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Markov Decision Processes
• In HMMs, we see a sequence of observations and try to 

reason about the underlying state sequence
• There are no actions involved

• But what if we have to take an action at each step that, 
in turn, will affect the state of the world?



Markov Decision Processes
• Components that define the MDP.  Depending on the problem 

statement, you either know these, or you learn them from data:
• States s, beginning with initial state s0
• Actions a

• Each state s has actions A(s) available from it
• Transition model P(s’ | s, a)

• Markov assumption: the probability of going to s’ from s depends only 
on s and a and not on any other past actions or states

• Reward function R(s)
• Policy – the “solution” to the MDP:

• p(s) ∈ A(s): the action that an agent takes in any given state



Overview

• First, we will look at how to “solve” MDPs, or find the optimal policy 
when the transition model and the reward function are known
• Second, we will consider reinforcement learning, where we don’t 

know the rules of the environment or the consequences of our 
actions



Game show
• A series of questions with increasing level of difficulty 

and increasing payoff
• Decision: at each step, take your earnings and quit, or 

go for the next question
• If you answer wrong, you lose everything
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Game show
• Consider $50,000 question

• Probability of guessing correctly: 1/10
• Quit or go for the question?

• What is the expected payoff for continuing?
0.1 * 61,100 + 0.9 * 0 = 6,110

• What is the optimal decision?
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Game show
• What should we do in Q3?

• Payoff for quitting: $1,100
• Payoff for continuing: 0.5 * $11,100 = $5,550

• What about Q2?
• $100 for quitting vs. $4,162 for continuing

• What about Q1?
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Grid world

R(s) = -0.04 for every 
non-terminal state

Transition model:

0.8 0.10.1

Source: P. Abbeel and D. Klein 



Goal: Policy

Source: P. Abbeel and D. Klein 



Grid world

R(s) = -0.04 for every 
non-terminal state

Transition model:



Grid world

Optimal policy when 
R(s) = -0.04 for every 
non-terminal state



Grid world
• Optimal policies for other values of R(s):



Solving MDPs
• MDP components:

• States s
• Actions a
• Transition model P(s’ | s, a)
• Reward function R(s)

• The solution:
• Policy p(s): mapping from states to actions
• How to find the optimal policy?



Maximizing expected utility
• The optimal policy p(s) should maximize the expected 

utility over all possible state sequences produced by 
following that policy:
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• How to define the utility of a state sequence?
• Sum of rewards of individual states
• Problem: infinite state sequences



Utilities of state sequences
• Normally, we would define the utility of a state sequence as the 

sum of the rewards of the individual states
• Problem: infinite state sequences
• Solution: discount the individual state rewards by a factor g

between 0 and 1:

• Sooner rewards count more than later rewards
• Makes sure the total utility stays bounded
• Helps algorithms converge
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Utilities of states

• Expected utility obtained by policy p starting in state s:
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• The “true” utility of a state, denoted U(s), is the best possible
expected sum of discounted rewards 
• if the agent executes the best possible policy starting in state s

• Reminiscent of minimax values of states…



Finding the utilities of states

å
'

)'(),|'(
s

sUassP

U(s’)

Max node

Chance node

å
Î

=
')(

* )'(),|'(maxarg)(
ssAa

sUassPsp

P(s’ | s, a)

• If state s’ has utility U(s’), then 
what is the expected utility of 
taking action a in state s?

• How do we choose the optimal 
action?

• What is the recursive expression for U(s) in terms of the utilities 
of its successor states?
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The Bellman equation
• Recursive relationship between the utilities of 

successive states:

End up here with P(s’ | s, a)
Get utility U(s’)

(discounted by g)

Receive reward R(s)

Choose optimal action a
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The Bellman equation
• Recursive relationship between the utilities of 

successive states:

• For N states, we get N equations in N unknowns
• Solving them solves the MDP
• Nonlinear equations -> no closed-form solution, need to use 

an iterative solution method (is there a globally optimum 
solution?)

• We could try to solve them through expectiminimax search, 
but that would run into trouble with infinite sequences

• Instead, we solve them algebraically
• Two methods: value iteration and policy iteration
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Method 1: Value iteration
• Start out with every U(s) = 0
• Iterate until convergence

• During the ith iteration, update the utility of each state 
according to this rule:

• In the limit of infinitely many iterations, guaranteed to 
find the correct utility values
• Error decreases exponentially, so in practice, don’t need an 

infinite number of iterations…
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Value iteration

• What effect does the update have?
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Value iteration demo

http://www.cs.ubc.ca/~poole/demos/mdp/vi.html


Value iteration

Utilities with discount factor 1 Final policy

Input (non-terminal R=-0.04)



Method 2: Policy iteration

• Start with some initial policy p0 and alternate between the following steps:
• Policy evaluation: calculate Upi(s) for every state s
• Policy improvement: calculate a new policy pi+1 based on the updated utilities

• Notice it’s kind of like hill-climbing in the N-queens problem.
• Policy evaluation: Find ways in which the current policy is suboptimal
• Policy improvement: Fix those problems

• Unlike Value Iteration, this is guaranteed to converge in a finite number of 
steps, as long as the state space and action set are both finite.



Method 2, Step 1: Policy evaluation
• Given a fixed policy p, calculate Up(s) for every state s

• p(s) is fixed, therefore !(#$|#, ' # ) is an #’×# matrix, 
therefore we can solve a linear equation to get Up(s)!
• Why is this “Policy Evaluation” formula so much 

easier to solve than the original Bellman equation?

å
Î

+=
')(

)'(),|'(max)()(
ssAa

sUassPsRsU g

å+=
'

)'())(,|'()()(
s

sUsssPsRsU pp pg



Method 2, Step 2: Policy improvement
• Given Up(s) for every state s, find an improved p(s)
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Summary
• MDP defined by states, actions, transition model, reward function
• The “solution” to an MDP is the policy: what do you do when you’re in any 

given state
• The Bellman equation tells the utility of any given state, and incidentally, also 

tells you the optimum policy.   The Bellman equation is N nonlinear equations 
in N unknowns (the policy), therefore it can’t be solved in closed form.
• Value iteration: 

• At the beginning of the (i+1)’st iteration, each state’s value is based on looking ahead i 
steps in time

• … so finding the best action = optimize based on (i+1)-step lookahead
• Policy iteration:

• Find the utilities that result from the current policy,
• Improve the current policy


