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Bayesian Inference and Bayesian Learning

• Bayes Rule
• Bayesian Inference

• Misdiagnosis
• The Bayesian “Decision”
• The “Naïve Bayesian” Assumption
• Bag of Words (BoW)

• Bayesian Learning
• Maximum Likelihood estimation of parameters
• Maximum A Posteriori estimation of parameters
• Laplace Smoothing



Bayes’ Rule
• The product rule gives us two ways to factor 

a joint probability:
! ", $ = ! $ " ! " = ! " $ ! $

• Therefore,  

! " $ = ! $ " !(")
!($)

• Why is this useful?
• “A” is something we care about, but P(A|B) is really really hard to measure 

(example: the sun exploded)
• “B” is something less interesting, but P(B|A) is easy to measure (example: the 

amount of light falling on a solar cell)
• Bayes’ rule tells us how to compute the probability we want (P(A|B)) from 

probabilities that are much, much easier to measure (P(B|A)).

Rev. Thomas Bayes
(1702-1761)



Bayes Rule example
Eliot & Karson are getting married tomorrow, at an outdoor ceremony in the desert. 
• In recent years, it has rained only 5 days each year (5/365 = 0.014). 

! " = 0.014
• Unfortunately, the weatherman has predicted rain for tomorrow. When it actually 

rains, the weatherman correctly forecasts rain 90% of the time. 
! ( " = 0.9

• When it doesn't rain, he incorrectly forecasts rain 10% of the time. 
! ( ¬" = 0.1

• What is the probability that it will rain on Eliot’s wedding? 

! " ( = ! ( " !(")
!(() = ! (, " !(")

! (, " + !((,¬") =
! ( " !(")

! (|" !(") + ! ( ¬" !(¬")

= (0.9)(0.014)
0.9 0.014 + (0.1)(0.956) = 0.116



The More Useful Version
of Bayes’ Rule

! " # = ! # " !(")
!(#)

• Remember, P(B|A) is easy to measure (the probability that light hits 
our solar cell, if the sun still exists and it’s daytime).  Let’s assume we 
also know P(A)  (the probability the sun still exists).  

• But suppose we don’t really know P(B) (what is the probability light 
hits our solar cell, if we don’t really know whether the sun still exists 
or not?)

! " # = ! # " !(")
! # " ! " + ! # ¬" ! ¬"

Rev. Thomas Bayes
(1702-1761)

This version is what you 
memorize.

This version is what you 
actually use.
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The Misdiagnosis Problem
1% of women at age forty who participate in routine 
screening have breast cancer. 80% of women with breast 
cancer will get positive mammographies. 9.6% of women 
without breast cancer will also get positive 
mammographies. A woman in this age group had a positive 
mammography in a routine screening. What is the 
probability that she actually has breast cancer?

P(cancer | positive) = P(positive | cancer)P(cancer)
P(positive)

0776.0
095.0008.0

008.0
99.0096.001.08.0

01.08.0
=

+
=

´+´
´

=

=
P(positive | cancer)P(cancer)

P(positive | cancer)P(cancer)+P(positive | ¬cancer)P(¬Cancer)
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If your doctor tells you that you have a
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second opinion. This is especially true
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procedures.
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The Bayesian Decision
The agent is given some evidence, !.
The agent has to make a decision about the value of an 
unobserved variable ". " is called the “query variable” or 
the “class variable” or the “category.”

• Partially observable, stochastic, episodic environment
• Example: " ∈ {spam, not spam}, ! = email message.
• Example: " ∈ {zebra, giraffe, hippo}, ! = image features



The Bayesian Decision: Loss Function
• The query variable, Y, is a random variable.  Assume its pmf, P(Y=y) 

is known.
• Furthermore, the true value of Y has already been determined ---

we just don’t know what it is!
• The agent must ACT by saying “I believe that Y=a”.
• The agent has a post-hoc loss function !(#, %)
• !(#, %) is the loss if the true value is Y=y, but the agent says “a”

• The a priori loss function !(', %) is a binary random variable
• ((!(', %) = 0) = ((' = %)
• ((!(', %) = 1) = ((' ≠ %)



Loss Function Example
• Suppose Y=outcome of a coin toss.
• The agent will choose the action “a” (which is either 

a=heads, or a=tails)
• The loss function L(y,a) is

• Suppose we know that the coin is biased, so that 
P(Y=heads)=0.6.  Therefore the agent chooses a=heads.  
The loss function L(Y,a) is now a random variable:

L(y,a) y=heads y=tails
a=heads 0 1
a=tails 1 0

c=0 c=1
P(L(Y,a)=c) 0.6 0.4



The Bayesian Decision
• The observation, E, is another random variable.  Suppose the joint 

probability !(# = %, ' = () is known.
• The agent is allowed to observe the true value of E=e before it 

guesses the value of Y.
• Suppose that the observed value of E is E=e.  Suppose the agent 

guesses that Y=a.  Then its loss, L(Y,a), is a conditional random 
variable:

!(*(#, +) = 0|' = () = !(# = +|' = ()

! * #, + = 1 ' = ( = ! # ≠ + ' = ( = 0
123

!(# = %|' = ()



• Suppose the agent chooses any particular action “a”, then its 
expected loss is:

! "($, &) ! = ) =*
+
" ,, & - $ = , ! = ) =*

+./
- $ = , ! = )

• Which action, “a”, should the agent choose in order to minimize 
its expected loss?
• The one that has the greatest posterior probability.  The best 

value of “a” to choose is the one  given by:

& = argmax
/

-($ = &|! = ))
• This is called the Maximum a Posteriori (MAP) decision

The Bayesian Decision



MAP decision
The action, “a”, should be the value of C that has the highest posterior 
probability given the observation X=x:

! = argmax( ) = ! * = + = argmax( * = + ) = ! (() = !)
((* = +)

= argmax( * = + ) = ! (() = !)

• Maximum Likelihood (ML) decision:

! = argmax((* = +|) = !)

likelihood priorposterior
( ) = ! * = + ∝ ( * = + ) = ! (() = !)



The Bayesian Terms
• !(# = %) is called the “prior” (a priori, in Latin) because it represents 

your belief about the query variable before you see any observation.
• ! # = % ' = ( is called the “posterior” (a posteriori, in Latin), 

because it represents your belief about the query variable after you 
see the observation.
• ! ' = ( # = % is called the “likelihood” because it tells you how 

much the observation, E=e, is like the observations you expect if Y=y.
• !(' = () is called the “evidence distribution” because E is the 

evidence variable, and !(' = () is its marginal distribution.

! % ( = ! ( % !(%)
!(()
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Naïve Bayes model

• Suppose we have many different types of observations 
(symptoms, features) X1, …, Xn that we want to use to obtain 
evidence about an underlying hypothesis C
•MAP decision:

! " = $ %& = '&, … , %* = '* ∝
! " = $ !(%& = '&, … , %* = '*|" = $)

• If each feature %/ can take on k values, how many entries are in 
the pmf table !(%& = '&, … , %* = '*|" = $)?



Naïve Bayes model
• How many entries are in the pmf table !(#$, … , #'|))?
• Without naïve Bayes: +(+' − 1)
• (+ values of Y = ),     +(+' − 1) possible combinations of #$, … , #')

• We can make the simplifying assumption that the different features are 
conditionally independent given the hypothesis:

!(#$, … , #'|)) ≈ ! #$ ) ! #1 ) …! #' )
• If each observation and the hypothesis can take on k values, what is the 

complexity of storing the resulting distributions?
• Each ! #2 ) requires (+ − 1)×+ (+ values of Y = ), + − 1 of 42 = #2)
• There are 5 of them, for a total space requirement: 5× + − 1 ×+



Naïve Bayes model

Suppose we have many different types of observations 
(symptoms, features) E1, …, En that we want to use to obtain 
evidence about an underlying hypothesis Y

MAP decision:
! = argmax ( ) = ! *+ = ,+, … , */ = ,/

= argmax ( ) = ! ( *+ = ,+, … , */ = ,/ ) = !

≈ argmax ( ) = ! ( 1+ ! ( 12 ! … ( 1/ !



Case study:
Text document classification
• MAP decision: assign a document to the class with the highest posterior 

P(class | document) 

• Example: spam classification
• Classify a message as spam if P(spam | message) > P(¬spam | message)



Case study:
Text document classification
• MAP decision: assign a document to the class with the highest 

posterior P(class | document) 

• We have  P(class | document)  µ P(document | class)P(class)

• To enable classification, we need to be able to estimate the likelihoods
P(document | class) for all classes and
priors P(class)



Naïve Bayes Representation
• Goal: estimate likelihoods P(document | class) 

and priors P(class)
• Likelihood: bag of words representation

• The document is a sequence of words (w1, …, wn) 
• The order of the words in the document is not important
• Each word is conditionally independent of the others given document 

class 



Naïve Bayes Representation
• Goal: estimate likelihoods P(document | class) 

and priors P(class)
• Likelihood: bag of words representation

• The document is a sequence of words (!" = w1, …, !$ = wn) 
• The order of the words in the document is not important
• Each word is conditionally independent of the others given document 

class 

• Thus, the problem is reduced to estimating marginal likelihoods of 
individual words p(wi | class)

P(document | class) = P(w1,  ... ,wn | class) = P(wi | class)
i=1

n

∏



Parameter estimation
• Model parameters: feature likelihoods p(word | class) and priors

p(class) 
• How do we obtain the values of these parameters?

spam:  0.33
¬spam:  0.67 

P(word | ¬spam)P(word | spam)prior



Bag of words illustration

US Presidential Speeches Tag Cloud
http://chir.ag/projects/preztags/

http://chir.ag/projects/preztags/
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Bayesian Learning
• Model parameters: feature likelihoods P(word | class) and priors

P(class) 
• How do we obtain the values of these parameters?
• Need training set of labeled samples from both classes

• This is the maximum likelihood (ML) estimate, or estimate that 
maximizes the likelihood of the training data:

P(word | class) =
# of occurrences of this word in docs from this class

total # of words in docs from this class

ÕÕ
= =

D

d

n

i
idid

d

classwP
1 1

,, )|(

d: index of training document, i: index of a word



Bayesian Learning
• The “bag of words model” has the following parameters:

• !"# ≡ %(' = )|+ = ,)
• ." ≡ %(+ = ,)

• The training data are a set of documents, / = [12, … , 15], each with 
its associated class label, 7 = [+2, … , +5].
• The likelihood of the training data is the probability of its observations 

given its labels.  If we assume that each document is independent of 
the others (“episodic”), then we get:

%(/, 7) =8
9:2

5
% 19 +9 %(+9)



Bayesian Learning
• The “bag of words model” has the following parameters:

• !"# ≡ %(' = )|+ = ,)
• ." ≡ %(+ = ,)

• Each document is a sequence of words, /0 = ['20, … ,'50].
• If we assume that each word is conditionally independent given the class 

(the naïve Bayes a.k.a. bag-of-words assumption), then we get:

%(7, 8) =9
0:2

;
%(+0 = ,0)9

<:2

5
%('<0 = )<0|+0 = ,0) =9

0:2

;
."=9

<:2

5
!"=#>=



Bayesian Learning
The data likelihood !(#, %) is maximized if we choose:

'() =
# occurrences of word 6 in documents of type <
total number of words in all documents of type <

@( =
# documents of type <

total number of documents



What is the probability that the sun will fail to 
rise tomorrow?
• # times we have observed the sun to rise = 100,000,000
• # times we have observed the sun not to rise = 0

• Estimated probability the sun will not rise = !
!"#!!,!!!,!!! = 0

Oops….



Laplace Smoothing
• The basic idea: add 1 “unobserved observation” to every possible 

event
• # times the sun has risen or might have ever risen = 100,000,000+1 = 

100,000,001
• # times the sun has failed to rise or might have ever failed to rise = 

0+1 = 1

• Estimated probability the sun will not rise = !
!"!##,###,##! =

0.0000000099999998



Parameter estimation
• ML (Maximum Likelihood) parameter estimate:

• Laplacian Smoothing estimate
• How can you estimate the probability of a word you never saw in the training 

set?  (Hint: what happens if you give it probability 0, then it actually occurs in 
a test document?)

• Laplacian smoothing: pretend you have seen every vocabulary word one 
more time than you actually did

P(word | class) =
# of occurrences of this word in docs from this class + 1

total # of words in docs from this class + V

(V: total number of unique words)

P(word | class) =
# of occurrences of this word in docs from this class

total # of words in docs from this class



Summary: Naïve Bayes for Document 
Classification
• Naïve Bayes model: assign the document to the class 

with the highest posterior 

• Model parameters:

P(class | document)∝P(class) P(wi | class)
i=1

n

∏

P(class1)

…

P(classK)

P(w1 | class1)

P(w2 | class1)

…

P(wn | class1)

Likelihood
of class 1prior

P(w1 | classK)

P(w2 | classK)

…

P(wn | classK)

Likelihood
of class K

…



Prediction

Bayesian Learning and Bayesian Inference irl:

Training 
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Training 
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Training
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Learned 
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Learned 
model



Review: Bayesian decision making

• Suppose the agent has to make decisions about the 
value of an unobserved query variable Y based on the 
values of an observed evidence variable E 
• Inference problem: given some observation E = e, 

what is P(Y | E=e)?
• Learning problem: estimate the parameters of the 

probabilistic model P(y | e) given a training sample
{(e1,y1), …, (en,yn)}


