CS440/ECE448 Lecture 12:
Stochastic Games, Stochastic Search,
and Learned Evaluation Functions

Slides by Svetlana Lazebnik, 9/2016
Modified by Mark Hasegawa-Johnson, 2/2019

Policy network Value network

Types of game environments

Perfect

information Chess, checkers, Backgammon,
monopol

(fully observable) &° poly

Imperfect Battleship Scrabble,

information ooker,

(partially bridge

observable)

Content of today’s lecture

* Stochastic games: the Expectiminimax algorithm

* Imperfect information

* Minimax formulation
e Expectiminimax formulation

* Stochastic search, even for deterministic games
* Learned evaluation functions
 Case study: Alpha-Go

Stochastic games

How can we incorporate dice throwing into the game
tree?

Stochastic games

MAX A
CHANCE ‘ ‘
1/36 1/18
1 1,
MIN \/ ‘V
CHANCE Q

TERMINAL 2 -1

()
1/18
65
\/
C
1/36
6,6
£\

Minimax vs. Expectiminimax

* Minimax:
* Maximize (over all possible moves | can make) the
* Minimum (over all possible moves Min can make) of the
* Reward

Value(node) = max (min (Reward))

my moves \Min's moves

* Expectiminimax:
* Maximize (over all possible moves | can make) the
* Minimum (over all possible moves Min can make) of the
* Expected reward

Value(node) = max (min (IE[Reward]))

my moves \Min's moves

E[Reward] = 2 Probability(outcome)xXReward (outcome)

outcomes

Stochastic games

* Expectiminimax: for chance nodes, sum values of
successor states weighted by the probability of each
successor

e Value(node) =

Utility(node) if node is terminal
maX,q.ion Value(Succ(node, action)) if type = MAX
min,.,, Value(Succ(node, action)) if type = MIN

sum,.i,n P(Succ(node, action)) * Value(Succ(node, action)) if type
= CHANCE

Expectiminimax example

* RANDOM: Max flips a coin. It’s heads or tails.

* MAX: Max either stops, or continues.
 Stop on heads: Game ends, Max wins (value = $2).
* Stop on tails: Game ends, Max loses (value = -52).
* Continue: Game continues.

« RANDOM: Min flips a coin.
* HH: value = S2
e TT: value =-S2
* HT or TH: value=0

* MIN: Min decides whether to keep the current

outcome (value as above), or pay a penalty
(value=S$1).

Expectiminimax summary

* All of the same methods are useful:
e Alpha-Beta pruning
e Evaluation function
* Quiescence search, Singular move

* Computational complexity is pretty bad
* Branching factor of the random choice can be high
* Twice as many “levels” in the tree

Games of Imperfect Information

Imperfect information example

* Min chooses a coin.

* | say the name of a U.S. President.

 If | guessed right, she gives me the coin.

* If | guessed wrong, | have to give her a
coin to match the one she has.

Imperfect information example

* The problem: | don’t know which
state I’'m in. | only know it’s one of
these two.

Method #1: Treat “unknown” as “random”

* Expectiminimax: treat the unknown
information as random.

* Choose the policy that maximizes
my expected reward.

e “Lincoln”: %xl +% X(=5) = -2
* “Jefferson”: % X(—1) +% X5 =2
* Expectiminimax policy: say
“Jefferson”.
* BUT WHAT IF:
equally likely? =~

Method #2: Treat “unknown” as “unknown”

* Suppose Min can choose whichever coin
she wants. She knows that | will pick
Jefferson — then she will pick the penny!

* Another reasoning: | want to know what
is my worst-case outcome (e.g., to decide
if I should even play this game...)

* The solution: choose the policy that
maximizes my minimum reward.

* “Lincoln”: minimum reward is -5.
o “Jefferson”: minimum reward is -1.

* Miniminimax policy: say “Jefferson”.

How to deal with imperfect information

* If you think you know the probabilities of different settings, and if you
want to maximize your average winnings (for example, you can afford
to play the game many times): expectiminimax

* If you have no idea of the probabilities of different settings; or, if you
can only afford to play once, and you can’t afford to lose:
miniminimax

* If the unknown information has been selected intentionally by your
opponent: use game theory

Miniminimax with imperfect information

* Minimax:
e Maximize (over all possible moves | can make) the
* Minimum
* (over all possible states of the information | don’t know,
e ... over all possible moves Min can make) the
* Reward.

Value(node) = max (min min (Reward)
Max's | Min's missing
moves \moves info

Stochastic games of imperfect information

Fig. 1. Portion of the
extensive-form game
representation of three-
card Kuhn poker (16).
Player 1 is dealt a queen
(Q), and the opponent is
given either the jack (J) or
king (K). Game states are
circles labeled by the
player acting at each state
(“c" refers to chance,
which randomly chooses
the initial deal). The 3
arrows show the events
the acting player can

choose from, labeled with E n n
their in-game meaning.
The leaves are square
vertices labeled with the

associated utility for

player 1 (player 2's utility H n E n

is the negation of player

1's). The states connected by thick gray lines are part of the same information set; that is, player 1 cannot
distinguish between the states in each pair because they each represent a different unobserved card
being dealt to the opponent. Player 2's states are also in information sets, containing other states not

pictured in this diagram.

States are grouped into
e information sets for
each player

Source

http://www.sciencemag.org/content/347/6218/145.abstract

Stochastic search

Stochastic search for stochastic games

* The problem with expectiminimax: huge branching factor (many possible outcomes)

E[Reward] = 2 Probability(outcome)XReward (outcome)

outcomes

e An approximate solution: Monte Carlo search

n
1
E[Reward] = - Z Reward(i'th random game)
i=1

* Asymptotically optimal: as n — oo, the approximation gets better.

e Controlled computational complexity: choose n to match the amount of
computation you can afford.

Monte Carlo Tree Search

* What about deterministic games with deep trees, large branching factor,
and no good heuristics — like Go?

* Instead of depth-limited search with an evaluation function,
use randomized simulations

 Starting at the current state (root of search tree), iterate:

* Select a leaf node for expansion
using a tree policy (trading off
exploration and exploitation)

* Run a simulation using
a default po//cy (e_g_’ random — Selection —— Expansion —> Simulation — Backpropagation ~
moves) until a terminal state
is reached

* Back-propagate the outcome
to update the value estimates

of internal tree nodes Tree Def;ult
Policy Po{icy
v
\ A J

C. Browne et al., A survey of Monte Carlo Tree Search Methods, 2012

http://ccg.doc.gold.ac.uk/papers/browne_tciaig12_1.pdf

Learned evaluation functions

i Sell S tHgSe) 8

OQ:”“:’:. 003”“:.:. QOz”“z‘:.

008”“:.:.

Stochastic search off-line

Training phase:

* Spend a few weeks allowing your computer to play billions of random
games from every possible starting state

* Value of the starting state = average value of the ending states
achieved during those billion random games

Testing phase:

* During the alpha-beta search, search until you reach a state whose
value you have stored in your value lookup table

* Oops.... Why doesn’t this work?

Evaluation as a pattern recognition problem

Training phase:

* Spend a few weeks allowing your computer to play billions of random games from
billions of possible starting states.

* Value of the starting state = average value of the ending states achieved during those
billion random games rY}

Generalization: O E

* Featurize (e.g., xX1=number of_|“ « patterns, x2 = number of . L patterns, etc.)
 Linear regression: find al, a2, etc. so that Value(state) = al*x1+a2*x2+...

Testing phase:

* During the alpha-beta search, search as deep as you can, then estimate the value of each
state at your horizon using Value(state) = al*x1+a2*x2+...

Pros and Cons

* Learned evaluation function

* Pro: off-line search permits lots of compute time, therefore lots of training
data

e Con: there’s no way you can evaluate every starting state that might be
achieved during actual game play. Some starting states will be missed, so
generalized evaluation function is necessary

* On-line stochastic search
e Con: limited compute time

* Pro: it’s possible to estimate the value of the state you’ve reached during
actual game play

Case study: AlphaGo

Anton Ninno

Ph.D.
antonninno@yahoo.com
roylaird@gmail.com

“Gentlemen
should not
waste their time
on trivial games
-- they should
play go.”

-- Confucius,

The Analects

ca. 500B. C. E.

Roy Laird,

AlphaGo

Policy network Value network .
* Deep convolutional
| neural networks
,\als S
Pojp @15) V".() * Treat the Go board as an

image

* Powerful function
approximation machinery

e Can be trained to predict
distribution over possible
moves (policy) or
expected value of
position

by

[]

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature 529,
January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html

AlphaGo

e SL policy network
* |dea: perform supervised learning (SL) to predict human moves
* Given state s, predict probability distribution over moves a, P(a|s)
* Trained on 30M positions, 57% accuracy on predicting human moves
* Also train a smaller, faster rollout policy network (24% accurate)

* RL policy network
* |dea: fine-tune policy network using reinforcement learning (RL)
* Initialize RL network to SL network

* Play two snapshots of the network against each other, update parameters to
maximize expected final outcome

* RL network wins against SL network 80% of the time, wins against open-
source Pachi Go program 85% of the time

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature 529,
January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html

AlphaGo

e SL policy network
* RL policy network

* Value network
* |Idea: train network for position evaluation
* Given state s, estimate v(s), expected outcome of play starting with
position s and following the learned policy for both players
* Train network by minimizing mean squared error between actual and
predicted outcome
* Trained on 30M positions sampled from different self-play games

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature 529,
January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html

AlphaGo

Rollout policy SL policy network RL policy network Value network
pd
pn pa pp Vg 8
o
2
@
X = é
5
=
O
o]
o

Human expert positions Self-play positions

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature 529,
January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html

AlphaGo

* Monte Carlo Tree Search
* Each edge in the search tree maintains prior probabilities P(s,a), counts
N(s,a), action values Q(s,a)
* P(s,a) comes from SL policy network
* Tree traversal policy selects actions that maximize Q value plus
exploration bonus (proportional to P but inversely proportional to N)

* An expanded leaf node gets a value estimate that is a combination of
value network estimate and outcome of simulated game using rollout
network

* At the end of each simulation, Q values are updated to the average of
values of all simulations passing through that edge

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature 529,
January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html

AlphaGo

e Monte Carlo Tree Search

a Selection b Expansion c Evaluation d Backup
T T T T

)

A

O+uT(P) N Q4P A
B0 B () jE:

N !

! p it [! T
_mak;: Q+uP) tof o __$__ o Qo I\ Toe
1

Ew s

+o0

Y
N

L3

< -
()
Figure 3 | Monte Carlo tree search in AlphaGo. a, Each simulation is evaluated in two ways: using the value network vg; and by running
traverses the tree by selecting the edge with maximum action value Q, arollout to the end of the game with the fast rollout policy p,, then
plus a bonus u(P) that depends on a stored prior probability P for that computing the winner with function r. d, Action values Q are updated to
edge. b, The leaf node may be expanded; the new node is processed once track the mean value of all evaluations r(-) and vg(-) in the subtree below

by the policy network p, and the output probabilities are stored as prior that action.
probabilities P for each action. ¢, At the end of a simulation, the leaf node

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature 529,
January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html

AlphaGo

b
3,500 = 3,500
3,000 3,000
2,500 - 2,500
2 20004 z 2,000
ﬁ o
= 2
£ 1,500 = 1,500+
1,000 = 1,000
500 500+
0~ ar > O N T (0] o
[m m
25 § g ﬁ 2 8 ‘g 2 Rollouts @
g g ;@» PR = o) Value network @
g § Policy network @

Figure 4 | Tournament evaluation of AlphaGo. a, Results of a
tournament between different Go programs (see Extended Data Tables
6-11). Each program used approximately 5s computation time per move.
To provide a greater challenge to AlphaGo, some programs (pale upper
bars) were given four handicap stones (that is, free moves at the start of
every game) against all opponents. Programs were evaluated on an

Elo scale®’: a 230 point gap corresponds to a 79% probability of winning,
which roughly corresponds to one amateur dan rank advantage on
KGS*; an approximate correspondence to human ranks is also shown,

3,500 =

3,000+

2,500

2,000+

1,500

1,000+

500

0+
Threads 1 2 4 8 1632 40 s gom=eed 12 24 40 64

. .
e o o GPUS b——5=— 1 2 4 8 64112176280
° ° 1 1l 1

Single machine Distributed

horizontal lines show KGS ranks achieved online by that program. Games
against the human European champion Fan Hui were also included;

these games used longer time controls. 95% confidence intervals are
shown. b, Performance of AlphaGo, on a single machine, for different
combinations of components. The version solely using the policy network
does not perform any search. c, Scalability study of MCTS in AlphaGo
with search threads and GPUs, using asynchronous search (light blue) or
distributed search (dark blue), for 2 s per move.

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature 529,

January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html

Alpha-Go video

a | {2 WiFi | Panera Bread 3) Thecomputerthat X + v - X
> 0O 5 bing.com j=alpt ! DX Yy L e -

Yt toolsbeckmanilin ~ ¥¢ Skyward & Summary of Lorelei A JASA editor Y LoReHLT Evaluations ¥y Informatics PhD| ¢ UNCorpus Yy Kaldi:Kaldi ¢ kyoudaimae g University of lllinois:

Alphago Transparent Ba...
Alphago Master
Lee Sedol Alphago

Alphago Lose

Alphago Terminator

Alphago Live

The computer that mastered Go
» YouTube

Related videos W Feedback

Game Al: Origins

* Minimax algorithm: Ernst Zermelo, 1912

* Chess playing with evaluation function, quiescence
search, selective search:
Claude Shannon, 1949 (paper)

* Alpha-beta search: John McCarthy, 1956

* Checkers program that learns its own evaluation
function by playing against itself: Arthur Samuel,
1956 (Rodney Brooks blog post)

http://archive.computerhistory.org/projects/chess/related_materials/text/2-0%20and%202-1.Programming_a_computer_for_playing_chess.shannon/2-0%20and%202-1.Programming_a_computer_for_playing_chess.shannon.062303002.pdf
https://rodneybrooks.com/forai-machine-learning-explained/

Game Al: State of the art

 Computers are better than humans:
* Checkers: solved in 2007
* Chess:

» State-of-the-art search-based systems now better than humans

 Deep learning machine teaches itself chess in 72 hours, plays at
International Master Level (arXiv, September 2015)

* Computers are competitive with top human players:

* Backgammon: TD-Gammon system (1992) used reinforcement
learning to learn a good evaluation function

* Bridge: top systems use Monte Carlo simulation and alpha-
beta search

* Go: computers were not considered competitive until AlphaGo
in 2016

https://www.theatlantic.com/technology/archive/2017/07/marion-tinsley-checkers/534111/
http://www.technologyreview.com/view/541276/deep-learning-machine-teaches-itself-chess-in-72-hours-plays-at-international-master/
https://en.wikipedia.org/wiki/TD-Gammon

Game Al: State of the art

* Computers are ret competitive with top human players:

* Poker

* Heads-up limit hold’em poker is solved (2015)
* Simplest variant played competitively by humans

* Smaller number of states than checkers, but partial observability makes it difficult
* Essentially weakly solved = cannot be beaten with statistical significance
in a lifetime of playing
e CMU’s Libratus system beats four of the best human players at no-limit
Texas Hold’em poker (2017)

http://www.sciencemag.org/content/347/6218/145.abstract
https://www.wired.com/2017/02/libratus/

DIFFICULTY oF
VARIOUS GAMES
crey FoR COMPUTERS
<ury
SOLVED FOR
ot | ())
g%%é%\% (1975)
PLAY PERFECTLY
e PR | o)
POSITIONS ('zoo'l)
<BER PO gy
COMPUTERS CN | s
BEAT ToP HUMANS B

(CARRAT]
el i
UMANS
(But FocwseD RRD @
(OULD CHANGE THES)
(NAKES Ao LAODERS)
Mo
COMPUIERS
MAY NEVER foprtovy
OUTALAY HUMANS
CALVINBALL.
HARD

http://xkcd.com/1002/

See also: http://xkecd.com/1263/

http://xkcd.com/1002/
http://xkcd.com/1263/

THE ONLY
PERMANEMT
RULE N
CALVINBALL 1S

Calvinball:
* Play it online

e \Watch an instructional video

https://insaner.com/calvinball/
https://www.youtube.com/watch?v=jr85nM9q08k

