make it converge more smoothly
• Policy learning and actor-critic networks
• Imitation learning

Dealing with training instability

• Challenges

– Target values are not fixed

– Successive experiences are correlated and dependent on the policy

– Policy may change rapidly with slight changes to parameters, leading to

drastic change in data distribution

• Solutions

– Freeze target Q network

– Use experience replay

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

Experience replay

• At each time step:
– Take action at according to epsilon-greedy policy

– Store experience (st, at, rt+1, st+1) in replay memory buffer
– Randomly sample mini-batch of experiences from the

buffer

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

Experience replay

At each time step:
– Take action at according to epsilon-greedy policy
– Store experience (st, at, rt+1, st+1) in replay memory buffer
– Randomly sample mini-batch of experiences from the

buffer
– Perform update to reduce objective function

Es,a,s ' R(s)+γmaxa 'Q(s ',a ';w
−)−Q(s,a;w)()

2"
#$

%
&'

Keep parameters of target network fixed
during the entire mini-batch; only update

between mini-batches
Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

Deep Q learning in Atari

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

Deep Q learning in Atari

• End-to-end learning of Q(s,a) from pixels s

• Output is Q(s,a) for 18 joystick/button configurations

• Reward is change in score for that step

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

Q(s,a1)

Q(s,a2)

Q(s,a3)

.

.

.

.

.

.

.

.

.

.

.

Q(s,a18)

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

Deep Q learning in Atari
• Input state s is stack of raw pixels from last 4 frames
• Network architecture and hyperparameters fixed for all games

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

Outline

• On-line Q-learning
• How to make Q-learning converge to the best answer
• How to make it converge more smoothly
• Policy learning and actor-critic networks
• Imitation learning

Policy gradient methods
• Learning the policy directly can be much simpler than learning Q

values
• We can train a neural network to output stochastic policies, or

probabilities of taking each action in a given state
• Softmax policy:

π (s,a;u) =
exp f (s,a;u)()
exp f (s,a ';u)()

a '∑

Policy gradient: the softmax function
• Notice that the softmax is normalized so that

! ", $; & ≥ 0, and ∑*! ", $; & = 1

• So we can interpret ! ", $;- as some kind of probability.
Something like “the probability that $ is the best action to take from
state ".”

• In reality, there is no such probability. There is just one correct
action. But the agent doesn’t know what it is! So ! ", $; & is kind of
like the agent’s “degree of belief” that $ is the best action (determined
by parameters &).

Actor-critic algorithm
• Remember the relationship between the utility of a state, and the

quality of an action:
! " = max' ((", +)

• If we don’t know which action is best, then we could say that

!(") ≈.
'
/ ", +; 1 ((", +;2)

• / ", +; 1 is the “actor:” a neural net that tells the agent how to act.
• ((", +;2) is the “critic:” a neural net that tells the agent how good or

bad that action was.

Actor-critic algorithm
• Define objective function as total discounted reward:

• The gradient for a stochastic policy is given by

• Actor network update:
• Critic network update: use Q learning (following

actor’s policy)

∇uJ = E ∇u logπ (s,a;u)Q
π (s,a;w)"# $%

J(u) = E R1 +γR2 +γ
2R3 +...!" #$

Actor
network

Critic
network u← u+α∇uJ

Advantage actor-critic
• The raw Q value is less meaningful than

whether the reward is better or worse than what
you expect to get

• Introduce an advantage function that subtracts a
baseline number from all Q values

– Estimate V using a value network

• Advantage actor-critic:
∇uJ = E ∇u logπ (s,a;u)A

π (s,a;w)"# $%

Aπ (s,a) =Qπ (s,a)−V π (s)
≈ R(s)+γV π (s ')−V π (s)

Asynchronous advantage
actor-critic (A3C)

Mnih et al. Asynchronous Methods for Deep Reinforcement
Learning. ICML 2016

U, π .
.
.

Agent 1

Agent 2

Agent n

Experience 1

Experience 2

Experience n

Local updates
Local updates

Local updates

Asynchronously update global parameters

https://arxiv.org/pdf/1602.01783.pdf

Asynchronous advantage
actor-critic (A3C)

Mnih et al. Asynchronous Methods for Deep Reinforcement
Learning. ICML 2016

TORCS car racing simulation video

https://arxiv.org/pdf/1602.01783.pdf
https://www.youtube.com/watch?v=0xo1Ldx3L5Q

Outline

• On-line Q-learning
• How to make Q-learning converge to the best answer
• How to make it converge more smoothly
• Policy learning and actor-critic networks
• Imitation learning

Imitation learning

• In some applications, you cannot bootstrap
yourself from random policies
– High-dimensional state and action spaces where

most random trajectories fail miserably
– Expensive to evaluate policies in the physical world,

especially in cases of failure
• Solution: learn to imitate sample trajectories or

demonstrations
– This is also helpful when there is no natural reward

formulation

Learning visuomotor policies
• Underlying state x: true object

position, robot configuration
• Observations o: image pixels

• Two-part approach:
– Learn guiding policy π(a|x)

using trajectory-centric RL
and control techniques

– Learn visuomotor policy
π(a|o) by imitating π(a|x)

S. Levine et al. End-to-end training of deep visuomotor policies. JMLR 2016

http://arxiv.org/pdf/1504.00702

Learning visuomotor policies

Overview video, training video

S. Levine et al. End-to-end training of deep visuomotor policies. JMLR 2016

https://www.youtube.com/watch?v=Q4bMcUk6pcw
https://www.youtube.com/watch?v=JCjTQfy0h8w
http://arxiv.org/pdf/1504.00702

Conclusions
1. What is deep Q-learning?
2. How to make Q-learning

converge to the best
answer?

3. How to make it converge
more smoothly?

4. What are policy learning
and actor-critic networks?

5. What is imitation learning?

1. Estimate Q(s,a) using a
neural net.

2. Epsilon-greedy usually
works.

3. Experience replay.
4. Actor network: Pr($). Critic

network: &(', $), to train the
actor.

5. Learn to imitate an expert
player.

