CS440/ECE448 Lecture 12: Stochastic Games, Stochastic Search, and Learned Evaluation Functions

Slides by Svetlana Lazebnik, 9/2016

 Modified by Mark Hasegawa-Johnson, 2/2019
 Policy network
 Value network

 Value network
 $p_{a/p}$ (als)
 v_{g} (s')

 Value network
 Value network

Types of game environments

	Deterministic	Stochastic
Perfect information (fully observable)	Chess, checkers, go	Backgammon, monopoly
Imperfect information (partially observable)	Battleship	Scrabble, poker, bridge

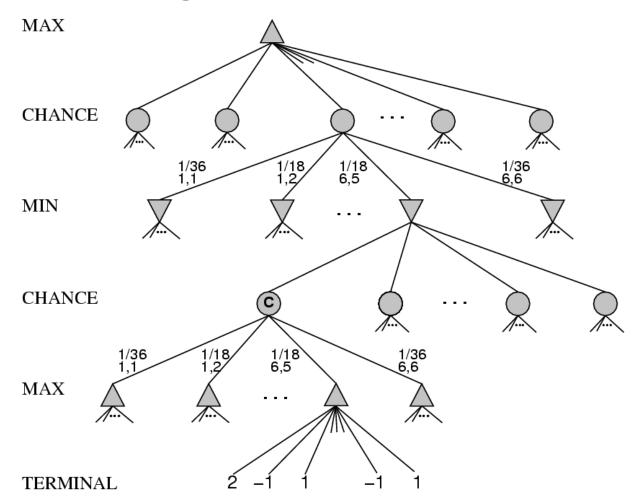
Content of today's lecture

- Stochastic games: the Expectiminimax algorithm
- Imperfect information
 - Minimax formulation
 - Expectiminimax formulation
- Stochastic search, even for deterministic games
- Learned evaluation functions
- Case study: Alpha-Go

Stochastic games

How can we incorporate dice throwing into the game tree?

Stochastic games



Minimax vs. Expectiminimax

- Minimax:
 - Maximize (over all possible moves I can make) the
 - Minimum (over all possible moves Min can make) of the
 - Reward

$$Value(node) = \max_{my \ moves} \left(\min_{Min's \ moves} (Reward) \right)$$

• Expectiminimax:

- Maximize (over all possible moves I can make) the
- Minimum (over all possible moves Min can make) of the
- Expected reward

$$Value(node) = \max_{my \ moves} \left(\min_{Min's \ moves} (\mathbb{E}[Reward]) \right)$$

$$\mathbb{E}[Reward] = \sum_{outcomes} Probability(outcome) \times Reward(outcome)$$

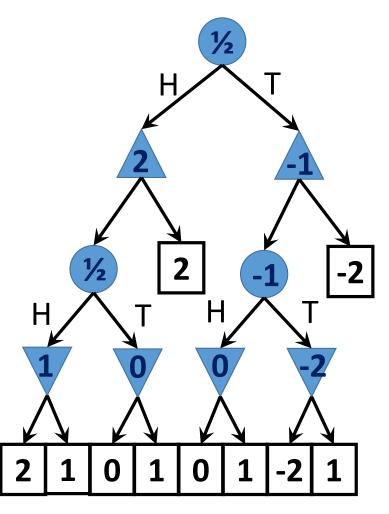
Stochastic games

• Expectiminimax: for chance nodes, sum values of successor states weighted by the probability of each successor

- Value(node) =
 - Utility(node) if node is terminal
 - max_{action} Value(Succ(node, action)) if type = MAX
 - min_{action} Value(Succ(node, action)) if type = MIN
 - sum_{action} P(Succ(node, action)) * Value(Succ(node, action)) if type
 = CHANCE

Expectiminimax example

- RANDOM: Max flips a coin. It's heads or tails.
- MAX: Max either stops, or continues.
 - Stop on heads: Game ends, Max wins (value = \$2).
 - Stop on tails: Game ends, Max loses (value = -\$2).
 - Continue: Game continues.
- RANDOM: Min flips a coin.
 - HH: value = \$2
 - TT: value = -\$2
 - HT or TH: value = 0
- MIN: Min decides whether to keep the current outcome (value as above), or pay a penalty (value=\$1).



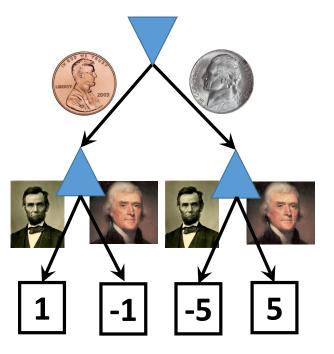
Expectiminimax summary

- All of the same methods are useful:
 - Alpha-Beta pruning
 - Evaluation function
 - Quiescence search, Singular move
- Computational complexity is pretty bad
 - Branching factor of the random choice can be high
 - Twice as many "levels" in the tree

Games of Imperfect Information

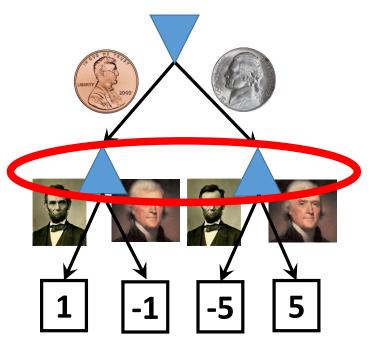
Imperfect information example

- Min chooses a coin.
- I say the name of a U.S. President.
 - If I guessed right, she gives me the coin.
 - If I guessed wrong, I have to give her a coin to match the one she has.



Imperfect information example

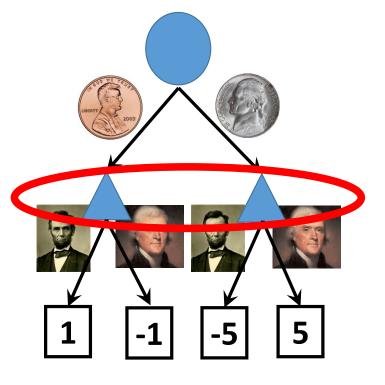
• The problem: I don't know which state I'm in. I only know it's one of these two.



Method #1: Treat "unknown" as "random"

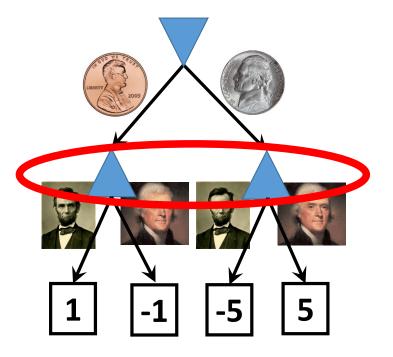
- Expectiminimax: treat the unknown information as random.
- Choose the policy that maximizes my expected reward.
 - "Lincoln": $\frac{1}{2} \times 1 + \frac{1}{2} \times (-5) = -2$
 - "Jefferson": $\frac{1}{2} \times (-1) + \frac{1}{2} \times 5 = 2$
- Expectiminimax policy: say "Jefferson".
- BUT WHAT IF: equally likely?

are not



Method #2: Treat "unknown" as "unknown"

- Suppose Min can choose whichever coin she wants. She knows that I will pick Jefferson – then she will pick the penny!
- Another reasoning: I want to know what is my worst-case outcome (e.g., to decide if I should even play this game...)
- The solution: choose the policy that maximizes my minimum reward.
 - "Lincoln": minimum reward is -5.
 - "Jefferson": minimum reward is -1.
- Miniminimax policy: say "Jefferson".



How to deal with imperfect information

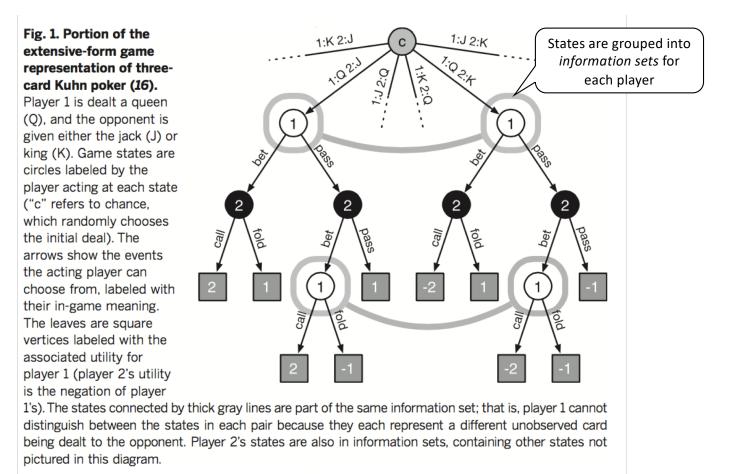
- If you think you know the probabilities of different settings, and if you want to maximize your average winnings (for example, you can afford to play the game many times): **expectiminimax**
- If you have no idea of the probabilities of different settings; or, if you can only afford to play once, and you can't afford to lose:
 miniminimax
- If the unknown information has been selected intentionally by your opponent: use **game theory**

Miniminimax with imperfect information

- Minimax:
 - Maximize (over all possible moves I can make) the
 - Minimum
 - (over all possible states of the information I don't know,
 - ... over all possible moves Min can make) the
 - Reward.

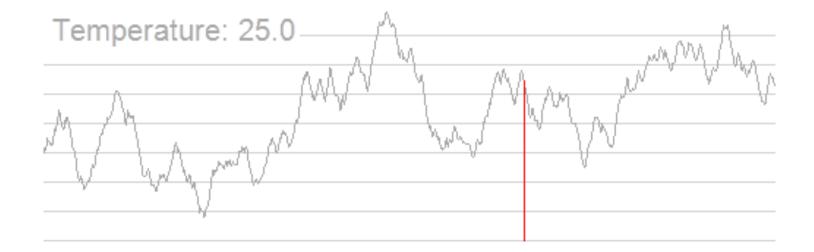
 $Value(node) = \max_{\substack{Max's \\ moves}} \left(\min_{\substack{Min's \\ moves}} \min_{\substack{missing \\ info}} (Reward) \right)$

Stochastic games of imperfect information



Source

Stochastic search



Stochastic search for stochastic games

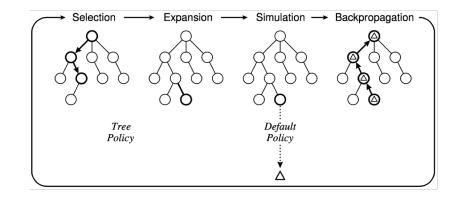
• The problem with expectiminimax: huge branching factor (many possible outcomes)

$$\mathbb{E}[Reward] = \sum_{outcomes} Probability(outcome) \times Reward(outcome)$$

- An approximate solution: Monte Carlo search $\mathbb{E}[Reward] \approx \frac{1}{n} \sum_{i=1}^{n} Reward(i'th \ random \ game)$
- Asymptotically optimal: as $n \rightarrow \infty$, the approximation gets better.
- Controlled computational complexity: choose n to match the amount of computation you can afford.

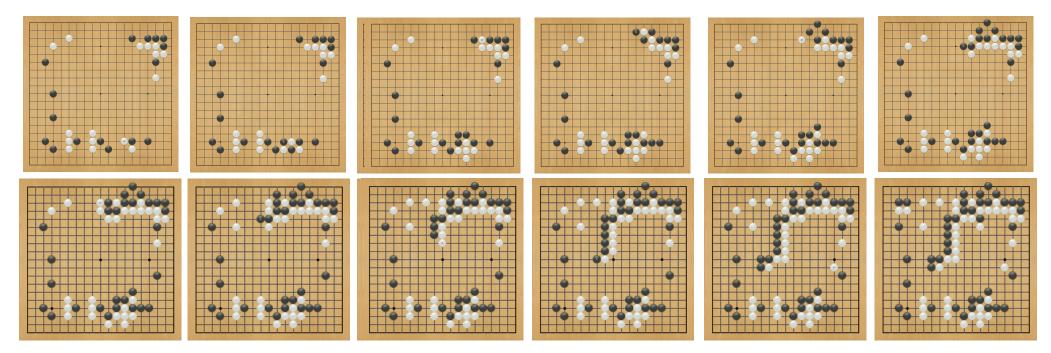
Monte Carlo Tree Search

- What about <u>deterministic</u> games with deep trees, large branching factor, and no good heuristics – like Go?
- Instead of depth-limited search with an evaluation function, use randomized simulations
- Starting at the current state (root of search tree), iterate:
 - Select a leaf node for expansion using a tree policy (trading off exploration and exploitation)
 - Run a simulation using a *default policy* (e.g., random moves) until a terminal state is reached
 - Back-propagate the outcome to update the value estimates of internal tree nodes



C. Browne et al., <u>A survey of Monte Carlo Tree Search Methods</u>, 2012

Learned evaluation functions



Stochastic search off-line

Training phase:

- Spend a few weeks allowing your computer to play billions of random games from every possible starting state
- Value of the starting state = average value of the ending states achieved during those billion random games

Testing phase:

- During the alpha-beta search, search until you reach a state whose value you have stored in your value lookup table
- Oops.... Why doesn't this work?

Evaluation as a pattern recognition problem

Training phase:

- Spend a few weeks allowing your computer to play billions of random games from billions of possible starting states.
- Value of the starting state = average value of the ending states achieved during those billion random games

Generalization:

Featurize (e.g., x1=number of

patterns, x2 = number of

patterns, etc.)

Linear regression: find a1, a2, etc. so that Value(state) ≈ a1*x1+a2*x2+...

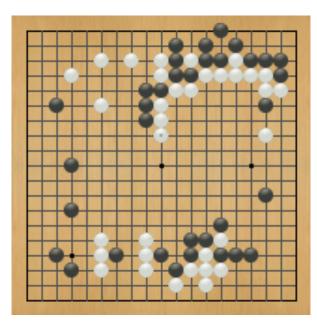
Testing phase:

 During the alpha-beta search, search as deep as you can, then estimate the value of each state at your horizon using Value(state) ≈ a1*x1+a2*x2+...

Pros and Cons

- Learned evaluation function
 - Pro: off-line search permits lots of compute time, therefore lots of training data
 - Con: there's no way you can evaluate every starting state that might be achieved during actual game play. Some starting states will be missed, so generalized evaluation function is necessary
- On-line stochastic search
 - Con: limited compute time
 - Pro: it's possible to estimate the value of the state you've reached during actual game play

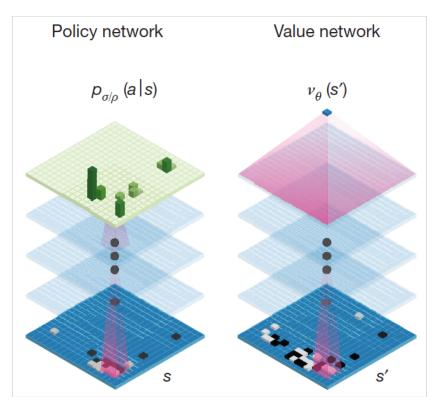
Case study: AlphaGo



- "Gentlemen should not waste their time on trivial games -- they should play go."
- -- Confucius,
- The Analects
- ca. 500 B. C. E.

Roy Laird,

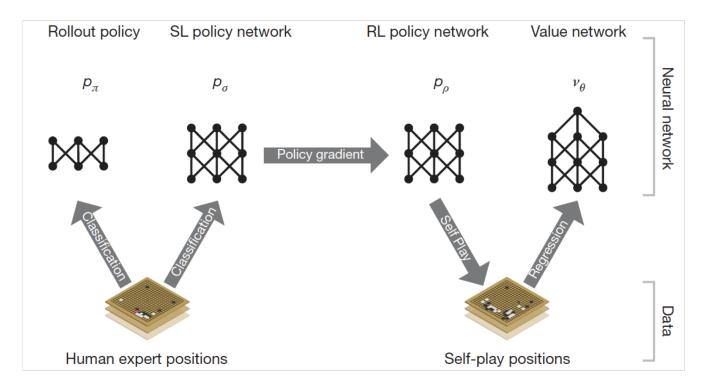
Anton Ninno Ph.D. antonninno@yahoo.com roylaird@gmail.com



- Deep convolutional neural networks
 - Treat the Go board as an image
 - Powerful function approximation machinery
 - Can be trained to predict distribution over possible moves (*policy*) or expected *value* of position

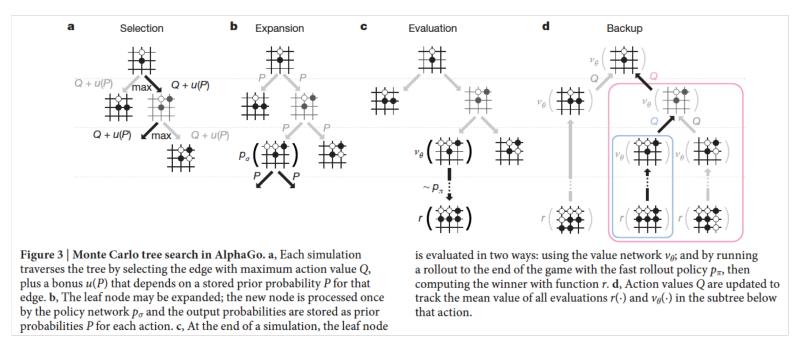
- SL policy network
 - Idea: perform *supervised learning* (SL) to predict human moves
 - Given state s, predict probability distribution over moves a, P(a|s)
 - Trained on 30M positions, 57% accuracy on predicting human moves
 - Also train a smaller, faster rollout policy network (24% accurate)
- RL policy network
 - Idea: fine-tune policy network using reinforcement learning (RL)
 - Initialize RL network to SL network
 - Play two snapshots of the network against each other, update parameters to maximize expected final outcome
 - RL network wins against SL network 80% of the time, wins against opensource Pachi Go program 85% of the time

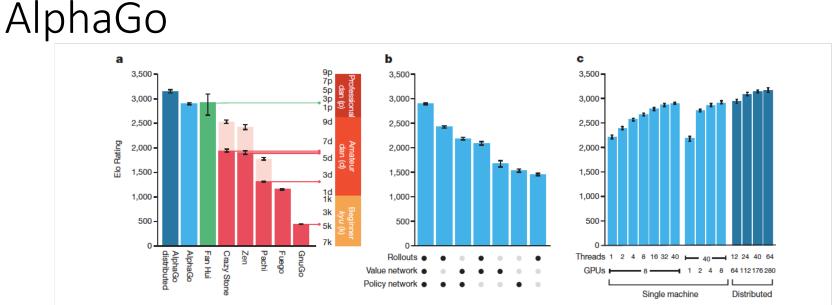
- SL policy network
- RL policy network
- Value network
 - Idea: train network for position evaluation
 - Given state s, estimate v(s), expected outcome of play starting with position s and following the learned policy for both players
 - Train network by minimizing mean squared error between actual and predicted outcome
 - Trained on 30M positions sampled from different self-play games

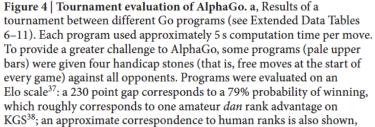


- Monte Carlo Tree Search
 - Each edge in the search tree maintains *prior probabilities* P(s,a), *counts* N(s,a), *action values* Q(s,a)
 - P(s,a) comes from SL policy network
 - Tree traversal policy selects actions that maximize Q value plus exploration bonus (proportional to P but inversely proportional to N)
 - An expanded leaf node gets a value estimate that is a combination of value network estimate and outcome of simulated game using rollout network
 - At the end of each simulation, Q values are updated to the average of values of all simulations passing through that edge

• Monte Carlo Tree Search

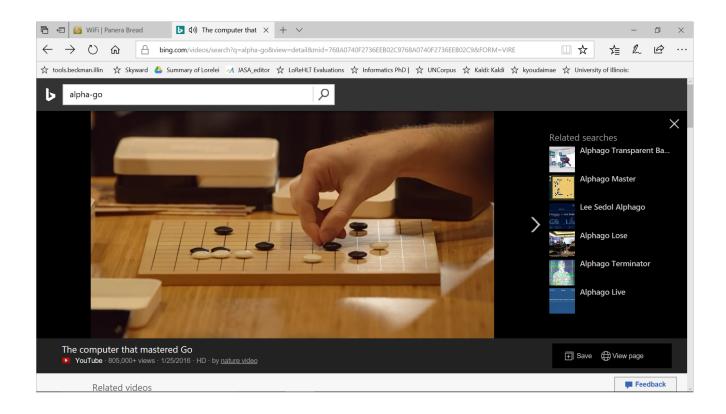






horizontal lines show KGS ranks achieved online by that program. Games against the human European champion Fan Hui were also included; these games used longer time controls. 95% confidence intervals are shown. **b**, Performance of AlphaGo, on a single machine, for different combinations of components. The version solely using the policy network does not perform any search. **c**, Scalability study of MCTS in AlphaGo with search threads and GPUs, using asynchronous search (light blue) or distributed search (dark blue), for 2 s per move.

Alpha-Go video



Game AI: Origins

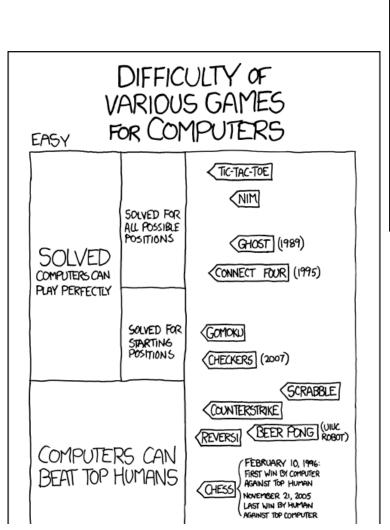
- Minimax algorithm: Ernst Zermelo, 1912
- Chess playing with evaluation function, quiescence search, selective search: Claude Shannon, 1949 (paper)
- Alpha-beta search: John McCarthy, 1956
- Checkers program that learns its own evaluation function by playing against itself: Arthur Samuel, 1956 (<u>Rodney Brooks blog post</u>)

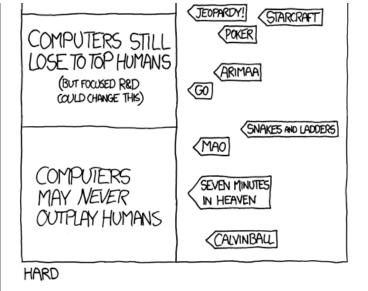
Game AI: State of the art

- Computers are better than humans:
 - Checkers: solved in 2007
 - Chess:
 - State-of-the-art search-based systems now better than humans
 - <u>Deep learning machine teaches itself chess in 72 hours, plays at</u> <u>International Master Level</u> (arXiv, September 2015)
- Computers are competitive with top human players:
 - **Backgammon:** <u>TD-Gammon system</u> (1992) used *reinforcement learning* to learn a good evaluation function
 - Bridge: top systems use Monte Carlo simulation and alphabeta search
 - **Go:** computers were not considered competitive until AlphaGo in 2016

Game AI: State of the art

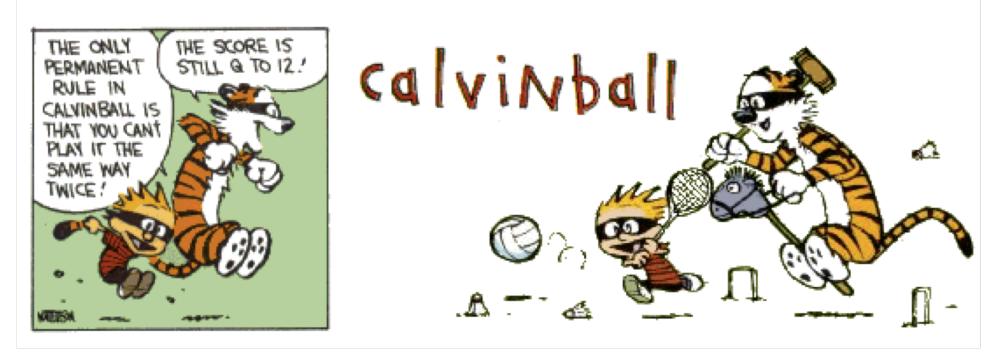
- Computers are not competitive with top human players:
 - Poker
 - Heads-up limit hold'em poker is solved (2015)
 - Simplest variant played competitively by humans
 - Smaller number of states than checkers, but partial observability makes it difficult
 - *Essentially weakly solved* = cannot be beaten with statistical significance in a lifetime of playing
 - <u>CMU's Libratus system beats four of the best human players at no-limit</u> <u>Texas Hold'em poker</u> (2017)





http://xkcd.com/1002/

See also: http://xkcd.com/1263/



Calvinball:

- <u>Play it online</u>
- <u>Watch an instructional video</u>