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Bayes Network Inference & Learning
Bayes net is a memory-efficient model of dependencies among:
• Query variables: X
• Evidence (observed) variables and their values: E = e
• Unobserved variables: Y

Inference problem: answer questions about the query variables 
given the evidence variables
• This can be done using the posterior distribution P(X | E = e)
• The posterior can be derived from the full joint P(X, E, Y)
• How do we make this computationally efficient?

Learning problem: given some training examples, how do we learn 
the parameters of the model?
• Parameters = p(variable|parents), for each variable in the net



Outline

• Inference Examples
• Inference Algorithms

• Trees: Sum-product algorithm
• Poly-trees: Junction tree algorithm
• Graphs: No polynomial-time algorithm

• Parameter Learning



Practice example 1
• Variables: Cloudy, Sprinkler, Rain, Wet Grass



Practice example 1
• Given that the grass is wet, what is the probability 

that it has rained?

P(r |w) = P(r,w)
P(w)

=

P(c, s, r,w)
C=c,S=s
∑

P(c, s, r,w)
C=c,S=s,R=r
∑

=

P(c)P(s | c)P(r | c)P(w | r, s)
C=c,S=s
∑

P(c)P(s | c)P(r | c)P(w | r, s)
C=c,S=s,R=r
∑



Practice Example #2

• Suppose you have an observation, for example, “Jack called” (J=1)
• You want to know: was there a burglary?
• You need

𝑃 𝐵 = 1 𝐽 = 1 =
𝑃(𝐵, 𝐽 = 1)

∑* 𝑃(𝐵 = 𝑏, 𝐽 = 1)
• So you need to compute the table P(B,J) for all possible settings of 

(B,J)



Bayes Net Inference: 
The Hard Way

1. P(B,E,A,J,M)=P(B)P(E)P(A|B,E)P(J|A)P(M|A)
2. 𝑃 𝐵, 𝐽 = ∑. ∑/∑0 𝑃(𝐵, 𝐸, 𝐴, 𝐽, 𝑀)

Exponential complexity (#P-hard, actually): N variables, each of which has 
K possible values ⇒ 𝑂{𝐾8} time complexity



Is there an easier way?

• Tree-structured Bayes nets: the sum-product algorithm
• Quadratic complexity, 𝑂{𝑁𝐾;}

• Polytrees: the junction tree algorithm
• Pseudo-polynomial complexity, 𝑂{𝑁𝐾0}, for M<N

• Arbitrary Bayes nets: #P complete, 𝑂{𝐾8}
• The SAT problem is a Bayes net!

• Parameter Learning



1. Tree-Structured Bayes Nets

• Suppose these are all binary variables.
• We observe E=1
• We want to find P(H=1|E=1)
• Means that we need to find both 

P(H=0,E=1) and P(H=1,E=1) because

𝑃 𝐻 = 1 𝐸 = 1 =
𝑃(𝐻 = 1, 𝐸 = 1)

∑= 𝑃(𝐻 = ℎ, 𝐸 = 1)



The Sum-Product Algorithm (Belief Propagation)

• Find the only undirected path from the 
evidence variable to the query variable 
(EDBFGIH)

• Find the directed root of this path P(F)
• Find the joint probabilities of root and 

evidence: P(F=0,E=1) and P(F=1,E=1)
• Find the joint probabilities of query and 

evidence: P(H=0,E=1) and P(H=1,E=1)
• Find the conditional probability P(H=1|E=1)



The Sum-Product Algorithm

Starting with the root P(F), we find P(F,E) by 
alternating product steps and sum steps:
1. Product: P(B,D,F)=P(F)P(B|F)P(D|B)
2. Sum: 𝑃 𝐷, 𝐹 = ∑ABCD 𝑃(𝐵, 𝐷, 𝐹)
3. Product: P(D,E,F)=P(D,F)P(E|D)
4. Sum: 𝑃 𝐸, 𝐹 = ∑EBCD 𝑃(𝐷, 𝐸, 𝐹)

The Sum-Product Algorithm (Belief Propagation)



The Sum-Product Algorithm

Starting with the root P(E,F), we find P(E,H) 
by alternating product steps and sum steps:
1. Product: P(E,F,G)=P(E,F)P(G|F)
2. Sum: 𝑃 𝐸, 𝐺 = ∑GBCD 𝑃(𝐸, 𝐹, 𝐺)
3. Product: P(E,G,I)=P(E,G)P(I|G)
4. Sum: 𝑃 𝐸, 𝐼 = ∑IBCD 𝑃(𝐸, 𝐺, 𝐼)
5. Product: P(E,H,I)=P(E,I)P(I|G)
6. Sum: 𝑃 𝐸, 𝐻 = ∑JBCD 𝑃(𝐸, 𝐻, 𝐼)

The Sum-Product Algorithm (Belief Propagation)



• Each product step generates a table with 3 
variables

• Each sum step reduces that to a table with 
2 variables

• If each variable has K values, and if there 
are 𝑂{𝑁} variables on the path from 
evidence to query, then time complexity is 
𝑂{𝑁𝐾;}

Time Complexity of Belief Propagation



Time Complexity of Bayes Net Inference

• Tree-structured Bayes nets: the sum-product algorithm
• Quadratic complexity, 𝑂{𝑁𝐾;}

• Polytrees: the junction tree algorithm
• Pseudo-polynomial complexity, 𝑂{𝑁𝐾0}, for M<N

• Arbitrary Bayes nets: #P complete, 𝑂{𝐾8}
• The SAT problem is a Bayes net!

• Parameter Learning



2. The Junction Tree Algorithm

a. Moralize the graph (identify each variable’s Markov blanket)
b. Triangulate the graph (eliminate undirected cycles)
c. Create the junction tree (form cliques)
d. Run the sum-product algorithm on the junction tree



2.a. Markov Blanket

• Suppose there is a Bayes net 
with variables A,B,C,D,E,F,G,H

• The “Markov blanket” of 
variable F is D,E,G if

P(F|A,B,C,D,E,G,H) 
= P(F|D,E,G)



2.a. Markov Blanket

• Suppose there is a Bayes net 
with variables A,B,C,D,E,F,G,H

• The “Markov blanket” of 
variable F is D,E,G if

P(F|A,B,C,D,E,G,H) 
= P(F|D,E,G)

A

B

C D

E F
G

H



2.a. Markov Blanket

• The “Markov blanket” of variable F is 
D,E,G if

P(F|A,B,C,D,E,G,H) 
= P(F|D,E,G)

• How can we prove that?
• P(A,…,H) = P(A)P(B|A) …
• Which of those terms include F?

A

B

C D

E F
G

H



2.a. Markov Blanket

• Which of those terms include F?
• Only these two:

P(F|D)
and

P(G|E,F)

A

B

C D

E F
G

H



2.a. Markov Blanket

The Markov Blanket of variable F 
includes only its immediate family 
members:

• Its parent, D
• Its child, G
• The other parent of its child, E

Because P(F|A,B,C,D,E,G,H) 
= P(F|D,E,G)

A

B

C D

E F
G

H



2.a. Moralization

“Moralization” = 
1. If two variables have a child 

together, force them to get 
married.

2. Get rid of the arrows (not 
necessary any more).

Result: Markov blanket = the set of 
variables to which a variable is 
connected.

A

B

C D

E F
G

H



2.b. Triangulation

Triangulation = draw edges so that there 
is no unbroken cycle of length > 3.

There are usually many different ways to 
do this.  For example, here’s one:

A

B

C D

E F
G

H



2.c. Form Cliques

Clique = a group of variables, all of 
whom are members of each other’s 
immediate family.

Junction Tree = a tree in which
• Each node is a clique from the 

original graph,
• Each edge is an “intersection set,” 

naming the variables that overlap 
between the two cliques.

A

B

C D

E F
G

H

AB

BCD

CDF

CEF

EFG

GH

B

CD

CF

EF

G



2.d. Sum-Product
Suppose we need P(B,G):
1. Product: P(B,C,D,F)=P(B)P(C|B)P(D|B)P(F|D)
2. Sum:  𝑃 𝐵, 𝐶, 𝐹 = ∑E 𝑃(𝐵, 𝐶, 𝐷, 𝐹)
3. Product: P(B,C,E,F)=P(B,C,F)P(E|C)
4. Sum: 𝑃 𝐵, 𝐸, 𝐹 = ∑L 𝑃(𝐵, 𝐶, 𝐸, 𝐹)
5. Product: P(B,E,F,G) = P(B,E,F)P(G|E,F)
6. Sum: 𝑃 𝐵, 𝐺 = ∑. ∑G 𝑃(𝐵, 𝐸, 𝐹, 𝐺)

Complexity: 𝑂{𝑁𝐾0}, where N=# cliques,
K = # values for each variable, 
M = 1 + # variables in the largest clique

B

C D

E F
G



Junction Tree: Sample Test Question

Consider the burglar alarm 
example.
a. Moralize this graph
b. Is it already triangulated?  If 

not, triangulate it.
c. Draw the junction tree



Solution

a. Moralize this graphB E
A

J M



Solution

b. Is it already triangulated?

Answer: yes.  There is no 
unbroken cycle of length > 3.

B E
A

J M



Solution

c. Draw the junction tree

ABE

AJ AM
A A



Time Complexity of Bayes Net Inference

• Tree-structured Bayes nets: the sum-product algorithm
• Quadratic complexity, 𝑂{𝑁𝐾;}

• Polytrees: the junction tree algorithm
• Pseudo-polynomial complexity, 𝑂{𝑁𝐾0}, for M<N

• Arbitrary Bayes nets: #P complete, 𝑂{𝐾8}
• The SAT problem is a Bayes net!

• Parameter Learning



Bayesian network inference
• In full generality, NP-hard

• More precisely, #P-hard: equivalent to counting satisfying assignments

• We can reduce satisfiability to Bayesian network inference
• Decision problem: is P(Y) > 0?

Y = (U1∨U2 ∨U3)∧(¬U1∨¬U2 ∨U3)∧(U2 ∨¬U3∨U4 )



Bayesian network inference
• In full generality, NP-hard

• More precisely, #P-hard: equivalent to counting satisfying assignments

• We can reduce satisfiability to Bayesian network inference
• Decision problem: is P(Y) > 0?

G. Cooper, 1990

Y = (U1∨U2 ∨U3)∧(¬U1∨¬U2 ∨U3)∧(U2 ∨¬U3∨U4 )

C1 C2 C3



Bayesian network inference

P(U1,U2,U3,U4,C1,C2,C3,D1,D2,Y ) =
P(U1)P(U2 )P(U3)P(U4 )
P(C1 |U1,U2,U3)P(C2 |U1,U2,U3)P(C3 |U2,U3,U4 )
P(D1 |C1)P(D2 |D1,C2 )P(Y |D2,C3)



Bayesian network inference

Why can’t we use the junction tree algorithm to 
efficiently compute Pr(Y)?



Bayesian network inference

Why can’t we use the junction tree algorithm to 
efficiently compute Pr(Y)?
Answer: after we moralize and triangulate, the size of 
the largest clique (u2u3c1c2c3) is 𝑀 ≈ 𝑁, same order 
of magnitude as the original problem



Time Complexity of Bayes Net Inference

• Tree-structured Bayes nets: the sum-product algorithm
• Quadratic complexity, 𝑂{𝑁𝐾;}

• Polytrees: the junction tree algorithm
• Pseudo-polynomial complexity, 𝑂{𝑁𝐾0}, for M<N

• Arbitrary Bayes nets: #P complete, 𝑂{𝐾8}
• The SAT problem is a Bayes net!

• Parameter Learning



Parameter learning
• Inference problem: given values of evidence variables 

E = e, answer questions about query variables X using 
the posterior P(X | E = e)

• Learning problem: estimate the parameters of the 
probabilistic model P(X | E) given a training sample
{(x1,e1), …, (xn,en)}



Parameter learning: complete data
• Suppose we know the network structure (but not the 

parameters), and have a training set of complete
observations

Sample C S R W

1 T F T T

2 F T F T

3 T F F F

4 T T T T

5 F T F T

6 T F T F

… … … …. …

?

?
?

?
?

?
?
?
?

Training set



Parameter learning
• Suppose we know the network structure (but not the 

parameters), and have a training set of complete
observations

• Example:

𝑃 𝑆 = 𝑇 𝐶 = 𝑇 =
#samples with 𝑆 = 𝑇, 𝐶 = 𝑇

# samples with 𝐶 = 𝑇
=
1
4 Sample C S R W

1 T F T T

2 F T F T

3 T F F F

4 T T T T

5 F T F T

6 T F T F

… … … …. …

Training set



Parameter learning
• Suppose we know the network structure (but not the 

parameters), and have a training set of complete
observations

• P(X | Parents(X)) is given by the observed frequencies of 
the different values of X for each combination of parent 
values



Parameter learning: missing data
• Suppose we know the network structure (but not the 

parameters), and have a training set, but the training set 
is missing some observations.

?

?
?

?
?

?
?
?
?

Training set
Sample C S R W

1 ? F T T

2 ? T F T

3 ? F F F

4 ? T T T

5 ? T F T

6 ? F T F

… … … …. …



Missing data: the EM algorithm
• The EM algorithm starts (“Expectation Maximization”) 

starts with an initial guess for each parameter value.
• We try to improve the initial guess, using the algorithm on the 

next two slides:
• E-step 
• M-step

0.5?

0.5?
0.5?

0.5?
0.5?

0.5?
0.5?
0.5?
0.5?

Training set
Sample C S R W

1 ? F T T

2 ? T F T

3 ? F F F

4 ? T T T

5 ? T F T

6 ? F T F

… … … …. …



Missing data: the EM algorithm
• E-Step (Expectation): Given the model parameters, replace each of the missing 

numbers with a probability (a number between 0 and 1) using

𝑃 𝐶 = 1 𝑆, 𝑅,𝑊 =
𝑃(𝐶 = 1, 𝑆, 𝑅,𝑊)

𝑃 𝐶 = 1, 𝑆, 𝑅,𝑊 + 𝑃(𝐶 = 0, 𝑆, 𝑅,𝑊)

0.5?

0.5?
0.5?

0.5?
0.5?

0.5?
0.5?
0.5?
0.5?

Training set
Sample C S R W

1 0.5? F T T

2 0.5? T F T

3 0.5? F F F

4 0.5? T T T

5 0.5? T F T

6 0.5? F T F

… … … …. …



Missing data: the EM algorithm
• M-Step (Maximization): Given the missing data estimates, replace each of the 

missing model parameters using

𝑃 Variable = T Parents = value =
𝐸[# times Variable = 𝑇, Parents = value]

𝐸[#times Parents = value]

0.5

0.5
0.5

0.5
0.5

1.0
1.0
0.5
0.0

Training set
Sample C S R W

1 0.5? F T T

2 0.5? T F T

3 0.5? F F F

4 0.5? T T T

5 0.5? T F T

6 0.5? F T F

… … … …. …



Missing data: the EM algorithm
• Iterate back and forth between E-step and M-step until the model converges.

0.5

0.5
0.5

0.5
0.5

1.0
1.0
0.5
0.0

Training set
Sample C S R W

1 0.5? F T T

2 0.5? T F T

3 0.5? F F F

4 0.5? T T T

5 0.5? T F T

6 0.5? F T F

… … … …. …



Summary: Bayesian networks

• Structure
• Parameters
• Inference
• Learning


