
CS440/ECE448 Lecture 21:
Markov Decision Processes

Slides by Svetlana Lazebnik, 11/2016
Modified by Mark Hasegawa-Johnson, 3/2019

Markov Decision Processes
• In HMMs, we see a sequence of observations and try to

reason about the underlying state sequence
• There are no actions involved

• But what if we have to take an action at each step that,
in turn, will affect the state of the world?

Markov Decision Processes
• Components that define the MDP. Depending on the problem

statement, you either know these, or you learn them from data:
• States s, beginning with initial state s0
• Actions a

• Each state s has actions A(s) available from it
• Transition model P(s’ | s, a)

• Markov assumption: the probability of going to s’ from s depends only
on s and a and not on any other past actions or states

• Reward function R(s)
• Policy – the “solution” to the MDP:

• p(s) ∈ A(s): the action that an agent takes in any given state

Overview

• First, we will look at how to “solve” MDPs, or find the optimal policy
when the transition model and the reward function are known
• Second, we will consider reinforcement learning, where we don’t

know the rules of the environment or the consequences of our
actions

Game show
• A series of questions with increasing level of difficulty

and increasing payoff
• Decision: at each step, take your earnings and quit, or

go for the next question
• If you answer wrong, you lose everything

Q1 Q2 Q3 Q4
Correct

Incorrect:
$0

Correct

Incorrect:
$0

Quit:
$100

Correct

Incorrect:
$0

Quit:
$1,100

Correct:
$61,100

Incorrect:
$0

Quit:
$11,100

$100
question

$1,000
question

$10,000
question

$50,000
question

1/10

9/10

1/2

1/2

3/4

1/4

1/100

99/100

Game show
• Consider $50,000 question

• Probability of guessing correctly: 1/10
• Quit or go for the question?

• What is the expected payoff for continuing?
0.1 * 61,100 + 0.9 * 0 = 6,110

• What is the optimal decision?

Q1 Q2 Q3 Q4
Correct

Incorrect:
$0

Correct

Incorrect:
$0

Quit:
$100

Correct

Incorrect:
$0

Quit:
$1,100

Correct:
$61,100

Incorrect:
$0

Quit:
$11,100

$100
question

$1,000
question

$10,000
question

$50,000
question

1/10

9/10

1/100

99/100

3/4

1/4

1/2

1/2

Game show
• What should we do in Q3?

• Payoff for quitting: $1,100
• Payoff for continuing: 0.5 * $11,100 = $5,550

• What about Q2?
• $100 for quitting vs. $4,162 for continuing

• What about Q1?

Q1 Q2 Q3 Q4
Correct

Incorrect:
$0

Correct

Incorrect:
$0

Quit:
$100

Correct

Incorrect:
$0

Quit:
$1,100

Correct:
$61,100

Incorrect:
$0

Quit:
$11,100

$100
question

$1,000
question

$10,000
question

$50,000
question

U = $11,100U = $5,550U = $4,162U = $3,746

1/10

9/10

1/100

99/100

3/4

1/4

1/2

1/2

Grid world

R(s) = -0.04 for every
non-terminal state

Transition model:

0.8 0.10.1

Source: P. Abbeel and D. Klein

Goal: Policy

Source: P. Abbeel and D. Klein

Grid world

R(s) = -0.04 for every
non-terminal state

Transition model:

Grid world

Optimal policy when
R(s) = -0.04 for every
non-terminal state

Grid world
• Optimal policies for other values of R(s):

Solving MDPs
• MDP components:

• States s
• Actions a
• Transition model P(s’ | s, a)
• Reward function R(s)

• The solution:
• Policy p(s): mapping from states to actions
• How to find the optimal policy?

Maximizing expected utility
• The optimal policy p(s) should maximize the expected

utility over all possible state sequences produced by
following that policy:

!
"#$#% "%&'%()%"
"#$*#+(, -*./ "0

1 23453673|29, ; = = 29 > 23453673

• How to define the utility of a state sequence?
• Sum of rewards of individual states
• Problem: infinite state sequences

Utilities of state sequences
• Normally, we would define the utility of a state sequence as the

sum of the rewards of the individual states
• Problem: infinite state sequences
• Solution: discount the individual state rewards by a factor g

between 0 and 1:

• Sooner rewards count more than later rewards
• Makes sure the total utility stays bounded
• Helps algorithms converge

)10(
1

)(

)()()(]),,,([

max

0

2
2

10210

<<
-

£=

+++=

å
¥

=

g
g

g

gg
RsR

sRsRsRsssU

t
t

t

!!

Utilities of states

• Expected utility obtained by policy p starting in state s:

!" # = %
&'(') &)*+),-)&
&'(.'/,0 1.23 &

4 #5675895|#, < = = # ! #5675895

• The “true” utility of a state, denoted U(s), is the best possible
expected sum of discounted rewards
• if the agent executes the best possible policy starting in state s

• Reminiscent of minimax values of states…

Finding the utilities of states

å
'

)'(),|'(
s

sUassP

U(s’)

Max node

Chance node

å
Î

=
')(

*)'(),|'(maxarg)(
ssAa

sUassPsp

P(s’ | s, a)

• If state s’ has utility U(s’), then
what is the expected utility of
taking action a in state s?

• How do we choose the optimal
action?

• What is the recursive expression for U(s) in terms of the utilities
of its successor states?

å+=
'

)'(),|'(max)()(
s

a sUassPsRsU g

The Bellman equation
• Recursive relationship between the utilities of

successive states:

End up here with P(s’ | s, a)
Get utility U(s’)

(discounted by g)

Receive reward R(s)

Choose optimal action a

å
Î

+=
')(

)'(),|'(max)()(
ssAa

sUassPsRsU g

The Bellman equation
• Recursive relationship between the utilities of

successive states:

• For N states, we get N equations in N unknowns
• Solving them solves the MDP
• Nonlinear equations -> no closed-form solution, need to use

an iterative solution method (is there a globally optimum
solution?)

• We could try to solve them through expectiminimax search,
but that would run into trouble with infinite sequences

• Instead, we solve them algebraically
• Two methods: value iteration and policy iteration

å
Î

+=
')(

)'(),|'(max)()(
ssAa

sUassPsRsU g

Method 1: Value iteration
• Start out with every U(s) = 0
• Iterate until convergence

• During the ith iteration, update the utility of each state
according to this rule:

• In the limit of infinitely many iterations, guaranteed to
find the correct utility values
• Error decreases exponentially, so in practice, don’t need an

infinite number of iterations…

å
Î+ +¬

')(1)'(),|'(max)()(
s

isAai sUassPsRsU g

Value iteration

• What effect does the update have?
å

Î+ +¬
')(1)'(),|'(max)()(
s

isAai sUassPsRsU g

Value iteration demo

http://www.cs.ubc.ca/~poole/demos/mdp/vi.html

Value iteration

Utilities with discount factor 1 Final policy

Input (non-terminal R=-0.04)

Method 2: Policy iteration

• Start with some initial policy p0 and alternate between the following steps:
• Policy evaluation: calculate Upi(s) for every state s
• Policy improvement: calculate a new policy pi+1 based on the updated utilities

• Notice it’s kind of like hill-climbing in the N-queens problem.
• Policy evaluation: Find ways in which the current policy is suboptimal
• Policy improvement: Fix those problems

• Unlike Value Iteration, this is guaranteed to converge in a finite number of
steps, as long as the state space and action set are both finite.

Method 2, Step 1: Policy evaluation
• Given a fixed policy p, calculate Up(s) for every state s

• p(s) is fixed, therefore !(#$|#, ' #) is an #’×# matrix,
therefore we can solve a linear equation to get Up(s)!
• Why is this “Policy Evaluation” formula so much

easier to solve than the original Bellman equation?

å
Î

+=
')(

)'(),|'(max)()(
ssAa

sUassPsRsU g

å+=
'

)'())(,|'()()(
s

sUsssPsRsU pp pg

Method 2, Step 2: Policy improvement
• Given Up(s) for every state s, find an improved p(s)

å
Î

+ =
')(

1)'(),|'(maxarg)(
ssAa

i sUassPs ipp

Summary
• MDP defined by states, actions, transition model, reward function
• The “solution” to an MDP is the policy: what do you do when you’re in any

given state
• The Bellman equation tells the utility of any given state, and incidentally, also

tells you the optimum policy. The Bellman equation is N nonlinear equations
in N unknowns (the policy), therefore it can’t be solved in closed form.
• Value iteration:

• At the beginning of the (i+1)’st iteration, each state’s value is based on looking ahead i
steps in time

• … so finding the best action = optimize based on (i+1)-step lookahead
• Policy iteration:

• Find the utilities that result from the current policy,
• Improve the current policy

