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Bayesian Inference and Bayesian Learning

* Bayes Rule

* Bayesian Inference
* Misdiagnosis
* The Bayesian “Decision”
* The “Naive Bayesian” Assumption
* Bag of Words (BoW)
* Bayesian Learning
* Maximum Likelihood estimation of parameters
* Maximum A Posteriori estimation of parameters
e Laplace Smoothing



Bayes’ Rule

Rev. Bayes

* The product rule gives us two ways to factor (1702-4761)

a joint probability:
P(A,B) = P(B|A)P(A) = P(A|B)P(B)
* Therefore,
P(B|A)P(A)

P(B)

P(A|B) =

* Why is this useful?

* “A” is something we care about, but P(A|B) is really really hard to measure
(example: the sun exploded)

* “B” is something less interesting, but P(B|A) is easy to measure (example: the
amount of light falling on a solar cell)

* Bayes’ rule tells us how to compute the probability we want (P(A|B)) from
probabilities that are much, much easier to measure (P(B|A)).



Bayes Rule example

Eliot & Karson are getting married tomorrow, at an outdoor ceremony in the desert.

* In recent years, it has rained only 5 days each year (5/365 = 0.014).
P(R) = 0.014

* Unfortunately, the weatherman has predicted rain for tomorrow. When it actually
rains, the weatherman correctly forecasts rain 90% of the time.

P(F|R) = 0.9

* When it doesn't rain, he incorrectly forecasts rain 10% of the time.
P(F|=R) = 0.1

* What is the probability that it will rain on Eliot’s wedding?

p(RIFY = P(FIR)P(R)  P(F,RP(R) P(F|R)P(R)
(RIF) = P(F)  P(F,R)+P(F,—-R) P(F|R)P(R)+ P(F|=R)P(=R)
(0.9)(0.014) o116

~(0.9)(0.014) + (0.1)(0.956)



The More Useful Version

, 4 |
Of B a ye S R u | e Rev. Thomas Bayes
(1702-1761)
This version is what you . P(BlA)P(A)
memorize. : P(AlB) = P(B)

 Remember, P(B|A) is easy to measure (the probability that light hits
our solar cell, if the sun still exists and it’s daytime). Let’s assume we

also know P(A) (the probability the sun still exists).

* But suppose we don’t really know P(B) (what is the probability light
hits our solar cell, if we don’t really know whether the sun still exists
or not?)

P(B|A)P(4)

P(A|B) =

This version is what you
actually use.

P(B|A)P(A) + P(B|=A)P(=A)




Bayesian Inference and Bayesian Learning

* Bayesian Inference
* Misdiagnosis
* The Bayesian “Decision”
* The “Naive Bayesian” Assumption
* Bag of Words (BoW)

* Bayesian Learning
* Maximum Likelihood estimation of parameters
* Maximum A Posteriori estimation of parameters
e Laplace Smoothing



The Misdiagnosis Problem

1% of women at age forty who participate in routine
screening have breast cancer. 80% of women with breast
cancer will get positive mammographies. 9.6% of women
without breast cancer will also get positive
mammographies. A woman in this age group had a positive
mammography in a routine screening. What is the
probability that she actually has breast cancer?

P(positive | cancer)P(cancer)

P(cancer | positive) = —
P(positive)

_ P(positive | cancer)P(cancer)
P(positive | cancer)P(cancer)+ P(positive | =cancer)P(—~Cancer)

~ 0.8x0.01 _0.008
0.8x0.01+0.096x0.99  0.008+0.095

=0.0776



Considering Treatment for Illness, Injury? Get a Second Opinion https://www.webmd.com/health-insurance/second-opinions#1

CHECK YOUR SYMPTOMS FIND A DOCTOR FIND LOWEST DRUG PRICES SIGNIN SUBSCRIBE

‘/vebMD HEALTH DRUGS & LIVING FAMILY & NEWS & SEARCH Q
A-Z SUPPLEMENTSHEALTHY PREGNANCY EXPERTS
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Health Insurance and Medicare > Reference >

HEALTH TODAY ON WEBMD
[ ] [ J
INSURANCE
MEDICARE f What qualifies you for one?
HOME f v 5 x
News If your doctor tells you that you have a \TNorI:ing Dturing Cancer
reatmen
RefEfe"CE health problem or suggests a treatment Know your benefits.
S.L'(;ZZGS for an illness or injury, you might want a
1aeos . .
Message Boards second opinion. This is especially true Going to the Dentist?
. . H :
Find a Doctor when you're considering surgery or major owto save money
procedures.
Enrolling in Medicare
Asking another doctor to review your case How to get started.
RELATED TO

HEALTH can be useful for many reasons:



The Bayesian Decision

The agent is given some evidence, E.

The agent has to make a decision about the value of an
unobserved variable Y. Y is called the “query variable” or
the “class variable” or the “category.”

 Partially observable, stochastic, episodic environment

* Example: Y € {spam, not spam}, E = email message.

 Example: Y € {zebra, giraffe, hippo}, E = image features

Dear Sir. oty

First, | must solicit your confidence in this

transaction, this is by virture of its nature
as being utterly confidencial and top
secret. ...

TO BE REMOVED FROM FUTURE
MAILINGS, SIMPLY REPLY TO THIS
MESSAGE AND PUT "REMOVE" IN THE
SUBJECT.

99 MILLION EMAIL ADDRESSES
FOR ONLY $99

Ok, Iknow this is blatantly OT but I'm

beginning to go insane. Had an old Dell
Dimension XPS sitting in the corner and
decided to put it to use, | know it was

working pre being stuck in the corner, but

when | plugged it in, hit the power nothing
happened.




The Bayesian Decision: Loss Function

* The query variable, Y, is a random variable. Assume its pmf, P(Y=y)
is known.

* Furthermore, the true value of Y has already been determined ---
we just don’t know what it is!

* The agent must ACT by saying “l believe that Y=a".

* The agent has a post-hoc loss function L(y, a)
* L(y,a) is the loss if the true value is Y=y, but the agent says “a”
* The a priori loss function L(Y, a) is a binary random variable
*P(L(Y,a)=0) = P(Y =a)
*P(L(Y,a)=1) = P(Y # a)




Loss Function Example

* Suppose Y=outcome of a coin toss.

* The agent will choose the action “a” (which is either
a=heads, or a=tails)

* The loss function L(y,a) is

Liy,a)

a=heads 0 1
a=tails 1 0

* Suppose we know that the coin is biased, so that
P(Y=heads)=0.6. Therefore the agent chooses a=heads.
The loss function L(Y,a) is now a random variable:

I I ==

P(L(Y,a)=c) 0.6 0.4



The Bayesian Decision

* The observation, E, is another random variable. Suppose the joint
probability P(Y = y,E = e) is known.

* The agent is allowed to observe the true value of E=e before it
guesses the value of .

» Suppose that the observed value of E is E=e. Suppose the agent
guesses that Y=a. Then its loss, L(Y,a), is a conditional random
variable:

P(L(Y,a) =0|E =e) = P(Y =alE =e)

P(L(Y,a)=1|E =¢) = P(Y # alE =€) = z P(Y = y|E = e)

y+a



The Bayesian Decision

e Suppose the agent chooses any particular action “a”, then its
expected loss is:

E[L(Y, d)|E = €] ZL(y, OP(Y = y|E =€) = Z P(Y = y|E = e)

y+a

* Which action, “a@” should the agent choose in order to minimize
its expected Ioss?

* The one that has the greatest posterior probability. The best
value of “@” to choose is the one given by:

a =argmaxP(Y = a|E = e)
a

* This is called the Maximum a Posteriori (MAP) decision



MAP decision

The action, “a”, should be the value of C that has the highest posterior
probability given the observation X=x:

P(E=celY =a)P(Y =a)

P(E = e)
= argmaxP(E =e|Y = a)P(Y = a)

a = argmaxP (Y = a|E = e) = argmax

P(Y=alE =e) xP(E =el|lY =a)P(Y =a)

posterior likelihood prior

* Maximum Likelihood (ML) decision:

a = argmaxP(E =e|Y = a)



The Bayesian Terms

* P(Y = y) is called the “prior” (a priori, in Latin) because it represents
your belief about the query variable before you see any observation.

* P(Y = y|E = e) is called the “posterior” (a posteriori, in Latin),
because it represents your belief about the query variable after you
see the observation.

« P(E = e|Y = y) is called the “likelihood” because it tells you how
much the observation, E=e, is like the observations you expect if Y=y.

* P(E = e) is called the “evidence distribution” because E is the
evidence variable, and P(E = e) is its marginal distribution.

P(ely)P(y)
P(e)

P(yle) =



Bayesian Inference and Bayesian Learning

* The “Naive Bayesian” Assumption
* Bag of Words (BoW)

* Bayesian Learning
* Maximum Likelihood estimation of parameters
* Maximum A Posteriori estimation of parameters
e Laplace Smoothing



Naive Bayes model

* Suppose we have many different types of observations
(symptoms, features) X, ..., X, that we want to use to obtain
evidence about an underlying hypothesis C

* MAP decision:

P(Y=y|E,=¢e..,E, =¢,) &
P(Y =y)P(Ey = ey, ... Ep = ey|Y = y)

* If each feature E; can take on k values, how many entries are in
the pmf table P(E; = eq, ..., E,, = e, |Y = y)?



Naive Bayes model

* How many entries are in the pmf table P(eq, ..., e,|y)?
* Without naive Bayes: k(k™ — 1)
* (k valuesof Y =y, k(k™ — 1) possible combinations of e, ..., ;)

* We can make the simplifying assumption that the different features are
conditionally independent given the hypothesis:

P(ey,...,enly) = P(er|y)P(ezly) ... P(enly)

* If each observation and the hypothesis can take on k values, what is the
complexity of storing the resulting distributions?

* Each P(e;|y) requires (k — 1)Xk (kvaluesof Y=y, k —10of E; = ¢;)
* There are n of them, for a total space requirement: nx(k — 1) Xk



Naive Bayes model

Suppose we have many different types of observations
(symptoms, features) E,, ..., E, that we want to use to obtain
evidence about an underlying hypothesis Y

MAP decision:
a=argmaxp(Y =alE; =eq, .., E, =¢e,)

= argmaxp(Y = a)p(E; = e, .., E, = e, |Y = a)

~ argmax p(Y = a)p(y;|la)p(yzla) ...p(y,la)



Case study:
Text document classification

* MAP decision: assign a document to the class with the highest posterior
P(class | document)

* Example: spam classification
* Classify a message as spam if P(spam | message) > P(-spam | message)

Dear Sir.
x First, I must solicit your confidence in this

transaction, this is by virture of its nature Ok, Iknow this is blatantly OT but I'm

as being utterly confidencial and top beginning to go insane. Had an old Dell

secret. ... Dimension XPS sitting in the corner and

decided to put it to use, | know it was

TO BE REMOVED FROM FUTURE working pre being stuck in the corner, but

MAILINGS, SIMPLY REPLY TO THIS when | plugged it in, hit the power nothing
x MESSAGE AND PUT "REMOVE" IN THE happened.

SUBJECT.

99 MILLION EMAIL ADDRESSES

FOR ONLY $99




Case study:
Text document classification

* MAP decision: assign a document to the class with the highest
posterior P(class | document)

* We have P(class | document) oc P(document | class)P(class)

* To enable classification, we need to be able to estimate the likelihoods
P(document | class) for all classes and
priors P(class)



Naive Bayes Representation

* Goal: estimate likelihoods P(document | class)
and priors P(class)

* Likelihood: bag of words representation
e The document is a sequence of words (w;, ..., w,)
* The order of the words in the document is not important
* Each word is conditionally independent of the others given document

class
Dear Sir.
First, | must solicit your confidence in this
transaction, this is by virture of its nature OK, lIknow this is blatantly OT but I'm
as being utterly confidencial and top beginning to go insane. Had an old Dell
secret. ... Dimension XPS sitting in the corner and
decided to put it to use, | know it was
TO BE REMOVED FROM FUTURE working pre being stuck in the corner, but
MAILINGS, SIMPLY REPLY TO THIS when | plugged it in, hit the power nothing
MESSAGE AND PUT "REMOVE" IN THE happened
SUBJECT. .
99 MILLION EMAIL ADDRESSES
FOR ONLY $99




Naive Bayes Representation

* Goal: estimate likelihoods P(document | class)
and priors P(class)

* Likelihood: bag of words representation
* The document is a sequence of words (E; =wy, ..., E,, =w,)
* The order of the words in the document is not important

* Each word is conditionally independent of the others given document
class

P(document | class)= P(w,, ... ,w, |class)= HP(wl. | class)
i=1

* Thus, the problem is reduced to estimating marginal likelihoods of
individual words p(w; | class)



Parameter estimation

* Model parameters: feature likelihoods p(word | class) and priors

p(class)

* How do we obtain the values of these parameters?

P(word | spam)

prior
spam: 0.33
—spam: 0.67

the
to
and
of
you
a

with:
from:
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.0156
.0153
.0115
.0095
.0093
.0086
.0080
.0075

P(word | —=spam)

the
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2002:
with:
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and
a

O O O O o o o

.0210
.0133
.0119
.0110
.0108
.0107
.0105
.0100




Bag of words illustration

2007-01-23: State of the Union Address
George W. Bush (2001-)

n accountable affordable afghanistan africa ally anbar armed baghdad challenges chamber chaos
choices civilians coalition commitment confident confront congressman constitution corps debates deduction

deficit deliver democratic deploy dikembe diplomacy disruptions earmarks economy einstein elections eliminates
expand extremists failing families freedom fuel funding god haven ideology immigration impose

L
iran ] ra q islam julie lebanon love madam marine math medicare neighborhoods nuclear offen

palestinian payroll anda radical regimes resolve retreat rieman sac ce sectarian s

shia stays st h students succeed sunni £LaX te rro Sts threats uphold victory

violence violent War ington weapons wesley

US Presidential Speeches Tag Cloud
http://chir.ag/projects/preztags/



http://chir.ag/projects/preztags/

Bag of words illustration

2007-01-23: State of the Union Address
George W. Bush (2001-)

. 1| 1962-10-22: Soviet Missiles in Cuba
choices ¢ John F. Kennedy (1961-63)

deficit c
expand | @ n achieving adversaries a ricultur te armaments AI'ITS assessments atlantic ballistic berlin

buildup burdens college commitment communist consumers cooperation crisis C U b d dangers

deficit depended disarmament divisions domination doubled economic education
elimination emergence equals europe expand exports fact f family forum freedom fulfill gromyko
halt hazards hemisphere hospitals ideals industries inflation labor latin limiting m]SS] leS
modernization neglect nUClear 0 ior er OffenSive peril pledged predicted purchasing quarantine quote

recession retal solution SOV] et space spur stability standby St ren gt h

surveillance tax elfare widen wif

US Presidential Speeches Tag Cloud
http://chir.ag/projects/preztags/



http://chir.ag/projects/preztags/

Bag of words illustration

2007-01-23: State of the Union Address
George W. Bush (2001-)

choices ¢ John F. Kennedy (1961-63)

deficit c

expand | abandd 1944.12-08: Request for a Declaration of War
build: Franklin D. Roosevelt (1933-45)

agg ession aggressors airplanes armaments armed army assault assembly authorizations bombing

elimin: ; itution curtail december defeats defending delays democratic dictators dis
halt ha €C ic empire enc - f otten fortunes france T FT€EAOM fulfilled fullness fundamental gangsters
german germany god guam harbor hawaii hemisphere hint hitler host immune improving innumerable

invasion 1slands isolate J a pa n ese labor metals midst midway NaVYy nazis obligation offensive

officially paC1f1C partisanship pearl peril philippine preservation privilege reject
repaired resisting retain revealing rumors seas soldiers speaks speedy stamina strength sunday sunk supremacy tanks taxes

modern

recessi(

surveill

y true tyranny undertaken victory Wa r wartime washington

US Presidential Speeches Tag Cloud
http://chir.ag/projects/preztags/
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Bayesian Inference and Bayesian Learning

* Bayesian Learning
* Maximum Likelihood estimation of parameters
e Laplace Smoothing



Bayesian Learning

* Model parameters: feature likelihoods P(word | class) and priors
P(class)

* How do we obtain the values of these parameters?
* Need training set of labeled samples from both classes

# of occurrences of this word in docs from this class

P d|cl = - i
(word | class) total # of words in docs from this class

* This is the maximum likelihood (ML) estimate, or estimate that
maximizes the likelihood of the training data:

ﬁﬁP(Wd’i | class, ;)

d=1 i=l
d: index of training document, i: index of a word



Bayesian Learning

* The “bag of words model” has the following parameters:
« Aoy = P(W =w|C = ¢)
e, =P(C =rc)
* The training data are a set of documents, E = [D4, ..., D,,,], each with
its associated class label, Y = [C4, ..., C}, ]

* The likelihood of the training data is the probability of its observations
given its labels. If we assume that each document is independent of

the others (“episodic”), then we get:

PEY) = | [Pilcopc)
i=1



Bayesian Learning

* The “bag of words model” has the following parameters:
* Aew EP(W =w|C =)
e . =P(C =c)
* Each document is a sequence of words, D; = [Wy;, ..., Wy;]-

* |If we assume that each word is conditionally independent given the class
(the naive Bayes a.k.a. bag-of-words assumption), then we get:

m n m n
PEN =] [Pci=a) | [Pt =wilci =y = | [me] [Acws
=1 j=1 i=1 j=1



Bayesian Learning

The data likelihood P(X,Y) is maximized if we choose:

# occurrences of word w in documents of type ¢

‘W " total number of words in all documents of type ¢

# documents of type ¢

T[ =
©  total number of documents



What is the probability that the sun will fail to
rise tomorrow?

* # times we have observed the sun to rise = 100,000,000

e ## times we have observed the sun not to rise =0

0

 Estimated probability the sun will not rise = =0
0+100,000,000




Laplace Smoothing

* The basic idea: add 1 “unobserved observation” to every possible
event

 # times the sun has risen or might have ever risen = 100,000,000+1 =
100,000,001

 # times the sun has failed to rise or might have ever failed to rise =
O+1=1

* Estimated probability the sun will not rise =
0.0000000099999998

1
1+100,000,001




Parameter estimation

ML (Maximum Likelihood) parameter estimate:

# of occurrences of this word in docs from this class

P(word | class) = total # of words in docs from this class

 Laplacian Smoothing estimate

* How can you estimate the probability of a word you never saw in the training
set? (Hint: what happens if you give it probability O, then it actually occurs in
a test document?)

* Laplacian smoothing: pretend you have seen every vocabulary word one
more time than you actually did

# of occurrences of this word in docs from this class + 1

P(word | class) = total # of words in docs from this class +V

(V: total number of unique words)



Summary: Naive Bayes for Document
Classification

* Naive Bayes model: assign the document to the class
with the highest posterior

P(class | document) x P(class)l_[ P(w, I class)
i=1

* Model parameters:

_ Likelihood Likelihood
prior of class 1 of class K
P(wq | class;) P(wq | classk)
P(class;) P(w, | class;) P(w, | classk)

P(classy) P(w, | class;) P(w, | classk)




Bayesian Learning and Bayesian Inference irl:
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Review: Bayesian decision making

* Suppose the agent has to make decisions about the
value of an unobserved query variable Y based on the
values of an observed evidence variable E

* Inference problem: given some observation E = ¢,
what is P(Y | E=e)?

* Learning problem: estimate the parameters of the
probabilistic model P(y | e) given a training sample

{(eliyl)f veey (enlyn)}



