CS440/ECE448 Lecture 20: Hidden Markov Models

Slides by Svetlana Lazebnik, 11/2016
Modified by Mark Hasegawa-Johnson, 3/2019
Hidden Markov Model $=\left[\begin{array}{lllll}\text { [} & \text { i } & \mathrm{j} & \mathrm{k} & \cdots\end{array}\right]$
State Sequence $\mathrm{Q}=\left[\begin{array}{lllllllll}\mathrm{i} & \mathrm{i} & \mathrm{i} & \mathrm{j} & \mathrm{j} & \mathrm{k} & \mathrm{k} & \mathrm{k} & \ldots\end{array}\right]$
Observations $\mathrm{O}=\left[\begin{array}{lllllllll}\mathrm{o}_{1} & \mathrm{o}_{2} & \mathrm{o}_{3} & \mathrm{o}_{4} & \mathrm{o}_{5} & \mathrm{o}_{6} & o_{7} & \mathrm{o}_{8} & o_{9}\end{array}\right]$

Probabilistic reasoning over time

- So far, we've mostly dealt with episodic environments
- Exceptions: games with multiple moves, planning
- In particular, the Bayesian networks we've seen so far describe static situations
- Each random variable gets a single fixed value in a single problem instance
- Now we consider the problem of describing probabilistic environments that evolve over time
- Examples: robot localization, human activity detection, tracking, speech recognition, machine translation,

Hidden Markov Models

- At each time slice t, the state of the world is described by an unobservable variable X_{t} and an observable evidence variable E_{t}
- Transition model: distribution over the current state given the whole past history: $P\left(X_{t} \mid X_{0}, \ldots, X_{t-1}\right)=P\left(X_{t} \mid X_{0: t-1}\right)$
- Observation model: $P\left(E_{t} \mid X_{0: t}, E_{1: t-1}\right)$

Hidden Markov Models

- Markov assumption (first order)
- The current state is conditionally independent of all the other states given the state in the previous time step
- What does $\mathrm{P}\left(\mathrm{X}_{t} \mid \mathrm{X}_{0: t-1}\right)$ simplify to?

$$
P\left(X_{t} \mid X_{0: t-1}\right)=P\left(X_{t} \mid X_{t-1}\right)
$$

- Markov assumption for observations
- The evidence at time t depends only on the state at time t
- What does $\mathrm{P}\left(\mathrm{E}_{t} \mid \mathbf{X}_{0: t}, \mathrm{E}_{1: t-1}\right)$ simplify to?

$$
\mathrm{P}\left(\mathrm{E}_{t} \mid \mathbf{X}_{0: t}, \mathrm{E}_{1: t-1}\right)=\mathrm{P}\left(\mathrm{E}_{t} \mid \mathrm{X}_{t}\right)
$$

Example

Example

Transition model

An alternative visualization

Transition
probabilities

	$R_{t}=T$	$R_{t}=F$
$R_{t-1}=T$	0.7	0.3
$R_{t-1}=F$	0.3	0.7

Observation
(emission)
probabilities

	$U_{t}=T$	$U_{t}=F$
$R_{t}=T$	0.9	0.1
$R_{t}=F$	0.2	0.8

Another example

- States: $\mathrm{X}=$ \{home, office, cafe $\}$
- Observations: $\mathrm{E}=\{\mathrm{sms}$, facebook, email\}

Transition Probabilities

	home	office	cafe
home	0.2	0.6	0.2
office	0.5	0.2	0.3
cafe	0.2	0.8	0.0

Emission Probabilities			
sms facebook email home 0.3 0.5 0.2 office 0.1 0.1 0.8 cafe 0.8 0.1 0.1			

Slide credit: Andy White

The Joint Distribution

- Transition model: $\mathrm{P}\left(\mathrm{X}_{t} \mid \mathrm{X}_{0: t-1}\right)=\mathrm{P}\left(\mathrm{X}_{t} \mid \mathrm{X}_{t-1}\right)$
- Observation model: $\mathrm{P}\left(\mathrm{E}_{t} \mid \mathrm{X}_{0: t}, \mathrm{E}_{1: t-1}\right)=\mathrm{P}\left(\mathrm{E}_{t} \mid \mathrm{X}_{t}\right)$
- How do we compute the full joint $P\left(X_{0: t}, E_{1: t}\right)$?

$$
P\left(\boldsymbol{X}_{0: t}, \boldsymbol{E}_{1: t}\right)=P\left(X_{0}\right) \prod_{i=1}^{t} P\left(X_{i} \mid X_{i-1}\right) P\left(E_{i} \mid X_{i}\right)
$$

Review: Bayes net inference

- Inference:
- Trees: Sum-Product Algorithm (Textbook: "Variable Elimination" Algorithm)
- Other Nets: Junction Tree Algorithm (Textbook: "Join Tree" Algorithm)
- In General: NP-Complete, because clique size = graph size in general
- Parameter learning
- Fully observed: Count \# times each event occurs
- Partially observed: Expectation-Maximization algorithm
- Estimate Probability of each event at each time
- E[\# times event occurs] = sum_t(Probability event occurs at time t)

Sum-Product Algorithm for HMMs

- An HMM is a tree!
- For example, suppose we want to find $\mathrm{P}(\mathrm{X} 3 \mid \mathrm{E} 1, \mathrm{E} 2, \mathrm{E} 3)$
- Product: P(X0,X1,E1)=P(X0)P(X1|X0)P(E1|X1)
- Sum: P(X1|E1)=P(X1,E1)/P(E1)
- Product: P(X1,X2,E2|E1)=P(X1|E1)P(X2|X1)P(E2|X2)
- Sum: P(X2|E1,E2)=P(X2,E2|E1)/P(E2|E1)
- ...

HMM inference tasks

- Filtering: what is the distribution over the current state X_{t} given all the evidence so far, $\mathbf{e}_{1: t}$?
- The forward algorithm = sum-product algorithm for Xt given e1:t

HMM inference tasks

- Filtering: what is the distribution over the current state X_{t} given all the evidence so far, $\mathbf{e}_{1: t}$?
- Smoothing: what is the distribution of some state X_{k} given the entire observation sequence $\mathbf{e}_{1: \mathrm{t}}$?
- The forward-backward algorithm = sum-product algorithm for Xk given e1:t, when $1<k<t$
- Xk = query variable, unknown, need to consider all its possible values
- E1:t = evidence variables, known, only need to consider the given values

HMM inference tasks

- Filtering: what is the distribution over the current state X_{t} given all the evidence so far, $\mathbf{e}_{1: t}$?
- Smoothing: what is the distribution of some state X_{k} given the entire observation sequence $\mathbf{e}_{1: \mathrm{t}}$?
- Evaluation: compute the probability of a given observation sequence $\mathbf{e}_{1: t}$

HMM inference tasks

- Filtering: what is the distribution over the current state X_{t} given all the evidence so far, $\mathbf{e}_{1: t}$
- Smoothing: what is the distribution of some state X_{k} given the entire observation sequence $\mathbf{e}_{1: \mathrm{t}}$?
- Evaluation: compute the probability of a given observation sequence $\mathbf{e}_{1: t}$
- Decoding: what is the most likely state sequence $\mathbf{X}_{0: t}$ given the observation sequence $\mathbf{e}_{1: t}$?
- The Viterbi algorithm

HMM Learning and Inference

- Inference tasks
- Filtering: what is the distribution over the current state X_{t} given all the evidence so far, $\mathbf{e}_{1: \mathrm{t}}$
- Smoothing: what is the distribution of some state X_{k} given the entire observation sequence $\mathbf{e}_{1: t}$?
- Evaluation: compute the probability of a given observation sequence $\mathbf{e}_{1: t}$
- Decoding: what is the most likely state sequence $\mathbf{X}_{0: t}$ given the observation sequence $\mathbf{e}_{1: t}$?
- Learning
- Given a training sample of sequences, learn the model parameters (transition and emission probabilities)
- EM algorithm

Applications of HMMs

- Speech recognition HMMs:
- Observations are acoustic signals (continuous valued)
- States are specific positions in specific words (so, tens of thousands)

- Machine translation HMMs:
- Observations are words (tens of thousands)
- States are translation options

Google

Translate From: Latin $\quad \leftrightarrows \quad$ To: English •

- Robot tracking:
- Observations are range readings (continuous)
- States are positions on a map (continuous)

Application of HMMs: Speech recognition

- "Noisy channel" model of speech

Speech feature extraction

Speech feature extraction

Spectrogram

Phonetic model

- Phones: speech sounds
- Phonemes: groups of speech sounds that have a unique meaning/function in a language (e.g., there are several different ways to pronounce " t ")

Phonetic model

IPA	ARPAbet		IPA	ARPAbet
Symbol	Symbol	Word	Transcription	Transcription
［p］	［p］	parsley	［＇parsli］	［paarsliy］
［t］	［t］	tarragon	［＇tærəgan］	［t aeraxg aan］
［k］	［k］	catnip	［＇kætnip］	［k aetnix p］
［b］	［b］	$\underline{\text { bay }}$	［ber］	［bey］
［d］	［d］	dill	［dil］	［dih I］
［g］	［g］	garlic	［＇garlik］	［gaarlix k］
［m］	［m］	$\underline{\text { mint }}$	［mmt］	［ m ih nt ］
［ n ］	［n］	nutmeg	［＇nıtmeg］	［ n ahtmeh g
［［］］	［ ng ］	ginseng	［＇dzmsin］	［jh ih nsix ng］
［f］	［f］	fennel	［＇fın！］］	［ feh nel ］
［v］	［v］	clove	［klouv］	［klow v］
［日］	［th］	thistle	［＇日is］］	［th ih sel］
［ $¢$ ］	［dh］	heather	［＇hとðə］	［ h eh dh axr］
［s］	［s］	sage	［serd3］	［s ey jh］
［z］	［z］	hazelnut	［＇herz｜nıt］	［heyzelnaht］
［［］	［sh］	squash	［skwaf］	［skwash］
［3］	［zh］	ambrosia	［æm＇brouzz］	［ae mbrow zh ax］
［t5］	［ch］	chicory	［＇tfikxi］	［ch ih k axriy ］
［d3］	［jh］	sage	［serd3］	［s ey jh］
［1］	［I］	licorice	［＇İkəif］	［lih k axr ix sh］
［w］	［w］	kiwi	［＇kiwi］	［kiy w iy］
［r］	［r］	parsley	［＇parsli］	［paarsliy］
［j］	［y］	yew	［yu］	［y uw］
［h］	［h］	horseradish	［＇horsrædis］	［h aorsraedih sh］
［？］	［q］	uh－oh	［？\wedge ？ 0 ］	［ q ah q ow］
［r］	［dx］	butter	［＇bara］	［b ah dx axr ］
［ r$]$	［ nx ］	wintergreen	［wזัə ${ }^{\text {chin］}}$	［wihnxaxrgrin］
［1］	［el］	thistle	［＇Eisl］	［th ih sel ］

Figure 4．1 IPA and ARPAbet symbols for transcription of English consonants．

HMM models for phones

HMM states in most speech recognition systems correspond to subsegments of triphones

- Triphone: the /b/ in "about" (ax-b+aw) sounds different from the /b/ in "Abdul" (ae-b+d). There are around 60 phones and as many as 60^{3} context-dependent triphones.
- Subsegments: /b/ has three subsegments: the closure, the silence, and the release. There are 3×60^{3} subsegments of triphones.

Figure 7.11 An example of the context-dependent triphone $b(a x, a w)$ (the phone [b] preceded by a [ax] and followed by a [aw], as in the beginning of about, showing its left, middle, and right subphones.

HMM models for words

Figure 7.5 Pronunciation networks for the words I, on, need, and the. All networks (especially the) are significantly simplified.

Putting words together

- Given a sequence of acoustic features, how do we find the corresponding word sequence?

The Viterbi Algorithm

$$
\begin{aligned}
& \max _{\boldsymbol{X}_{0: t}} P\left(\boldsymbol{X}_{0: t}, \boldsymbol{E}_{0: t}\right) \\
& =\max _{X_{t}} P\left(E_{t} \mid X_{t}\right) \max _{X_{t-1}} P\left(X_{t} \mid X_{t-1}\right) P\left(E_{t-1} \mid X_{t-1}\right) \max _{X_{t-2}} \ldots
\end{aligned}
$$

Complexity changes from $\mathrm{O}\left\{\mathrm{N}^{\wedge} \mathrm{T}\right\}$ to $\mathrm{O}\left\{\mathrm{TN}^{\wedge} 2\right\}$

Decoding with the Viterbi algorithm

Figure 7.10 The entries in the individual state columns for the Viterbi algorithm. Each cell keeps the probability of the best path so far and a pointer to the previous cell along that path. Backtracing from the successful last word (the), we can reconstruct the word sequence I need the.

For more information

- CS 447: Natural Language Processing
- ECE 417: Multimedia Signal Processing
- ECE 594: Mathematical Models of Language
- Linguistics 506: Computational Linguistics
- D. Jurafsky and J. Martin, "Speech and Language Processing," $2^{\text {nd }}$ ed., Prentice Hall, 2008

