CS440/ECE448 Lecture 8: Two-Player Games

Slides by Svetlana Lazebnik 9/2016
Modified by Mark Hasegawa-Johnson 2/2019
Why study games?

• Games are a traditional hallmark of intelligence
• Games are easy to formalize
• Games can be a good model of real-world competitive or cooperative activities
 • Military confrontations, negotiation, auctions, etc.
Game AI: Origins

• Minimax algorithm: Ernst Zermelo, 1912
• Chess playing with evaluation function, quiescence search, selective search: Claude Shannon, 1949 (paper)
• Alpha-beta search: John McCarthy, 1956
• Checkers program that learns its own evaluation function by playing against itself: Arthur Samuel, 1956
Types of game environments

<table>
<thead>
<tr>
<th></th>
<th>Deterministic</th>
<th>Stochastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfect information (fully observable)</td>
<td>Chess, checkers, go</td>
<td>Backgammon, monopoly</td>
</tr>
<tr>
<td>Imperfect information (partially observable)</td>
<td>Battleship</td>
<td>Scrabble, poker, bridge</td>
</tr>
</tbody>
</table>
Zero-sum Games
Alternating two-player zero-sum games

• Players take turns
• Each game outcome or **terminal state** has a **utility** for each player (e.g., 1 for win, 0 for loss)
• The sum of both players’ utilities is a constant
Games vs. single-agent search

• We don’t know how the opponent will act
 • The solution is not a fixed sequence of actions from start state to goal state, but a *strategy* or *policy* (a mapping from state to best move in that state)
Game tree

- A game of tic-tac-toe between two players, “max” and “min”
COMPLETE MAP OF OPTIMAL TIC-TAC-TOE MOVES

Your move is given by the position of the largest red symbol on the grid. When your opponent picks a move, zoom in on the region of the grid where they went. Repeat.

MAP FOR X:
A more abstract game tree

A two- ply game
Minimax Search
The rules of every game

• Every possible outcome has a value (or “utility”) for me.
• Zero-sum game: if the value to me is +V, then the value to my opponent is −V.
• Phrased another way:
 • My rational action, on each move, is to choose a move that will maximize the value of the outcome
 • My opponent’s rational action is to choose a move that will minimize the value of the outcome
• Call me “Max”
• Call my opponent “Min”
Game tree search

Minimax value of a node: the utility (for MAX) of being in the corresponding state, assuming perfect play on both sides

Minimax strategy: Choose the move that gives the best worst-case payoff
Computing the minimax value of a node

\[\text{Minimax}(\text{node}) = \]

- Utility(\text{node}) if \text{node} is terminal
- \(\max_{\text{action}} \) Minimax(Succ(\text{node}, \text{action})) if player = MAX
- \(\min_{\text{action}} \) Minimax(Succ(\text{node}, \text{action})) if player = MIN
Optimality of minimax

• The minimax strategy is optimal against an optimal opponent

• What if your opponent is suboptimal?
 • Your utility will ALWAYS BE HIGHER than if you were playing an optimal opponent!
 • A different strategy may work better for a sub-optimal opponent, but it will necessarily be worse against an optimal opponent

Example from D. Klein and P. Abbeel
More general games

- More than two players, non-zero-sum
- Utilities are now tuples
- Each player maximizes their own utility at their node
- Utilities get propagated (*backed up*) from children to parents
Alpha-Beta Pruning
Alpha-beta pruning

• It is possible to compute the exact minimax decision without expanding every node in the game tree
Alpha-beta pruning

• It is possible to compute the exact minimax decision without expanding every node in the game tree

```
MAX

MIN
```

```
3

3 12 8

≥3
```
Alpha-beta pruning

• It is possible to compute the exact minimax decision without expanding every node in the game tree
Alpha-beta pruning

- It is possible to compute the exact minimax decision without expanding every node in the game tree.
Alpha-beta pruning

- It is possible to compute the exact minimax decision without expanding every node in the game tree.
Alpha-beta pruning

• It is possible to compute the exact minimax decision without expanding every node in the game tree
Alpha-Beta Pruning

Key point that I find most counter-intuitive:

• MIN needs to calculate which move MAX will make.
• MAX would never choose a suboptimal move.
• So if MIN discovers that, at a particular node in the tree, she can make a move that’s REALLY REALLY GOOD for her...
• She can assume that MAX will never let her reach that node.
• ... and she can prune it away from the search, and never consider it again.
Alpha-beta pruning

- α is the value of the best choice for the MAX player found so far at any choice point above node n
- More precisely: α is the highest number that MAX knows how to force MIN to accept
- We want to compute the MIN-value at n
- As we loop over n’s children, the MIN-value decreases
- If it drops below α, MAX will never choose n, so we can ignore n’s remaining children
Alpha-beta pruning

• β is the value of the best choice for the **MIN** player found so far at any choice point above node n

 • More precisely: β is the lowest number that **MIN** know how to force **MAX** to accept

 • We want to compute the **MAX**-value at m

 • As we loop over m’s children, the **MAX**-value increases

 • If it rises above β, **MIN** will never choose m, so we can ignore m’s remaining children
Alpha-beta pruning

An unexpected result:

- \(\alpha \) is the highest number that MAX knows how to force MIN to accept.
- \(\beta \) is the lowest number that MIN know how to force MAX to accept.

So

\[
\alpha \leq \beta
\]
Alpha-beta pruning

Function \(action = \text{Alpha-Beta-Search}(node) \)

\[
v = \text{Min-Value}(node, -\infty, \infty)
\]

return the \(action \) from \(node \) with value \(v \)

\(\alpha: \) best alternative available to the Max player

\(\beta: \) best alternative available to the Min player

Function \(v = \text{Min-Value}(node, \alpha, \beta) \)

if Terminal(\(node \)) return Utility(\(node \))

\[
v = +\infty
\]

for each \(action \) from \(node \)

\[
v = \text{Min}(v, \text{Max-Value}(\text{Succ}(node, action), \alpha, \beta))
\]

if \(v \leq \alpha \) return \(v \)

\[
\beta = \text{Min}(\beta, v)
\]
end for
return \(v \)
Alpha-beta pruning

Function \(action = \text{Alpha-Beta-Search}(node) \)

\[
v = \text{Max-Value}(node, -\infty, \infty)
\]

return the \(action \) from \(node \) with value \(v \)

\(\alpha: \) best alternative available to the Max player

\(\beta: \) best alternative available to the Min player

Function \(v = \text{Max-Value}(node, \alpha, \beta) \)

if Terminal(\(node \)) return Utility(\(node \))

\(v = -\infty \)

for each \(action \) from \(node \)

\[
v = \text{Max}(v, \text{Min-Value}(\text{Succ}(node, action), \alpha, \beta))
\]

if \(v \geq \beta \) return \(v \)

\(\alpha = \text{Max}(\alpha, v) \)

end for

return \(v \)
Alpha-beta pruning

- Pruning does not affect final result
- Amount of pruning depends on move ordering
 - Should start with the “best” moves (highest-value for MAX or lowest-value for MIN)
 - For chess, can try captures first, then threats, then forward moves, then backward moves
 - Can also try to remember “killer moves” from other branches of the tree
- With perfect ordering, the time to find the best move is reduced to $O(b^{m/2})$ from $O(b^m)$
 - Depth of search is effectively doubled
Limited-Horizon Computation
Games vs. single-agent search

• We don’t know how the opponent will act
 • The solution is not a fixed sequence of actions from start state to goal state, but a strategy or policy (a mapping from state to best move in that state)
Games vs. single-agent search

• We don’t know how the opponent will act
 • The solution is not a fixed sequence of actions from start state to goal state, but a strategy or policy (a mapping from state to best move in that state)

• Efficiency is critical to playing well
 • The time to make a move is limited
 • The branching factor, search depth, and number of terminal configurations are huge
 • In chess, branching factor ≈ 35 and depth ≈ 100, giving a search tree of 10^{154} nodes
 • Number of atoms in the observable universe ≈ 10^{80}
 • This rules out searching all the way to the end of the game
Evaluation function

- Cut off search at a certain depth and compute the value of an **evaluation function** for a state instead of its minimax value
 - The evaluation function may be thought of as the probability of winning from a given state or the *expected value* of that state

- A common evaluation function is a weighted sum of *features*:
 \[
 Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)
 \]

 - For chess, \(w_k \) may be the **material value** of a piece (pawn = 1, knight = 3, rook = 5, queen = 9) and \(f_k(s) \) may be the advantage in terms of that piece

- Evaluation functions may be *learned* from game databases or by having the program play many games against itself
Cutting off search

• **Horizon effect:** you may incorrectly estimate the value of a state by overlooking an event that is just beyond the depth limit
 • For example, a damaging move by the opponent that can be delayed but not avoided

• Possible remedies
 • **Quiescence search:** do not cut off search at positions that are unstable – for example, are you about to lose an important piece?
 • **Singular extension:** a strong move that should be tried when the normal depth limit is reached
Advanced techniques

• Transposition table to store previously expanded states
• Forward pruning to avoid considering all possible moves
• Lookup tables for opening moves and endgames
Chess playing systems

• Baseline system: 200 million node evaluations per move (3 min), minimax with a decent evaluation function and quiescence search
 • 5-ply ≈ human novice
• Add alpha-beta pruning
 • 10-ply ≈ typical PC, experienced player
• Deep Blue: 30 billion evaluations per move, singular extensions, evaluation function with 8000 features, large databases of opening and endgame moves
 • 14-ply ≈ Garry Kasparov
• More recent state of the art (Hydra, ca. 2006): 36 billion evaluations per second, advanced pruning techniques
 • 18-ply ≈ better than any human alive?
Summary

- A zero-sum game can be expressed as a minimax tree
- Alpha-beta pruning finds the correct solution. In the best case, it has half the exponent of minimax (can search twice as deeply with a given computational complexity).
- Limited-horizon search is always necessary (you can’t search to the end of the game), and always suboptimal.
 - Estimate your utility, at the end of your horizon, using some type of learned utility function
 - Quiescence search: don’t cut off the search in an unstable position (need some way to measure “stability”)
 - Singular extension: have one or two “super-moves” that you can test at the end of your horizon