
CS440/ECE448 Lecture 23: 
Deep Learning

Mark Hasegawa-Johnson, 4/2019
Including Slides by 

Svetlana Lazebnik, 10/2016



Deep Learning
• Notation
• Forward Propagation (Using the neural net)
• Loss functions (Testing the neural net)
• Back-Propagation (Training the neural net)
• Convolutional Neural Net
• Singing-Voice Separation Using Deep Recurrent Network
• Semantic Image Inpainting with Deep Generative Models



Notation Usually we have two databases:

• A training database consists of !
different training tokens (one 
token = one image, or sentence, 
or speech files, or whatever).  
We write them as vectors, #⃗$ =[#$', … , #$*], for 1 ≤ . ≤ !.   
Each one has an associated 
reference (ground truth) label /$.

• A testing database contains only 
the test tokens #⃗$, for N + 1 ≤ .

  

Validation classification#⃗' #⃗2 #⃗3 #⃗4

/' =
“cam

era”
/2 =

“abacus”
/3 =

“slug”
/4 =

“chickens”



For both training and testing, we 
have to present the token "⃗# to 
the input of the neural net, and 
then the neural net computes 
some output $⃗#.

$#

Notation



Notation
A deep neural net has thousands 
of neurons (also called nodes). 
Each node computes two 
variables:
• The “affine”, !"#, models the 

synapse of a biological neuron.
• The “activation,” $"#, models the 

axon of a biological neuron.

%"



Notation
A deep neural net has thousands 
of neurons (nodes). 
Each neuron (node) has two key 
variables:
• The “affine”, !"#, models the 

synapse of a biological neuron, 
collecting information from a lot 
of other neurons:

!"# = %
&
'"&(&#

• The “activation,” '"#, models the 
axon of a biological neuron.



Notation
A deep neural net has thousands 
of neurons (nodes). 
Each neuron (node) has two key 
variables:
• The “affine”, !"#, models the 

synapse of a biological neuron.
• The “activation,” $"#, models the 

axon of a biological neuron, i.e., 
it’s zero when the input is 
negative, and nonzero when the 
input is positive:

$"# = &(!"#)



Notation for a Neural Net without Layers

• !"# is the $%& activation for the '%& token:
• Some of the activations are provided by the input, i.e., !"# = )"# for some of 

the $’s.  
• Some of the activations are outputs, i.e., *"# = !"# for some of the $’s.  
• Some of the activations are neither inputs nor outputs.  Those are called 

“hidden nodes.”
• Which	ones	are	inputs,	hidden,	and	outputs?		Well,	it	depends	on	the	
particular	neural	network	design,	there’s	no	way	to	know,	in	general.

• C"# is the $%& affine for the '%& token
• DE# is the (G, $)%& weight.



Notation for a Neural Net with Layers

• !"#
(%) is the '() activation in the *+, layer for the -() token:
• The 0() layer is the input, i.e., !"#

(/) = 1"#.  

• The 2() layer is the output, i.e., 3"# = !"#
(4).  

• All other layers are “hidden layers.”

• 5"#
(%) is the '() affine in the *+, layer for the -() token

• 67#
(%) is the (8, ')() weight in the *+, layer.

5"#
(%) = :

7
!"7
(%;<)67#

(%)



Deep Learning
• Notation
• Forward Propagation (Using the neural net)
• Loss functions (Testing the neural net)
• Back-Propagation (Training the neural net)
• Convolutional Neural Net
• Singing-Voice Separation Using Deep Recurrent Network
• Semantic Image Inpainting with Deep Generative Models



Forward Propagation (Using the Neural Net)
• We use a neural net by presenting a token "⃗#, and computing the 

output $⃗#. 
• This is done by setting:

• %#&
(() = "#&

• For 1 ≤ - ≤ .:
• /#&

(0) = ∑2%#2
(034)52&

(0)

• %#&
(0) = 6(/#&

(0))
• $#& = %#&

(7)

• This algorithm is called “forward propagation,” because information 
propagates forward through the network, from the 09: layer to the 
.9: layer.



Deep Learning
• Notation
• Forward Propagation (Using the neural net)
• Loss functions (Testing the neural net)
• Back-Propagation (Training the neural net)
• Convolutional Neural Net
• Singing-Voice Separation Using Deep Recurrent Network
• Semantic Image Inpainting with Deep Generative Models



How well did it do?
• We test a neural net by computing "⃗# from $⃗#, for each of the tokens 
1 ≤ ' ≤ (, and then comparing the network output to the reference 
(ground truth) answer, )#.
• During training: we measure error using training data, and try to train the 

network in order to reduce the error rate.
• During ”development test:” we compare different networks on the 

development test data.
• During “evaluation test:” our customer tests our network with data it’s never 

seen before.

• But… How do we compare "⃗# to )#?  i.e., how we define “error” or 
“loss”?



Regression problems: Sum-squared error
• For example, suppose that the 

network output is an image.
• An image is a vector, "⃗# ="#%, … , "#(
• The “right answer” is the image we 

were trying to reconstruct, )# =)#%, … , )#( .
• Then a reasonable loss function is 

sum-squared error (SSE):

*++, =-
#.%

/
-
0.%

(
)#0 − "#0

2



Classifier problems: Cross-entropy
• On the other hand, for this course, we 

usually want !" to be some category label, 
for example, !" = “%ℎ'%()*+”.

• In that case, we can use a special kind of 
nonlinearity at the output of our neural 
network, called a softmax, that gives a 
probabilistic interpretation to the network 
outputs:

-". = /(!" = 123 type of category)
• Then a reasonable loss function is the log 

probability of the correct class:

?@A = −C
"DE

F

ln-",JK

• This error criterion is called “cross entropy” 
for reasons that are fascinating but way 
beyond the scope of this course.

  

Validation classificationM⃗E M⃗N M⃗O M⃗P

!
E
=

“cam
era”

!
N
=

“abacus”
!
O
=

“slug”
!
P
=

“chickens”



Classifier output: Softmax
• We want !" to be some category label, for example, !" = “%&&'(”.
• In that case, we want *"+ to meet the criteria for a probability, i.e., we 

need *"+ ≥ 0 and ∑+ *"+ = 1.
• In order to do that, we use a special kind of nonlinearity in the last 

layer of the neural net, called a softmax:

*"+ =
0123

(5)

∑7 0128
(5)



Deep Learning
• Notation
• Forward Propagation (Using the neural net)
• Loss functions (Testing the neural net)
• Back-Propagation (Training the neural net)
• Convolutional Neural Net
• Singing-Voice Separation Using Deep Recurrent Network
• Semantic Image Inpainting with Deep Generative Models



Training the Neural Net
A neural net is trained according to 

gradient descent:

!"#
(%) = !"#

(%) − ) *+
*!"#

(%)

So that the loss function, L, 
gradually approaches a local 

minimum.



Training the Neural Net: Notation

• Let’s use the following shorthand:

! Variable = *+
*(Variable)

For example:
!./0

(1) = *+
*./0

(1)



Training the Neural Net: Last Layer

The cross entropy loss is:

!"# = −&
'()

*
ln-',/0

= −&
'()

*
ln 120,30

(5)

∑8 1209
(5)

Its derivative is:

:;'<
(=) = >-'< − 1 @ = A'

-'< @ ≠ A'

Here’s how to remember 
that:

• If j is the right answer, 
then error is minimized 
(:;'<

(=) = 0) when -'< = 1.

• If j is the wrong answer, 
then error is minimized 
(:;'<

(=) = 0) when -'< = 0.

1

0

Loss
(j is the
wrong
answer)

-'<

-'<

Loss
(j is the
right
answer)

Credit: Tosha, distributed under CC-BY 1.0,
https://commons.wikimedia.org/wiki/File:Parabola-antipodera.gif



Training the Neural Net: Other Layers

Every other layer is given by:
!"#
(%) = ( )"#% , )"#

(%) =+
,
!",
(%-.)/,#

(%) ,

Given any ”forward equation” like the ones above, and given the derivative 
of the loss w.r.t. the OUTPUT, we can work our way backward through the 
equation to find the derivative w.r.t. the INPUT.  For example, given 0!"#% , 
and if we know (’(2) = 3(/32, we can find 0)"#

(%) as:

?

0)"#
(%) = 0!"#%(5 )"#%



Training the Neural Net: Other Layers

!"#
(%) = ( )"#% , )"#

(%) = +
,
!",
(%-.)/,#

(%) ,

Likewise, given 0)"#% , we can find 0!",
(%-.) as:

0!",
(%-.) = 0)"#

(%)/,#
(%)+

#

?



Example from a blog

Here’s an example of training a 
two-layer network in python.  It 
has a good display of the different 
decision boundaries you get with 
different #s of hidden nodes.
https://medium.com/ml-
algorithms/neural-networks-for-
decision-boundary-in-python-
b243440fb7d1

https://medium.com/ml-algorithms/neural-networks-for-decision-boundary-in-python-b243440fb7d1


Deep Learning
• Differentiable Perceptron/One-Layer Neural Net
• Two-Layer Neural Net
• Loss functions (Testing the neural net)
• Back-Propagation (Training the neural net)
• Convolutional Neural Net
• Singing-Voice Separation Using Deep Recurrent Network
• Semantic Image Inpainting with Deep Generative Models



Convolution versus Matrix Multiplication

A regular neural net uses a matrix 
multiplication in each layer:

!"#
(%) = (

)
*")
(%+,)-)#

(%)

A convolutional neural net uses a 
convolution at each layer:

!"#
(%) = (

)
*",)
(%+,)-#+)

(%)

=

*⃗"
(%+,)!⃗"

(%) = -(%) 0

=

*⃗"
(%+,)!⃗"

(%) = -(%) ∗



Example Convolutions: Moving Average, Edge Detector 

Sfdodge, CC-By 4.0,
https://commons.wikimedia.org/

wiki/File:Time-domain.png

Jon McLoone, CC-SA 3.0,https://commons.wikimedia.org/wiki/File:%C3%84%C3%A4retuvastuse_n%C3%A4ide.png

Edge 
Detector 

Moving Average

Tinos, CC-SA 3.0,
https://commons.wikimedia.org/wiki/

File:Convolution_of_box_signal_with_itself2.gif

∗

https://commons.wikimedia.org/
https://commons.wikimedia.org/wiki/
https://commons.wikimedia.org/wiki/


Convolution with Many Channels
Usually, we want the convolutional network to compute many different channels, c:

!"#,%
(') = *

+
,",+
('-.)/#-+,%

(')

Each of the channels is computing a different type of feature (average, edge, etc.).
Each pixel, in each output channel, tells the degree to which that channel exists at that 
location in the image.

=

,⃗"
('-.)!⃗",.

('), … , !⃗",2
(') = /.

('), … ,/2
(') ∗



What is a convolution?
• Weighted moving average
• All positive weights: average
• Some weights negative: finds 

edges, corners, etc.

Input Output Channels (edges with different orientations)

.

.

.



Biological inspiration

• D. Hubel and T. Wiesel (1959, 1962, Nobel Prize 1981)
• Visual cortex consists of a hierarchy of simple, complex, and 

hyper-complex cells 

Source

http://cns-alumni.bu.edu/~slehar/webstuff/pcave/hubel.html


Convolutional Neural Networks
• Neural network with specialized 

connectivity structure
• Stack multiple stages of feature 

extractors
• Higher stages compute more global, 

more invariant features
• Classification layer at the end

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, 
Proc. IEEE 86(11): 2278–2324, 1998.

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf


Input Image

Convolution 
(Learned)

Non-linearity

Spatial pooling

Normalization

Feature maps

Input Feature Map

.

.

.

Convolutional Neural Networks
O

ne
 la

ye
r o

f a
 co

nv
ol

ut
io

na
l n

eu
ra

l n
et

w
or

k



Input Image

Convolution 
(Learned)

Non-linearity

Spatial pooling

Normalization

Feature maps

Convolutional Neural Networks
O

ne
 la

ye
r o

f a
 co

nv
ol

ut
io

na
l n

eu
ra

l n
et

w
or

k



Input Image

Convolution 
(Learned)

Non-linearity

Spatial pooling

Normalization

Feature maps

Max

Convolutional Neural Networks
O

ne
 la

ye
r o

f a
 co

nv
ol

ut
io

na
l n

eu
ra

l n
et

w
or

k



Input Image

Convolution 
(Learned)

Non-linearity

Spatial pooling

Normalization

Feature maps

Feature Maps Feature Maps
After Contrast 
Normalization

Convolutional Neural Networks
O

ne
 la

ye
r o

f a
 co

nv
ol

ut
io

na
l n

eu
ra

l n
et

w
or

k



Input Image

Convolution 
(Learned)

Non-linearity

Spatial pooling

Normalization

Feature maps • Convolutional filters are trained in a 
supervised manner by back-propagating 
classification error

• Basically, you can think of the top layer as a 
“linear classifier,” and the layer below it 
learns features.  And its features are 
computed from the outputs of the layer 
below that, and so on.

Convolutional Neural Networks
O

ne
 la

ye
r o

f a
 c

on
vo

lu
tio

na
l n

eu
ra

l n
et

w
or

k



AlexNet
• Similar framework to LeCun’98 but:

• Bigger model (7 hidden layers, 650,000 units, 60,000,000 params)

• More data (106 vs. 103 images)

• GPU implementation (50x speedup over CPU)

• Trained on two GPUs for a week

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional 

Neural Networks, NIPS 2012

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf


ImageNet Challenge

  

Validation classification

  

Validation classification

  

Validation classification

[Deng et al. CVPR 2009] 

• ~14 million labeled images, 20k classes

• Images gathered from Internet

• Human labels via Amazon MTurk

• Challenge: 1.2 million training images, 
1000 classes

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional 
Neural Networks, NIPS 2012

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf


Layer 1 Filters

M. Zeiler and R. Fergus, Visualizing and Understanding Convolutional Networks, 
arXiv preprint, 2013

http://arxiv.org/pdf/1311.2901v3.pdf


Layer 1: Top-9 Patches



Layer 2: Top-9 Patches

• Patches from validation images that give maximal activation of a given feature map 



Layer 3: Top-9 Patches
Layer 3: Top-9 Patches



Layer 4: Top-9 Patches



Layer 5: Top-9 Patches



Deep Learning
• Differentiable Perceptron/One-Layer Neural Net
• Two-Layer Neural Net
• Loss functions (Testing the neural net)
• Back-Propagation (Training the neural net)
• Convolutional Neural Net
• Singing-Voice Separation Using Deep Recurrent Network
• Semantic Image Inpainting with Deep Generative Models



Singing-Voice Separation from Monaural 
Recordings Using Deep Recurrent Neural Networks
Po-Sen Huang, Minje Kim, Mark Hasegawa-Johnson and Paris Smaragdis, ISMIR 2014

The problem:

+ =



Singing-Voice Separation
The solution is to train this:                    To minimize this:

Using these specialized 
output nodes:



Singing-Voice Separation Results Example
• Input:

• Goal:

• Actual
Network 
Outputs:



Deep Learning
• Differentiable Perceptron/One-Layer Neural Net
• Two-Layer Neural Net
• Loss functions (Testing the neural net)
• Back-Propagation (Training the neural net)
• Convolutional Neural Net
• Singing-Voice Separation Using Deep Recurrent Network
• Semantic Image Inpainting with Deep Generative Models



Semantic Image Inpainting with 
Deep Generative Models
Raymond Yeh, Chen Chen, Teck Yian Lim, Alexander G. 
Schwing, Mark Hasegawa-Johnson and Minh Do

The problem:



Semantic Image Inpainting
The solution:



Semantic Image Inpainting
The results:


