CS440/ECE448 Lecture 21:
Markov Decision Processes

Slides by Svetlana Lazebnik, 11/2016
Modified by Mark Hasegawa-Johnson, 3/2019

Markov Decision Processes

* In HMMs, we see a sequence of observations and try to
reason about the underlying state sequence
* There are no actions involved

* But what if we have to take an action at each step that,
in turn, will affect the state of the world?

Markov Decision Processes

* Components that define the MDP. Depending on the problem
statement, you either know these, or you learn them from data:

* States s, beginning with initial state s,
* Actions a

* Each state s has actions A(s) available from it
* Transition model P(s’ | s, a)

* Markov assumption: the probability of going to s’ from s depends only
on s and a and not on any other past actions or states

* Reward function R(s)

* Policy — the “solution” to the MDP:
* 7(s) € A(s): the action that an agent takes in any given state

Overview

* First, we will look at how to “solve” MDPs, or find the optimal policy
when the transition model and the reward function are known

e Second, we will consider reinforcement learning, where we don’t
know the rules of the environment or the consequences of our
actions

Game show

* A series of questions with increasing level of difficulty
and increasing payoff

* Decision: at each step, take your earnings and quit, or
go for the next question
* If you answer wrong, you lose everything

$100 $1,000 $10,000 $50,000
question question question question
Correct:
Correct Correct Correct $61,100
l 1/100 l 3/4° l 1/2 l 1/10
99/100 1/4 1/2 9/10
Incorrect: Incorrect: Incorrect: Incorrect:
SO S0 SO SO
Quit: Quit: Quit:

$100 $1,100 $11,100

Game show

* Consider $50,000 question
* Probability of guessing correctly: 1/10
e Quit or go for the question?

* What is the expected payoff for continuing?
0.1 *61,100+ 0.9 *0=16,110

e What is the optimal decision?

$100 $1,000 $10,000 $50,000
question question question question

Correct:

Correct Correct Correct $61,100

1/100 3/4~ 1/2 1/10
99/100 1/4 1/2 9/10
Incorrect: Incorrect: Incorrect: Incorrect:
SO SO S0 S0
Quit: Quit: Quit:

$100 $1,100 $11,100

Game show

* What should we do in Q3?
* Payoff for quitting: $1,100
* Payoff for continuing: 0.5 * $11,100 = $5,550

* What about Q27?
* S100 for quitting vs. $4,162 for continuing

e What about Q17

U =S3,746 U=54,162 U = $5,550 U=511,100
$100 $1,000 $10,000 $50,000
question question question question

Correct:

Correct Correct Correct $61,100

1/100 3/4 1/2 1/1

99/100 1/4 1/2 9/10
Incorrect: Incorrect: Incorrect: Incorrect:
SO SO S0 S0
Quit: Quit: Quit:

$100 $1,100 $11,100

Transition model:

Grid world

R(s) = -0.04 for every
non-terminal state

Source: P. Abbeel and D. Klein

Goal: Policy

Grid world

1 START

+1

Transition model:

0.8

0.1 0.1

R(s) = -0.04 for every
non-terminal state

Grid world

+ 1

Optimal policy when
R(s) = -0.04 for every
non-terminal state

Grid world

» Optimal policies for other values of R(s):

| | » |[] | | = |[]
A - (= | b =3
I . . V=] 4 |<

R(s) < —1.6284 —0.4278 < R(s) < —-0.0850

A - | = <+ - |=

b= |=[t] [HHHY

-0.0221 < R(s) <0 R(s) >0

Solving MDPs

* MDP components:
» States s
* Actions a
* Transition model P(s’ | s, a)
* Reward function R(s)
* The solution:
* Policy 7t(s): mapping from states to actions
* How to find the optimal policy?

Maximizing expected utility

* The optimal policy 1t(s) should maximize the expected
utility over all possible state sequences produced by
following that policy:

P(Sequence So, @ = n(so))U (sequence)

state sequences
starting from sg

* How to define the utility of a state sequence?
e Sum of rewards of individual states
* Problem: infinite state sequences

Utilities of state sequences

* Normally, we would define the utility of a state sequence as the
sum of the rewards of the individual states

* Problem: infinite state sequences

* Solution: discount the individual state rewards by a factor y
between 0 and 1:

U([Sy,58,,55,...]1)=R(s,)+yR(s,)+ 7°R(s,) +...

=Y y'R(s)<—= (0<y<])

e Sooner rewards count more than later rewards
* Makes sure the total utility stays bounded
* Helps algorithms converge

Utilities of states

* Expected utility obtained by policy ©t starting in state s:

U(s) = z P(sequence|s, a= n(s))U (sequence)

state sequences
starting froms

* The “true” utility of a state, denoted U(s), is the best possible
expected sum of discounted rewards

* if the agent executes the best possible policy starting in state s
* Reminiscent of minimax values of states...

Finding the utilities of states

* If state s’ has utility U(s’), then
what is the expected utility of
taking action a in state s?

TA ZP(S'| s,a)U(s")

* How do we choose the optimal
action?
7 (s)=argmax) P(s'|s,a)U(s")

acA(s) s'

e What is the recursive expression for U(s) in terms of the utilities
of its successor states?

U(s)=R(s)+ymax, Y P(s'|s,a)U(s")

The Bellman equation

* Recursive relationship between the utilities of
successive states:

U(s)=R(s)+y max > P(s'|s,a)U(s")

acA(s)

S'

Receive reward R(s)

As”
S
End up here with P(s’ | s, a)

Get utility U(s’)
(discounted by)

The Bellman equation

* Recursive relationship between the utilities of
successive states:

U(s)=R(s)+y max ZP(S'| s,a)U(s")

acA(s)

S'

* For N states, we get N equations in N unknowns
e Solving them solves the MDP

* Nonlinear equations -> no closed-form solution, need to use

an iterative solution method (is there a globally optimum
solution?)

* We could try to solve them through expectiminimax search,
but that would run into trouble with infinite sequences

* Instead, we solve them algebraically
Two methods: value iteration and policy iteration

Method 1: Value iteration

e Start out with every U(s) =0

* |terate until convergence

e During the ith iteration, update the utility of each state
according to this rule:

U, (s) < R(s)+ymax > P(s'| s,a)U,(s")

acA(s) K
* In the limit of infinitely many iterations, guaranteed to
find the correct utility values

* Error decreases exponentially, so in practice, don’t need an
infinite number of iterations...

Value iteration

* What effect does the update have?
Ui+1(S) <_R(S)+7/maXZP(S'| Saa)Ui(S')

acA(s) =
3
2 [-1]
1 START
1 2 3 4

Value iteration demo

http://www.cs.ubc.ca/~poole/demos/mdp/vi.html

Value

Iteration

Input (non-terminal R=-0.04)

3
2 1]
1 START

1 2 3 4

Utilities with discount factor 1

3 | 0812 | 0.868 | 0.918
2 | o762 0.660 | [=1_]
1 0.705 | 0.655 | 0.611 0.388

1 2 3 4

Utility estimates

0 5 10 15 20 25 30
Number of iterations

Final policy

Method 2: Policy iteration

e Start with some initial policy my and alternate between the following steps:

* Policy evaluation: calculate U™i(s) for every state s
* Policy improvement: calculate a new policy 1t;,; based on the updated utilities

* Notice it’s kind of like hill-climbing in the N-queens problem.
* Policy evaluation: Find ways in which the current policy is suboptimal
* Policy improvement: Fix those problems

* Unlike Value Iteration, this is guaranteed to converge in a finite number of
steps, as long as the state space and action set are both finite.

Method 2, Step 1: Policy evaluation

 Given a fixed policy &, calculate U™(s) for every state s

U”(s) = R(s)+ VZP(S'I s, 2(s)U" (s")

* 1t(s) is fixed, therefore P(s'|s, m(s)) is an s’Xs matrix,
therefore we can solve a linear equation to get U™(s)!

* Why is this “Policy Evaluation” formula so much
easier to solve than the original Bellman equation?

U(s)=R(s)+ y max ZP(S'| s,a)U(s')

acA(s)

S'

Method 2, Step 2: Policy improvement

* Given U™(s) for every state s, find an improved 7t(s)

7' (s) =arg maXZP(S'| s,a)U" (s")

acA(s) g

summary

 MDP defined by states, actions, transition model, reward function

* The “solution” to an MDP is the policy: what do you do when you’re in any
given state

* The Bellman equation tells the utility of any given state, and incidentally, also
tells you the optimum policy. The Bellman equation is N nonlinear equations
in N unknowns (the policy), therefore it can’t be solved in closed form.

* Value iteration:

* At the beginning of the (i+1)’st iteration, each state’s value is based on looking ahead i
steps in time

* ... so finding the best action = optimize based on (i+1)-step lookahead

* Policy iteration:
* Find the utilities that result from the current policy,
* Improve the current policy

