CS440/ECE448 Lecture 11: Random Variables

CC-BY 3.0, Mark HasegawaJohnson, February 2019

Random Variables

- Random Variables
- RV = function from outcomes to numbers
- Notation
- Probability Mass Function (pmf)
- Expected Value
- Domain of a Random Variable
- Domain Type: Categorical vs. Numerical
- Domain Size: Finite vs. Countably Infinite vs. Uncountably Infinite
- Joint, Marginal, and Conditional Random Variables
- Marginalization and Conditioning
- Law of Total Probability
- Random Vectors
- Jointly Random Class and Measurement Variables
- Functions of Random Variables
- Probability Mass Function
- Expectation

Random variables

- We describe the (uncertain) state of the world using random variables
- Denoted by capital letters
- R: Is it raining?
- W: What's the weather?
- D: What is the outcome of rolling two dice?
- S: What is the speed of my car (in MPH)?
- Just like variables in CSPs, random variables take on values in a domain
- Domain values must be mutually exclusive and exhaustive
- R in \{True, False\}
- W in \{Sunny, Cloudy, Rainy, Snow\}
- \mathbf{D} in $\{(1,1),(1,2), \ldots(6,6)\}$
- S in $[0,200]$

Random variables

- A random variable can be viewed as a function, f:outcomes \rightarrow numbers (a function that maps outcomes to numbers).
- For example: the event "Speed= 45 mph " is the set of all outcomes for which the speed of my car is 45 mph :
- I have my foot on the accelerator pedal, and I'm traveling 45 mph
- My car is being towed, and the towtruck is traveling 45 mph
- My car is falling off a cliff, and has reached a terminal velocity of 45 mph ...

Random Variables are Uppercase, Instances are Lowercase

We use an UPPERCASE letter for a random variable, and a lowercase letter for the actual value that it takes after any particular experiment.

- $X_{1}=X_{1}$ is the event "random variable X_{1} takes the value X_{1} "
- X_{1} is an $R V$, which is a function, X_{1} :outcomes \rightarrow numbers
- x_{1} is just a number.

So, for example, the statement $X_{1}=3$ is a particular outcome of the experiment (the outcome in which the variable X_{1} took the value of 3).

Probability Mass Function (pmf) is a lowercase p.

- $X_{1}=x_{1}$ is the event "random variable X_{1} takes the value x_{1} "
- $p\left(X_{1}=x_{1}\right)$ is a number: the probability that this event occurs.
- We call this number the "probability mass" of the event $X_{1}=x_{1}$
- Shorthand: $p\left(x_{1}\right)$ using a small letter x_{1}, implies X_{1}
- Subscript notation, which we won't use in this class: $p_{X_{1}}\left(x_{1}\right)$
- $p\left(X_{1}\right)$ using a capital letter X_{1} is a function, specifically, this is the probability mass function (pmf): the entire table of the probabilities $X_{1}=x_{1}$ for every possible x_{1}

Probability Mass Function

- The "Probability Mass Function" (pmf) of a random variable X is defined to be the function $\mathrm{P}(\mathrm{X}=$ value $)$, as a function of the different possible values.

Wikipedia: "The probability mass function of a fair die. All the numbers on the die have an equal chance of appearing on top when the die stops rolling."

Requirements for a Probability Mass Function

Axioms of Probability

1. $P(A) \geq 0$ for every event A
2. $1=P($ True $)$
3. $P(A \vee B)=P(A)+$

$$
P(B)-P(A \wedge B)
$$

Requirements for a pmf

1. $P(X=x) \geq 0$ for every x
2. $1=\sum_{x} P(X=x)$
3. $P\left(\left(X=x_{1}\right) \vee\left(X=x_{2}\right)\right)=$ $P\left(X=x_{1}\right)+P\left(X=x_{2}\right)$

Notice: the last one assumes that
$X=x_{1}$ and $X=x_{2}$ are mutually exclusive events.

Random Variables

- Random Variables
- RV = function from outcomes to numbers
- Notation
- Probability Mass Function (pmf)
- Expected Value
- Domain of a Random Variable
- Domain Type: Categorical vs. Numerical
- Domain Size: Finite vs. Countably Infinite vs. Uncountably Infinite
- Joint, Marginal, and Conditional Random Variables
- Marginalization and Conditioning
- Law of Total Probability
- Random Vectors
- Jointly Random Class and Measurement Variables
- Functions of Random Variables
- Probability Mass Function
- Expectation

Expected Value

Expected Value of a random variable = the average value, averaged over an infinite number of independent trials

Expected Value

Example: $\mathrm{D}=$ number of pips showing on a die

Expected Value of a random variable = the average value, averaged over an infinite number of independent trials

$$
\begin{gathered}
E[D]=\lim _{n \rightarrow \infty} \frac{1}{n}(1 \times(\# \text { times } D=1)+\cdots+6 \times(\# \text { times } D=6)) \\
=\lim _{n \rightarrow \infty} \frac{1}{n}(1 \times(n / 6)+\cdots+6 \times(n / 6))=3.5
\end{gathered}
$$

Expected Value

Expected Value of a random variable = the average value, averaged over an infinite number of independent trials
$=\operatorname{sum}\{$ value $* P($ variable=value) $\}$

Center of Mass (from physics)

Center of Mass
$=\operatorname{sum}\{$ position * Mass(position) \}

Expected Value = Center of Probability "Mass"

Expected Value of a random variable = the average value, averaged over an infinite number of independent trials
$=\operatorname{sum}\{$ value $* P($ variable=value $)$ \}

Wikipedia: "The mass of probability distribution is balanced at the expected value."

Probability Mass Function

- The "Probability Mass Function" (pmf) of a random variable X is defined to be the function $\mathrm{P}(\mathrm{X}=$ value $)$, as a function of the different possible values.
- Why it's useful: expected value = center of mass.

Wikipedia: "The probability mass function of a fair die. All the numbers on the die have an equal chance of appearing on top when the die stops rolling." The expected value is 3.5.

Random Variables

- Random Variables
- RV = function from outcomes to numbers
- Notation
- Probability Mass Function (pmf)
- Expected Value
- Domain of a Random Variable
- Domain Type: Categorical vs. Numerical
- Domain Size: Finite vs. Countably Infinite vs. Uncountably Infinite
- Joint, Marginal, and Conditional Random Variables
- Marginalization and Conditioning
- Law of Total Probability
- Random Vectors
- Jointly Random Class and Measurement Variables
- Functions of Random Variables
- Probability Mass Function
- Expectation

Domain of a Random Variable

The "Domain" of a Random Variable is the set of its possible values.

Domain of a Random Variable

- The domain can be numerical. For example:
- The number of pips showing on a die
- The age, in years, of a person that you choose at random off the street
- The number of days of sunshine in the month of March
- The minimum temperature tonight, in degrees Celsius
- The domain can also be categorical. For example:
- The color chosen by a spinner in the game of Twister
- The color of the shirt worn by a person chosen at random
- The type of weather tomorrow: \{sunny, cloudy with no precipitation, raining, snowing, sleet \}

Expectation and PMF

- Expected Value is only well defined for numerical domains.

$$
E[X]=\text { sum value } * P(X=\text { value })
$$

- pmf is well defined even for categorical domains.

Example: $\mathrm{X}=$ color shown on the spinner
$P(X=r e d)=(1 / 4)$
$P(X=$ blue $)=(1 / 4)$
$P(X=$ green $)=(1 / 4)$
$P(X=y e l l o w)=(1 / 4)$

Size of the Domain = \# Different Possible Values

- Domain of a random variable can be finite.

Example: $D=$ value, in dollars, of the next coin you find. \quad Domain $=\{1.00$, $0.50,0.25,0.10,0.05,0.01\}$, Size of the domain=6.

- Domain of a random variable can be "countably infinite."

Example: $\mathrm{X}=$ number of words in the next Game of Thrones novel. No matter how large you guess, it's possible it might be even longer, so we say the domain is infinite.
Requirement: $1=\operatorname{sum} \mathrm{P}(\mathrm{X}=\mathrm{x})$

- Domain of a random variable can be "uncountably infinite."

Example: a variable whose value can be ANY REAL NUMBER.
How we deal with this: $P(X=x)$ is ill-defined, but $P(a \leq X<b)$ is well-defined.

Expectation and PMF

- Expected value can be calculated from PMF only if the domain is finite, or countably infinite.

$$
E[X]=\text { sum value } * P(X=\text { value })
$$

Example: $\mathrm{X}=$ number of words in the next GoT novel.
$E[X]=P(X=1)+2 * P(X=2)+3^{*} P(X=3)+\ldots$

If you know $P(X=x)$ for all x (even if "all x " is an infinite
 set), then you can compute this expectation by solving the infinite series.

Random Variables

- Random Variables
- RV = function from outcomes to numbers
- Notation
- Probability Mass Function (pmf)
- Expected Value
- Domain of a Random Variable
- Domain Type: Categorical vs. Numerical
- Domain Size: Finite vs. Countably Infinite vs. Uncountably Infinite
- Joint, Marginal, and Conditional Random Variables
- Marginalization and Conditioning
- Law of Total Probability
- Random Vectors
- Jointly Random Class and Measurement Variables
- Functions of Random Variables
- Probability Mass Function
- Expectation

Joint probability mass function (joint pmf)

- $p\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{N}=x_{N}\right)$ refers to the probability of a particular outcome (the outcome $X_{1}=x_{1}, \ldots, X_{N}=x_{N}$).
- Shorthand: $\mathrm{p}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{N}}\right)$
- Subscript notation, which we won't use in this class: $p_{X_{1}, \ldots, X_{N}}\left(x_{1}, \ldots, x_{N}\right)$
- $p\left(X_{1}, X_{2}, \ldots, X_{N}\right)$ refers to the entire joint probability mass function, i.e., the entire table, listing all possible outcomes, and the probability of each
- $P(A)$ (capital P) refers to the probability of an event

Joint Random Variables

- For example, suppose $W=$ pips showing on the red die, X
 $=$ pips on purple die, $\mathrm{Y}=$ green, $\mathrm{Z}=$ blue.
- The following table shows $p(W, X, Y, Z)$, their joint pmf.

w	x	y	z	$P(W=w, X=x, Y=y, Z=z)$
1	1	1	1	$1 / 1296$
1	1	1	2	$1 / 1296$
\ldots		\ldots		\ldots
6	6	6	4	$1 / 1296$
6	6	6	5	$1 / 1296$
6	6	6	6	$1 / 1296$

Marginalization

$$
P(X=x)=\sum_{w} \sum_{y} \sum_{z} P(W=w, X=x, Y=y, Z=z)
$$

Example: if $\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}$ are four independent dice, then the marginal is just what you would expect:

$$
P(X=x)=\sum_{w=1}^{6} \sum_{y=1}^{6} \sum_{z=1}^{6}\left(\frac{1}{1296}\right)=\frac{1}{6}
$$

Conditioning

$$
P(X=x \mid Y=y)=\frac{P(X=x, Y=y)}{P(Y=y)}
$$

Example: if $\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}$ are four independent dice, then the marginal is just what you would expect:

$$
P(X=3 \mid Z=3)=\frac{P(X=3, Z=3)}{P(Z=3)}=\frac{1 / 36}{1 / 6}=\frac{1}{6}
$$

Conditioning

Here's a surprise. One of the most useful things you can do with a conditional probability is to turn it around, to calculate the joint pmf:

$$
P(X=x, Y=y)=P(X=x \mid Y=y) P(Y=y)
$$

Conditioning+Marginalization

Here's a surprise. One of the most useful things you can do with a conditional probability is to turn it around, to calculate the joint pmf:

$$
P(X=x, Y=y)=P(X=x \mid Y=y) P(Y=y)
$$

Remember the law for marginalization:

$$
P(X=x)=\sum_{y} P(X=x, Y=y)
$$

Conditioning+Marginalization= Law of Total Probability

Here's a surprise. One of the most useful things you can do with a conditional probability is to turn it around, to calculate the joint pmf:

$$
P(X=x, Y=y)=P(X=x \mid Y=y) P(Y=y)
$$

Remember the law for marginalization:

$$
P(X=x)=\sum_{y} P(X=x, Y=y)
$$

Putting those two things together:

$$
P(X=x)=\sum_{y} P(X=x \mid Y=y) P(Y=y)
$$

Law of Total Probability

This is called the "Law of Total Probability:"

$$
P(X=x)=\sum_{y} P(X=x \mid Y=y) P(Y=y)
$$

Law of Total Probability

Example:

- Billy Bones said that there is treasure in a treasure chest on this island.
- What is P (TreasureChest $=$ full $)$?
- Two possibilities:

1. Bones lied.

$$
P(\text { TreasureChest }=\text { full } \mid \text { Bones lied })=0.0
$$

2. Bones told the truth.

$$
P(\text { TreasureChest }=\text { full } \mid \text { Bones told } \text { truth })=0.7
$$

- Law of Total Probability:

$$
\begin{aligned}
& P(\text { TreasureChest }=\text { full }) \\
& =0.0 \times P(\text { Bones lied })+0.7 \times P(\text { Bones true })
\end{aligned}
$$

Random Variables

- Random Variables
- RV = function from outcomes to numbers
- Notation
- Probability Mass Function (pmf)
- Expected Value
- Domain of a Random Variable
- Domain Type: Categorical vs. Numerical
- Domain Size: Finite vs. Countably Infinite vs. Uncountably Infinite
- Joint, Marginal, and Conditional Random Variables
- Marginalization and Conditioning
- Law of Total Probability
- Random Vectors
- Jointly Random Class and Measurement Variables
- Functions of Random Variables
- Probability Mass Function
- Expectation

Random Vector

A Random Vector, \vec{X}, is a vector of joint random ${ }^{\frac{B}{2}}$ variables $\vec{X}=\left[X_{1}, X_{2}, \ldots, X_{n}\right]$.

The pmf of the random vector is defined to be the
 Joint pmf of all of its component variables:

$$
P(\vec{X}=\vec{x})=P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right)
$$

Jointly Random Class and Measurement Variables

The most important case of joint random variables for Al: jointly random categorical (class) and numerical (measurement) variables.

For example, $Y=$ type of fruit, $X=$ weight of the fruit.

x	y	$\mathrm{P}(\mathrm{X}=\mathrm{x}, \mathrm{Y}=\mathrm{y})$
10 g	Grape	0.68
10 g	Apple	0.06
100 g	Grape	0.02
100 A	Apple	0.34

We'll talk A LOT more about this in a few lectures (Bayesian inference).

Random Variables

- Random Variables
- RV = function from outcomes to numbers
- Notation
- Probability Mass Function (pmf)
- Expected Value
- Domain of a Random Variable
- Domain Type: Categorical vs. Numerical
- Domain Size: Finite vs. Countably Infinite vs. Uncountably Infinite
- Joint, Marginal, and Conditional Random Variables
- Marginalization and Conditioning
- Law of Total Probability
- Random Vectors
- Jointly Random Class and Measurement Variables
- Functions of Random Variables
- Probability Mass Function
- Expectation

Functions of Random Variables: PMF

The PMF for a function of random variables is computed the same way as any other marginal: by adding up the component probabilities.
Example: $S=W+X+Y+Z$

w	x	y	z	S	$P(W=w, X=x, Y=y, Z=z, S=s)$
1	1	1	1	4	$1 / 1296$
1	1	1	2	5	$1 / 1296$
1	1	2	1	5	$1 / 1296$
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots

Functions of Random Variables: PMF

w	\mathbf{x}	y	\mathbf{z}	s	$\mathrm{P}(\mathrm{W}=\mathrm{w}, \mathrm{X}=\mathrm{x}, \mathrm{Y}=\mathrm{y}, \mathrm{Z}=\mathrm{z}, \mathrm{S}=\mathrm{s})$
1	1	1	1	4	$1 / 1296$
1	1	1	2	5	$1 / 1296$
1	1	2	1	5	$1 / 1296$
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots

- There is only one outcome for which $S=4$, so

$$
P(S=4)=\frac{1}{1296}
$$

- There are four different outcomes for which $\mathrm{S}=5$, so

$$
P(S=5)=\frac{1}{1296}+\frac{1}{1296}+\frac{1}{1296}+\frac{1}{1296}=\frac{4}{1296}
$$

Functions of Random Variables: Expectation

It's important to know that, for any function $\mathrm{g}(\mathrm{X}), E[g(X)] \neq g(E[X])$

$$
\begin{aligned}
& E[g(X)]=\sum_{g} g * P(g(X)=g) \\
& g(E[X])=g\left(\sum_{x} x * P(X=x)\right)
\end{aligned}
$$

Those are not the same thing!!

Functions of Random Variables: Expectation

Example: $E\left[X^{2}\right] \neq E[X]^{2}$

$$
\begin{gathered}
E\left[X^{2}\right]=1^{2}\left(\frac{1}{6}\right)+2^{2}\left(\frac{1}{6}\right)+\cdots+6^{2}\left(\frac{1}{6}\right)=15.1667 \\
E[X]^{2}=\left(1\left(\frac{1}{6}\right)+2\left(\frac{1}{6}\right)+\cdots+6\left(\frac{1}{6}\right)\right)^{2}=12.25
\end{gathered}
$$

Those are not the same thing!!

Random Variables

- Random Variables
- RV = function from outcomes to numbers
- Notation
- Probability Mass Function (pmf)
- Expected Value
- Domain of a Random Variable
- Domain Type: Categorical vs. Numerical
- Domain Size: Finite vs. Countably Infinite vs. Uncountably Infinite
- Joint, Marginal, and Conditional Random Variables
- Marginalization and Conditioning
- Law of Total Probability
- Random Vectors
- Jointly Random Class and Measurement Variables
- Functions of Random Variables
- Probability Mass Function
- Expectation

"ABOUT THIS EXPERIMENT FOR GENERATING RANDOM NUMBERS - EACH TME YOU DO IT, IT CONES OUT DIFFERENT."

