CS 440/ECE 448 Lecture 10: Probability

Slides by Svetlana Lazebnik, 9/2016
Modified by Mark Hasegawa-Johnson, 2/2019

Outline

- Motivation: Why use probability?
- Laziness, Ignorance, and Randomness
- Rational Bettor Theorem
- Review of Key Concepts
- Outcomes, Events
- Random Variables; probability mass function (pmf)
- Jointly random variables: Joint, Marginal, and Conditional pmf
- Independent vs. Conditionally Independent events

Outline

- Motivation: Why use probability?
- Laziness, Ignorance, and Randomness
- Rational Bettor Theorem
- Review of Key Concepts
- Outcomes, Events
- Joint, Marginal, and Conditional
- Independence and Conditional Independence

Motivation: Planning under uncertainty

- Recall: representation for planning
- States are specified as conjunctions of predicates
- Start state: At(Me, UIUC) ^ TravelTime(35min,UIUC,CMI) ^ Now(12:45)
- Goal state: At(Me, CMI, 15:30)
- Actions are described in terms of preconditions and effects:
- Go(t, src, dst)
- Precond: At(Me,src) ^ TravelTime(dt,src,dst) ^Now($\leq t)$
- Effect: At(Me, dst, t+dt)

Motivation: Planning under uncertainty

- Let action $G o(t)=$ leave for airport at time t
- Will Go(t) succeed, i.e., get me to the airport in time for the flight?
- Problems:
- Partial observability (road state, other drivers' plans, etc.)
- Noisy sensors (traffic reports)
- Uncertainty in action outcomes (flat tire, etc.)
- Complexity of modeling and predicting traffic
- Hence a purely logical approach either
- Risks falsehood: "Go(14:30) will get me there on time," or
- Leads to conclusions that are too weak for decision making:
- Go(14:30) will get me there on time if there's no accident, it doesn't rain, my tires remain intact, etc., etc.
- Go(04:30) will get me there on time

Probability

Probabilistic assertions summarize effects of

- Laziness: reluctance to enumerate exceptions, qualifications, etc. --- possibly a deterministic and known environment, but with computational complexity limitations
- Ignorance: lack of explicit theories, relevant facts, initial conditions, etc. --environment that is unknown (we don't know the transition function) or partially observable (we can't measure the current state)
- Intrinsically random phenomena - environment is stochastic, i.e., given a particular (action, current state), the (next state) is drawn at random with a particular probability distribution

Outline

- Motivation: Why use probability?
- Laziness, Ignorance, and Randomness
- Rational Bettor Theorem
- Review of Key Concepts
- Outcomes, Events
- Joint, Marginal, and Conditional
- Independence and Conditional Independence

Making decisions under uncertainty

- Suppose the agent believes the following:
$\mathrm{P}($ Go(deadline-25) gets me there on time $)=0.04$
$P($ Go(deadline-90) gets me there on time) $=0.70$
$P($ Go(deadline-120) gets me there on time) $=0.95$
$P($ Go(deadline-180) gets me there on time) $=0.9999$
- Which action should the agent choose?
- Depends on preferences for missing flight vs. time spent waiting
- Encapsulated by a utility function
- The agent should choose the action that maximizes the expected utility:
$\operatorname{Prob}(A$ succeeds $) \times$ Utility $(A$ succeeds $)+\operatorname{Prob}(A$ fails $) \times$ Utility $(A$ fails $)$

Making decisions under uncertainty

- More generally: the expected utility of an action is defined as:

$$
\mathrm{E}[\text { Utility } \mid \text { Action }]=\sum_{\text {outcomes }} P(\text { outcome } \mid \text { action)Utility(outcome) }
$$

- Utility theory is used to represent and infer preferences
- Decision theory = probability theory + utility theory

Where do probabilities come from?

- Frequentism
- Probabilities are relative frequencies
- For example, if we toss a coin many times, P (heads) is the proportion of the time the coin will come up heads
- But what if we're dealing with an event that has never happened before?
- What is the probability that the Earth will warm by 0.15 degrees this year?
- Subjectivism
- Probabilities are degrees of belief
- But then, how do we assign belief values to statements?
- In practice: models. Represent an unknown event as a series of betterknown events
- A theoretical problem with Subjectivism:

Why do "beliefs" need to follow the laws of probability?

The Rational Bettor Theorem

- Why should a rational agent hold beliefs that are consistent with axioms of probability?
- For example, $P(A)+P(\neg A)=1$
- Suppose an agent believes that $P(A)=0.7$, and $P(\neg A)=0.7$
- Offer the following bet: if A occurs, agent wins $\$ 100$. If A doesn't occur, agent loses $\$ 105$. Agent believes $\mathrm{P}(\mathrm{A})>100 /(100+105)$, so agent accepts the bet.
- Offer another bet: if \rightarrow A occurs, agent wins $\$ 100$. If \neg A doesn't occur, agent loses $\$ 105$. Agent believes $\mathrm{P}(\neg \mathrm{A})>100 /(100+105)$, so agent accepts the bet. Oops...
- Theorem: An agent who holds beliefs inconsistent with axioms of probability can be convinced to accept a combination of bets that is guaranteed to lose them money

Are humans "rational bettors"?

- Humans are pretty good at estimating some probabilities, and pretty bad at estimating others. What might cause humans to mis-estimate the probability of an event?
- What are some of the ways in which a "rational bettor" might take advantage of humans who mis-estimate probabilities?

Outline

- Motivation: Why use probability?
- Laziness, Ignorance, and Randomness
- Rational Bettor Theorem
- Review of Key Concepts
- Outcomes, Events
- Joint, Marginal, and Conditional
- Independence and Conditional Independence

Events

- Probabilistic statements are defined over events, or sets of world states
- A = "It is raining"
- B = "The weather is either cloudy or snowy"
- C = "I roll two dice, and the result is 11"
- D = "My car is going between 30 and 50 miles per hour"
- An EVENT is a SET of OUTCOMES
- $B=\{$ outcomes : cloudy OR snowy \}
- C = \{ outcome tuples (d1,d2) such that d1+d2 = 11\}
- Notation: $\mathrm{P}(\mathrm{A})$ is the probability of the set of world states (outcomes) in which proposition A holds

Kolmogorov's axioms of probability

- For any propositions (events) A, B
- $0 \leq P(A) \leq 1$
- $P($ True $)=1$ and $P($ False $)=0$
- $P(A \vee B)=P(A)+P(B)-P(A \wedge B)$
- Subtraction accounts for double-counting
- Based on these axioms, what is $\mathrm{P}(\neg \mathrm{A})$?

- These axioms are sufficient to completely specify probability theory for discrete random variables
- For continuous variables, need density functions

Outcomes = Atomic events

- OUTCOME or ATOMIC EVENT: is a complete specification of the state of the world, or a complete assignment of domain values to all random variables
- Atomic events are mutually exclusive and exhaustive
- E.g., if the world consists of only two Boolean variables Cavity and Toothache, then there are four outcomes:

Outcome \#1: っCavity $\wedge \rightarrow$ Toothache
Outcome \#2: -Cavity ^ Toothache
Outcome \#3: Cavity ^ \neg Toothache
Outcome \#4: Cavity ^ Toothache

Outline

- Motivation: Why use probability?
- Laziness, Ignorance, and Randomness
- Rational Bettor Theorem
- Review of Key Concepts
- Joint, Marginal, and Conditional
- Independence and Conditional Independence

Joint probability distributions

- A joint distribution is an assignment of probabilities to every possible atomic event

Atomic event	P
\neg Cavity $\wedge \neg$ Toothache	0.8
Cavity \wedge Toothache	0.1
Cavity $\wedge \neg$ Toothache	0.05
Cavity \wedge Toothache	0.05

- Why does it follow from the axioms of probability that the probabilities of all possible atomic events must sum to 1 ?

Joint probability distributions

- $P\left(X_{1}, X_{2}, \ldots, X_{N}\right)$ refers to the probability of a particular outcome (the outcome in which the events X_{1}, X_{2}, \ldots, and X_{N} all occur at the same time)
- $P\left(X_{1}, X_{2}, \ldots, X_{N}\right)$ can also refer to the complete TABLE, with 2^{N} entries, listing the probabilities of X_{1} either occurring or not occurring, X_{2} either occurring or not occurring, and so on.
- This ambiguity, between the probability VALUE and the probability TABLE, will be eliminated next lecture, when we introduce random variables.

Joint probability distributions

- Suppose we have a joint distribution of N random variables, each of which takes values from a domain of size D :
- What is the size of the probability table?
- Impossible to write out completely for all but the smallest distributions

Marginal distributions

- The marginal distribution of event X_{k} is just its probability, $P\left(X_{k}\right)$.
- To talk about marginal distributions only makes sense if you're not given $\mathrm{P}\left(\mathrm{X}_{\mathrm{k}}\right)$. Instead, you're given the joint distribution, $P\left(X_{1}, X_{2}, \ldots, X_{N}\right)$, and from it, you need to calculate $P\left(X_{k}\right)$.
- You calculate $P\left(X_{k}\right)$ from $P\left(X_{1}, X_{2}, \ldots, X_{N}\right)$ by marginalizing. $P\left(X_{k}\right)$ is called the marginal distribution of event X_{k}.

Marginal probability distributions

- From the joint distribution $p(X, Y)$ we can find the marginal distributions $p(X)$ and $p(Y)$

P(Cavity, Toothache)	
\neg Cavity $\wedge \neg$ Toothache	0.8
Cavity \wedge Toothache	0.1
Cavity $\wedge \neg$ Toothache	0.05
Cavity \wedge Toothache	0.05

\mathbf{P} (Cavity)	
\neg Cavity	$?$
Cavity	$?$

\mathbf{P} (Toothache)	
\neg Toothache	$?$
Toochache	$?$

Joint -> Marginal by adding the outcomes

- From the joint distribution $p(X, Y)$ we can find the marginal distributions $p(X)$ and $p(Y)$
- To find $p(X=x)$, sum the probabilities of all atomic events where $X=x$:

$$
P(X=1)=P(X=1, Y=1)+P(X=1, Y=2)+P(X=1, Y=3)+\cdots
$$

- This is called marginalization (we are marginalizing out all the variables except X)

Conditional distributions

- The conditional probability of event X_{k}, given event X_{j}, is the probability that X_{k} has occurred if you already know that X_{j} has occurred.
- The conditional distribution is written $P\left(X_{k} \mid X_{j}\right)$.
- The probability that both X_{j} and X_{k} occurred was, originally, $P\left(X_{j}, X_{k}\right)$.
- But now you know that X_{j} has occurred. So all of the other events are no longer possible.
- Other events: probability used to be $\mathrm{P}\left(\neg \mathrm{X}_{\mathrm{j}}\right)$, but now their probability is 0 .
- Events in which X_{j} occurred: probability used to be $P\left(X_{j}\right)$, but now their probability is 1.
- So we need to renormalize: the probability that both X_{j} and X_{k} occurred, GIVEN that X_{j} has occurred, is $P\left(X_{k} \mid X_{j}\right)=P\left(X_{j}, X_{k}\right) / P\left(X_{j}\right)$.

Conditional Probability: renormalize (divide)

- Probability of cavity given toothache:
$\mathrm{P}($ Cavity $=$ true \mid Toothache $=$ true $)$
- For any two events A and $\mathrm{B}, \quad P(A \mid B)=\frac{P(A \wedge B)}{P(B)}=\frac{P(A, B)}{P(B)}$

The set of all possible events used to be this rectangle, so the whole rectangle used to have probability=1.

Now that we know B has occurred, the set of all possible events = the set of events in which B occurred. So we renormalize to make the area of this circle $=1$.

Conditional probability

P(Cavity, Toothache)	
\neg Cavity $\wedge \neg$ Toothache	0.8
Cavity \wedge Toothache	0.1
Cavity $\wedge \neg$ Toothache	0.05
Cavity \wedge Toothache	0.05

\mathbf{P} (Cavity)	
\neg Cavity	0.9
Cavity	0.1

\mathbf{P} (Toothache)	
\neg Toothache	0.85
Toochache	0.15

- What is $\mathrm{p}($ Cavity $=$ true | Toothache = false) ?
$p($ Cavity $\mid-$ Toothache $)=0.05 / 0.85=1 / 17$
- What is $\mathrm{p}($ Cavity $=$ false | Toothache $=$ true $)$?
$p(-$ Cavity \mid Toothache $)=0.1 / 0.15=2 / 3$

Conditional distributions

- A conditional distribution is a distribution over the values of one variable given fixed values of other variables

P(Cavity, Toothache)	
\neg Cavity $\wedge \neg$ Toothache	0.8
Cavity \wedge Toothache	0.1
Cavity $\wedge \neg$ Toothache	0.05
Cavity \wedge Toothache	0.05

$\mathbf{P}($ Cavity \| Toothache $=$ true $)$	
-Cavity	0.667
Cavity	0.333

$\mathbf{P}($ Cavity \mid Toothache $=$ false $)$	
\neg Cavity	0.941
Cavity	0.059

\mathbf{P} (Toothache \| Cavity = true)	
\neg Toothache	0.5
Toochache	0.5

\mathbf{P} (Toothache \| Cavity = false)	
\neg Toothache	0.889
Toochache	0.111

Normalization trick

- To get the whole conditional distribution $p(X \mid Y=y)$ at once, select all entries in the joint distribution table matching $Y=y$ and renormalize them to sum to one

P(Cavity, Toothache)	
\neg Cavity $\wedge \neg$ Toothache	0.8
\neg Cavity \wedge Toothache	0.1
Cavity $\wedge \neg$ Toothache	0.05
Cavity \wedge Toothache	0.05

$|$| Toothache, Cavity $=$ false | |
| :--- | :--- |
| \neg Toothache | 0.8 |
| Toochache | 0.1 |
| \mathbf{P} (Toothache \mid Cavity $=$ false) | |
| \neg Toothache | 0.889 |
| Toochache | 0.111 |

Normalization trick

- To get the whole conditional distribution $p(X \mid Y=y)$ at once, select all entries in the joint distribution table matching $Y=y$ and renormalize them to sum to one
- Why does it work?

$$
\mathrm{P}(\mathrm{x} \mid \mathrm{y})=\quad \frac{P(x, y)}{\sum_{x^{\prime}} P\left(x^{\prime}, y\right)}=\frac{P(x, y)}{P(y)} \quad \text { by marginalization }
$$

Product rule

- Definition of conditional probability: $\quad P(A \mid B)=\frac{P(A, B)}{P(B)}$
- Sometimes we have the conditional probability and want to obtain the joint:

$$
P(A, B)=P(A \mid B) P(B)=P(B \mid A) P(A)
$$

Product rule

- Definition of conditional probability: $\quad P(A \mid B)=\frac{P(A, B)}{P(B)}$
- Sometimes we have the conditional probability and want to obtain the joint:

$$
P(A, B)=P(A \mid B) P(B)=P(B \mid A) P(A)
$$

- The chain rule:

$$
\begin{aligned}
P\left(A_{1}, \ldots, A_{n}\right) & =P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right) P\left(A_{3} \mid A_{1}, A_{2}\right) \ldots P\left(A_{n} \mid A_{1}, \ldots, A_{n-1}\right) \\
& =\prod_{i=1}^{n} P\left(A_{i} \mid A_{1}, \ldots, A_{i-1}\right)
\end{aligned}
$$

Product Rule Example: The Birthday problem

- We have a set of n people. What is the probability that two of them share the same birthday?
- Easier to calculate the probability that n people do not share the same birthday
$P\left(B_{1}, \ldots, B_{n}\right.$ distinct $)$
$=P\left(B_{1}, B_{2}\right.$ distinct $) P\left(B_{1}, B_{2}, B_{3}\right.$ distinct $\mid B_{1}, B_{2}$ distinct $) \ldots$ $P\left(B_{1}, B_{2}, \ldots B_{n}\right.$ distinct $\mid B_{1}, \ldots B_{n-1}$ distinct $)$

$$
P\left(B_{1}, \ldots, B_{n} \text { distinct }\right)=\left(\frac{364}{365}\right)\left(\frac{363}{365}\right) \ldots\left(\frac{365-n+1}{365}\right)
$$

The Birthday problem

- For 23 people, the probability of sharing a birthday is above 0.5!

http://en.wikipedia.org/wiki/Birthday problem

Outline

- Motivation: Why use probability?
- Laziness, Ignorance, and Randomness
- Rational Bettor Theorem
- Review of Key Concepts
- Outcomes, Events, and Random Variables
- Joint, Marginal, and Conditional
- Independence and Conditional Independence

Independence \neq Mutually Exclusive

- Two events A and B are independent if and only if $p(A \wedge B)=p(A, B)=p(A) p(B)$
- In other words, $p(A \mid B)=p(A)$ and $p(B \mid A)=p(B)$
- This is an important simplifying assumption for modeling, e.g., Toothache and Weather can be assumed to be independent?
- Are two mutually exclusive events independent?
- No! Quite the opposite! If you know A happened, then you know that B _didn't_ happen!! $p(A \vee B)=p(A)+p(B)$

Independence \neq Conditional Independence

- Two events A and B are independent if and only if $p(A \wedge B)=p(A) p(B)$
- In other words, $p(A \mid B)=p(A)$ and $p(B \mid A)=p(B)$
- This is an important simplifying assumption for modeling, e.g., Toothache and Weather can be assumed to be independent
- Conditional independence: A and B are conditionally independent given C iff
$p(A \wedge B \mid C)=p(A \mid C) p(B \mid C)$
- Equivalent:
$p(A \mid B, C)=p(A \mid C)$
- Equivalent:
$p(B \mid A, C)=p(B \mid C)$

Independence \neq Conditional Independence

Toothache: Boolean variable indicating whether the patient has a toothache

Cavity: Boolean variable indicating whether the patient has a cavity

By Aduran, CC-SA 3.0

Catch: whether the dentist's probe catches in the cavity

By Dozenist, CC-SA 3.0

These Events are not Independent

- If the patient has a toothache, then it's likely he has a cavity. Having a cavity makes it more likely that the probe will catch on something.

$$
P(\text { Catch } \mid \text { Toothache })>P(\text { Catch })
$$

- If the probe catches on something, then it's likely that the patient has a cavity. If he has a cavity, then he might also have a toothache.

$$
P(\text { Toothache } \mid \text { Catch })>P(\text { Toothache })
$$

- So Catch and Toothache are not independent
...but they are Conditionally Independent

- Here are some reasons the probe might not catch, despite having a cavity:
- The dentist might be really careless
- The cavity might be really small
- Those reasons have nothing to do with the toothache!

$$
P(\text { Catch } \mid \text { Cavity }, \text { Toothache })=P(\text { Catch } \mid \text { Cavity })
$$

- Catch and Toothache are conditionally independent given knowledge of Cavity

...but they are Conditionally Independent

These statements are all equivalent:

$$
\begin{gathered}
P(\text { Catch } \mid \text { Cavity }, \text { Toothache })=P(\text { Catch } \mid \text { Cavity }) \\
P(\text { Toothache } \mid \text { Cavity }, \text { Catch })=P(\text { Toothache } \mid \text { Cavity })
\end{gathered}
$$

$P($ Toothache,Catch \mid Cavity $)=P($ Toothache \mid Cavity $) P($ Catch \mid Cavity $)$
...and they all mean that Catch and Toothache are conditionally independent given knowledge of Cavity

Outline

- Motivation: Why use probability?
- Laziness, Ignorance, and Randomness
- Rational Bettor Theorem
- Review of Key Concepts
- Outcomes, Events
- Random Variables; probability mass function (pmf)
- Jointly random variables: Joint, Marginal, and Conditional pmf
- Independent vs. Conditionally Independent events

