
Polychotomizers: One-Hot Vectors,
Softmax, and Cross-Entropy
Mark Hasegawa-Johnson, 3/9/2019. CC-BY 3.0: You are free to share and adapt these slides if you cite the original.

Outline

• Dichotomizers and Polychotomizers

• Dichotomizer: what it is; how to train it

• Polychotomizer: what it is; how to train it

• One-Hot Vectors: Training targets for the polychotomizer

• Softmax Function

• A differentiable approximate argmax

• How to differentiate the softmax

• Cross-Entropy

• Cross-entropy = negative log probability of training labels

• Derivative of cross-entropy w.r.t. network weights

• Putting it all together: a one-layer softmax neural net

Outline

• Dichotomizers and Polychotomizers

• Dichotomizer: what it is; how to train it

• Polychotomizer: what it is; how to train it

• One-Hot Vectors: Training targets for the polychotomizer

• Softmax Function

• A differentiable approximate argmax

• How to differentiate the softmax

• Cross-Entropy

• Cross-entropy = negative log probability of training labels

• Derivative of cross-entropy w.r.t. network weights

• Putting it all together: a one-layer softmax neural net

Dichotomizer: What is it?
• Dichotomizer = a two-class classifier

• From the Greek, dichotomos = “cut in half”
• First known use of this word, according to Merriam-Webster: 1606

• Example: a classifier that decides whether an animal is a dog or
a cat (Elizabeth Goodspeed, 2015
https://en.wikipedia.org/wiki/Perceptron)

Dichotomizer: Example
• Dichotomizer = a two-class classifier
• Input to the dichotomizer: a feature vector, "⃗
• Example: "⃗ = ["%, "']

• "% = degree to which the animal is domesticated, e.g., comes when called
• "' = size of the animal is domesticated, e.g., in kilograms

Dichotomizer: Example
• Dichotomizer = a two-class classifier
• Input to the dichotomizer: a feature vector, "⃗
• Output of the dichotomizer: #$ = & '()** 1 "⃗), 0 ≤ #$ ≤ 1

• For example, we could say class 1 = “dog”
• Class 0 = “cat” (or we could call it class 2, or class -1, or whatever. Everybody agrees

that one of the two classes is called “class 1,” but nobody agrees on what to call the
other class. Since there’s only two classes, it doesn’t really matter.

Linear Dichotomizer
• Dichotomizer = a two-class classifier
• Input to the dichotomizer: a feature vector, "⃗
• Output of the dichotomizer: #$ = & '()** 1 "⃗), 0 ≤ #$ ≤ 1
• A “linear dichotomizer” is one in which #$ varies along a straight line:

#$ = 0
Down here

#$ = 1
Up here

Along the
middle:
0 < #$ < 1

Training a Dichotomizer
• Training database = n training tokens
• Example: n=6 training examples

!" = 0
Down here

!" = 1
Up here

Along the
middle:
0 < !" < 1

Training a Dichotomizer
• Training database = n training tokens
• n training feature vectors: "⃗#, "⃗%, … , "⃗'
• Each feature vector has d features: "⃗(= ["(#, … , "(+]

• Example: d=2 features per training example

-. = 0
Down here

-. = 1
Up here

Along the
middle:
0 < -. < 1

"⃗#

"⃗%

"⃗2

"⃗3

"⃗4 "⃗5

Training a Dichotomizer
• Training database = n training tokens
• n training feature vectors: "⃗#, "⃗%, … , "⃗' , "⃗(= ["(#, … , "(+]
• n “ground truth” labels: -#, -%, … , -'

• -(= 1 if ith example is from class 1
• -(= 0 if ith example is NOT from class 1

0- = 0
Down here

0- = 1
Up here

Along the
middle:
0 < 0- < 1

"⃗#

"⃗%

"⃗2

"⃗3

"⃗4 "⃗5

Training a Dichotomizer
• Training database = n training tokens
• n training feature vectors: "⃗#, "⃗%, … , "⃗' , "⃗(= ["(#, … , "(+]
• n “ground truth” labels: -#, -%, … , -'
• Example: -#, -%, … , -' = 1,0,1,1,0,1

0- = 0
Down here

0- = 1
Up here

Along the
middle:
0 < 0- < 1

"⃗#

"⃗%

"⃗2

"⃗3

"⃗4 "⃗5

Training a Dichotomizer
• Training database: ! = $⃗%, '%, $⃗(, '(, … , $⃗*, '*
• n training feature vectors: $⃗%, $⃗(, … , $⃗* , $⃗+ = [$+%, … , $+-]
• n “ground truth” labels: '%, '(, … , '*

/' = 0
Down here

/' = 1
Up here

Along the
middle:
0 < /' < 1

$⃗%

$⃗(

$⃗3

$⃗4

$⃗5 $⃗6

Outline

• Dichotomizers and Polychotomizers

• Dichotomizer: what it is; how to train it

• Polychotomizer: what it is; how to train it

• One-Hot Vectors: Training targets for the polychotomizer

• Softmax Function

• A differentiable approximate argmax

• How to differentiate the softmax

• Cross-Entropy

• Cross-entropy = negative log probability of training labels

• Derivative of cross-entropy w.r.t. network weights

• Putting it all together: a one-layer softmax neural net

Polychotomizer: What is it?
• Polychotomizer = a multi-class classifier

• From the Greek, poly = “many”

• Example: classify dots as being purple, red, or green (E.M.
Mirkes, KNN and Potential Energy applet, 2011, CC-BY 3.0,
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm)

Polychotomizer: What is it?
• Polychotomizer = a multi-class classifier
• Input to the dichotomizer: a feature vector, "⃗ = ["%, … , "(]
• Output: a label vector, *+ = [*+%, … , *+,]
• *+- = . /0122 3 "⃗)
• Example: c=3 possible class labels, so you could define
*+ = *+%, *+5, *+6 = [. 78970: "⃗), . 9:; "⃗), . <9::= "⃗)]

Polychotomizer: What is it?
• Polychotomizer = a multi-class classifier
• Input to the dichotomizer: a feature vector, "⃗ = ["%, … , "(]
• Output: a label vector, *+ = [*+%, … , *+,]

0 ≤ *+/ ≤ 1, 1
/2%

,
*+/ = 1

Training a Polychotomizer
• Training database = n training tokens, ! = $⃗%, '⃗%, $⃗(, '⃗(, … , $⃗*, '⃗*
• n training feature vectors: $⃗%, $⃗(, … , $⃗* , $⃗+ = [$+%, … , $+-]
• n ground truth labels: '⃗%, '⃗(, … , '⃗* , '⃗+ = ['+%, … , '+/]
• '+0 = 1 if ith example is from class j
• '+0 = 0 if ith example is NOT from class j
• Example: if the first example is from class 2 (red), then '⃗% = [0,1,0]

Outline

• Dichotomizers and Polychotomizers

• Dichotomizer: what it is; how to train it

• Polychotomizer: what it is; how to train it

• One-Hot Vectors: Training targets for the polychotomizer

• Softmax Function

• A differentiable approximate argmax

• How to differentiate the softmax

• Cross-Entropy

• Cross-entropy = negative log probability of training labels

• Derivative of cross-entropy w.r.t. network weights

• Putting it all together: a one-layer softmax neural net

One-Hot Vector
• Example: if the first example is from class 2 (red), then "⃗# = [0,1,0]

"*+ = ,1 ith example is from class j
0 ith example is NOT from class j

Call "*+ the reference label, and call -"*+ the hypothesis. Then notice that:
• "*+ = True value of . /0122 3 4⃗*), because the true probability is always

either 1 or 0!
• -"*+ = Estimated value of . /0122 3 4⃗*), 0 ≤ -"+ ≤ 1, ∑+8#9 -"+ = 1

Wait. Dichotomizer is just a Special Case of
Polychotomizer, isn’t it?
Yes. Yes, it is.
• Polychotomizer: "⃗# = "#%, … , "#(, "#) = * +,-.. / 0⃗#).
• Dichotomizer: "# = * +,-.. 1 0⃗#)
• That’s all you need, because if there are only two classes, then
* 34ℎ67 +,-.. 0⃗#) = 1 − "#
• (One of the two classes in a dichotomizer is always called “class 1.” The

other might be called “class 2,” or “class 0,” or “class -1”…. Who cares.
They all mean “the class that is not class 1.”)

Outline

• Dichotomizers and Polychotomizers

• Dichotomizer: what it is; how to train it

• Polychotomizer: what it is; how to train it

• One-Hot Vectors: Training targets for the polychotomizer

• Softmax Function

• A differentiable approximate argmax

• How to differentiate the softmax

• Cross-Entropy

• Cross-entropy = negative log probability of training labels

• Derivative of cross-entropy w.r.t. network weights

• Putting it all together: a one-layer softmax neural net

OK, now we know what the polychotomizer
should compute. How do we compute it?
Now you know that
• !"# = reference label = True value of % &'()) * ,⃗"), given to you with

the training database.
• .!"# = hypothesis = value of % &'()) * ,⃗") estimated by the neural net.
How can we do that estimation?

OK, now we know what the polychotomizer
should compute. How do we compute it?
!"#$ = value of & '()** + -⃗#) estimated by the neural
net.
How can we do that estimation?
Multi-class perceptron example:

!"#$ = /1 if + = argmax
89ℓ9;

<ℓ = -⃗#
0 otherwise

Differentiable perceptron: we need a differentiable
approximation of the argmax function.

Inputs
Perceptrons w/

weights wc

Max

Softmax = differentiable approximation of the
argmax function

The softmax function is defined as:

!"#$ = softmax
$

-ℓ / 1⃗# = 234/5⃗6
∑ℓ89: 23ℓ/5⃗6

For example, the figure to the right shows

!"9 = softmax
9

1ℓ = 25;
∑ℓ89< 25ℓ

Notice that it’s close to 1 (yellow)
when19 = max1ℓ, and close to zero (blue)
otherwise, with a smooth transition zone in
between. 19

1<

softmax
9

1ℓ

Softmax = differentiable approximation of the
argmax function

The softmax function is defined as:

!"#$ = softmax
$

-ℓ / 1⃗# = 234/5⃗6
∑ℓ89: 23ℓ/5⃗6

Notice that this gives us

0 ≤ !"#$ ≤ 1, ?
$89

:
!"#$ = 1

Therefore we can interpret !"#$ as an
estimate of @ ABCDD E 1⃗#). 19

1G

softmax
9

1ℓ

Outline

• Dichotomizers and Polychotomizers

• Dichotomizer: what it is; how to train it

• Polychotomizer: what it is; how to train it

• One-Hot Vectors: Training targets for the polychotomizer

• Softmax Function

• A differentiable approximate argmax

• How to differentiate the softmax

• Cross-Entropy

• Cross-entropy = negative log probability of training labels

• Derivative of cross-entropy w.r.t. network weights

• Putting it all together: a one-layer softmax neural net

Unlike argmax, the softmax function is
differentiable. All we need is the chain
rule, plus three rules from calculus:

1. #
#$

%
& = (

&
#%
#$ −

%
&*

#&
#$

2. #
#$,% = ,% #%

#$
3. #

#$./ = /

/(

/0

softmax
(

/ℓ

How to differentiate the softmax: 3 steps

How to differentiate the softmax: step 1

First, we use the rule for !
!"

#
$ = &

$
!#
!" −

#
$(

!$
!":

)*+, = softmax
,

4ℓ 6 8⃗+ = 9":6;⃗<
∑ℓ>&? 9"ℓ6;⃗<

@)*+,
@4AB =

1
∑ℓ>&? 9"ℓ6;⃗<

@9":6;⃗<
@4AB − 9":6;⃗<

∑ℓ>&? 9"ℓ6;⃗<
D

@ ∑ℓ>&? 9"ℓ6;⃗<
@4AB

=

1
∑ℓ>&? 9"ℓ6;⃗<

@9":6;⃗<
@4AB − 9":6;⃗<

∑ℓ>&? 9"ℓ6;⃗<
D

@ ∑ℓ>&? 9"ℓ6;⃗<
@4AB E = F

− 9":6;⃗<
∑ℓ>&? 9"ℓ6;⃗<

D
@ ∑ℓ>&? 9"ℓ6;⃗<

@4AB E ≠ F

8&

8D

softmax
&

8ℓ

How to differentiate the softmax: step 2

Next, we use the rule !
!"

#$ = #$!$

!"
:

! &'()
!"*+

=	

1

∑ℓ01
2 #"ℓ35⃗(

6#")35⃗(

6789
−

#")35⃗(

∑ℓ01
2 #"ℓ35⃗(

;

6 ∑ℓ01
2 #"ℓ35⃗(

6789
< = =

−
#")35⃗(

∑ℓ01
2 #"ℓ35⃗(

;

6 ∑ℓ01
2 #"ℓ35⃗(

6789
< ≠ =

=

#")35⃗(

∑ℓ01
2 #"ℓ35⃗(

−
#")35⃗(

;

∑ℓ01
2 #"ℓ35⃗(

;

6(78 3 @⃗A)
6789

< = =

−
#")35⃗(#"*35⃗(

∑ℓ01
2 #"ℓ35⃗(

;

6(78 3 @⃗A)
6789

< ≠ =

@1

@;

softmax
1

@ℓ

How to differentiate the softmax: step 3

Next, we use the rule !!" #$ = $:

& '()*
&#+,

=

-"./1⃗2
∑ℓ567 -"ℓ/1⃗2

−
-"./1⃗2

9

∑ℓ567 -"ℓ/1⃗2
9

&(#+ / $⃗))
&#+,

< = =

− -"./1⃗2-">/1⃗2

∑ℓ567 -"ℓ/1⃗2
9

&(#+ / $⃗))
&#+,

< ≠ =

=

-"./1⃗2
∑ℓ567 -"ℓ/1⃗2

−
-"./1⃗2

9

∑ℓ567 -"ℓ/1⃗2
9 $), < = =

− -"./1⃗2-">/1⃗2

∑ℓ567 -"ℓ/1⃗2
9 $), < ≠ =

$6

$9

softmax
6

$ℓ

Differentiating the softmax
… and, simplify.

! "#$%
!&'(

=

*+,-/⃗0
∑ℓ345 *+ℓ-/⃗0

−
*+,-/⃗0

7

∑ℓ345 *+ℓ-/⃗0
7 8$(9 = :

− *+,-/⃗0*+;-/⃗0

∑ℓ345 *+ℓ-/⃗0
7 8$(9 ≠ :

! "#$%
!&'(

= = "#$% − "#$%7 8$(9 = :
−"#$% "#$'8$(9 ≠ :

84

87

softmax
4

8ℓ

Recap: how to differentiate the softmax
• !"#$ is the probability of the %&' class, estimated by the neural

net, in response to the (&' training token
•)*+ is the network weight that connects the ,&' input feature

to the -&' class label
The dependence of !"#$ on)*+ for - ≠ % is weird, and people
who are learning this for the first time often forget about it. It
comes from the denominator of the softmax.

!"#$ = softmax$)ℓ 8 :⃗# = ;<=8>⃗?
∑ℓABC ;<ℓ8>⃗?

D !"#$
D)*+

= E !"#$ − !"#$G :#+ - = %
−!"#$!"#*:#+ - ≠ %

• !"#* is the probability of the -&' class for the (&' training token
• :#+ is the value of the ,&' input feature for the (&' training

token :B

:G

softmax
B

:ℓ

Outline

• Dichotomizers and Polychotomizers

• Dichotomizer: what it is; how to train it

• Polychotomizer: what it is; how to train it

• One-Hot Vectors: Training targets for the polychotomizer

• Softmax Function: A differentiable approximate argmax

• Cross-Entropy

• Cross-entropy = negative log probability of training labels

• Derivative of cross-entropy w.r.t. network weights

• Putting it all together: a one-layer softmax neural net

Training a Softmax Neural Network
All of that differentiation is useful
because we want to train the neural
network to represent a training
database as well as possible. If we
can define the training error to be
some function L, then we want to
update the weights according to

!"# = !"# − &
'(

'!"#

So what is L?

Training: Maximize the probability of the training data
Remember, the whole point of that denominator in
the softmax function is that it allows us to use
softmax as

!"#$ = Es8mated value of & class + -⃗#)

Suppose we decide to estimate the network
weights /01 in order to maximize the probability
of the training database, in the sense of

/01= argmax
6

& training labels training feature vectors)

Training: Maximize the probability of the training data
Remember, the whole point of that denominator in
the softmax function is that it allows us to use
softmax as

!"#$ = Es8mated value of & class + -⃗#)

If we assume the training tokens are independent,
this is:

/01
= argmax

6
7
#89

:
& reference label of the BCDtoken BCDfeature vector)

Training: Maximize the probability of the training data
Remember, the whole point of that denominator in
the softmax function is that it allows us to use
softmax as

!"#$ = Es8mated value of & class + -⃗#)

OK. We need to create some notation to mean
“the reference label for the /01 token.” Let’s call it
+(/).

345 = argmax
:

;
#<=

>
& class +(/) -⃗)

Training: Maximize the probability of the training data
Wow, Cool!! So we can maximize the probability of
the training data by just picking the softmax output
corresponding to the correct class !(#), for each
token, and then multiplying them all together:

%&' = argmax
.

/
012

3
450,7(0)

So, hey, let’s take the logarithm, to get rid of that
nasty product operation.

%&' = argmax
.

8
012

3
ln 450,7(0)

Training: Minimizing the negative log probability
So, to maximize the probability of the training data
given the model, we need:

!"# = argmax
*

+
,-.

/
ln 23,,5(,)

If we just multiply by (-1), that will turn the max
into a min. It’s kind of a stupid thing to do---who
cares whether you’re minimizing 8 or maximizing
− 8, same thing, right? But it’s standard, so what
the heck.

!"# = argmin
*

8

8 =+
,-.

/
− ln 23,,5(,)

Training: Minimizing the negative log probability
Softmax neural networks are almost always trained
in order to minimize the negative log probability of
the training data:

!"# = argmin
+

,

, =-
./0

1
− ln 45.,7(.)

This loss function, defined above, is called the
cross-entropy loss. The reasons for that name are
very cool, and very far beyond the scope of this
course. Take CS 446 (Machine Learning) and/or
ECE 563 (Information Theory) to learn more.

Outline

• Dichotomizers and Polychotomizers

• Dichotomizer: what it is; how to train it

• Polychotomizer: what it is; how to train it

• One-Hot Vectors: Training targets for the polychotomizer

• Softmax Function: A differentiable approximate argmax

• Cross-Entropy

• Cross-entropy = negative log probability of training labels

• Derivative of cross-entropy w.r.t. network weights

• Putting it all together: a one-layer softmax neural net

Differentiating the cross-entropy
The cross-entropy loss function is:

! =#
$%&

'
− ln +,$,.($)

Let’s try to differentiate it:
1!

1234
=#

$%&

'
− 1

+,$,.($)
1 +,$,.($)
1234

Differentiating the cross-entropy
The cross-entropy loss function is:

! =#
$%&

'
− ln +,$,.($)

Let’s try to differentiate it:
1!

1234
=#

$%&

'
− 1

+,$,.($)
1 +,$,.($)
1234

…and then…

1
+,$,.($)

1 +,$,.($)
1234

= 6 1 − +,$3 7$4 8 = 9(:)
−+,$37$4 8 ≠ 9(:)

Differentiating the cross-entropy
Let’s try to differentiate it:

!"
!#$%

='
()*

+
− 1

./(,1(()
! ./(,1(()
!#$%

…and then…

1
./(,1(()

! ./(,1(()
!#$%

= 4 1 − ./($ 5(% 6 = 7(8)
−./($5(% 6 ≠ 7(8)

… but remember our reference labels:

/(1 = 41 ith example is from class j
0 ith example is NOT from class j

Differentiating the cross-entropy
Let’s try to differentiate it:

!"
!#$%

='
()*

+
− 1

./(,1(()
! ./(,1(()
!#$%

…and then…

1
./(,1(()

! ./(,1(()
!#$%

= 4 /($ − ./($ 5(% 6 = 7(8)
/($ − ./($ 5(% 6 ≠ 7(8)

… but remember our reference labels:

/(1 = 41 ith example is from class j
0 ith example is NOT from class j

Differentiating the cross-entropy
Let’s try to differentiate it:

!"
!#$%

='
()*

+
− 1

./(,1(()
! ./(,1(()
!#$%

…and then…

1
./(,1(()

! ./(,1(()
!#$%

= /($ − ./($ 4(%

Differentiating the cross-entropy
Let’s try to differentiate it:

!"
!#$%

='
()*

+
,-($ − -($ /(%

Differentiating the cross-entropy
Let’s try to differentiate it:

!"
!#$%

='
()*

+
,-($ − -($ /(%

Interpretation:
Increasing #$% will make the error worse if
• ,-($ is already too large, and /(% is positive
• ,-($ is already too small, and /(% is negative

Differentiating the cross-entropy
Let’s try to differentiate it:

!"
!#$%

='
()*

+
,-($ − -($ /(%

Interpretation:
Our goal is to make the error as small as possible.
So if
• ,-($ is already too large, then we want to make
#$%/(% smaller
• ,-($ is already too small , then we want to make
#$%/(% larger

#$% = #$% − 0
!"

!#$%

Outline

• Dichotomizers and Polychotomizers

• Dichotomizer: what it is; how to train it

• Polychotomizer: what it is; how to train it

• One-Hot Vectors: Training targets for the polychotomizer

• Softmax Function: A differentiable approximate argmax

• Cross-Entropy

• Cross-entropy = negative log probability of training labels

• Derivative of cross-entropy w.r.t. network weights

• Putting it all together: a one-layer softmax neural net

Summary: Training Algorithms You Know
1. Naïve Bayes with Laplace Smoothing:

! "# = % class * = #tokens of class * with "# = % + 1
#tokens of class * + #possible values of "#

2. Multi-Class Perceptron: If token "⃗< of class j is misclassified as class m, then
=> = => + ?"⃗<
=@ = =@ − ?"⃗<

3. Softmax Neural Net: for all weight vectors (correct or incorrect),
=@ = =@ − ?∇CDE

= =@ − ? FG<@ − G<@ "⃗<

Summary: Perceptron versus Softmax
Softmax Neural Net: for all weight vectors (correct or incorrect),

!" = !" − % &'(" − '(" *⃗(
Notice that, if the network were adjusted so that

&'(" = +1 network thinks the correct class is :
0 otherwise

Then we’d have

&'(" − '(" = <
−2 correct class is :, but network is wrong
2 network guesses :, but itBs wrong
0 otherwise

Summary: Perceptron versus Softmax
Softmax Neural Net: for all weight vectors (correct or incorrect),

!" = !" − % &'(" − '(" *⃗(
Notice that, if the network were adjusted so that

&'(" = +1 network thinks the correct class is :
0 otherwise

Then we get the perceptron update rule back again (multiplied by 2, which
doesn’t matter):

!" =
!" + 2%*⃗(correct class is :, but network is wrong
!" − 2%*⃗(network guesses :, but itBs wrong

!" otherwise

Summary: Perceptron versus Softmax
So the key difference between perceptron and softmax is that, for a
perceptron,

!"#$ = &1 network thinks the correct class is 5
0 otherwise

Whereas, for a softmax,

0 ≤ !"#$ ≤ 1, 9
$:;

<
!"#$ = 1

Summary: Perceptron versus Softmax
…or, to put it another way, for a perceptron,

!"#$ = &1 if * = argmax
01ℓ13

4ℓ 5 7⃗#
0 otherwise

Whereas, for a softmax network,

!"#$ = softmax
$

4ℓ 5 7⃗#
Inputs

Perceptrons w/
weights 4ℓ

Argmax or Softmax

