
CS440/ECE448 Lecture 8:
Two-Player Games

Slides by Svetlana Lazebnik 9/2016
Modified by Mark Hasegawa-Johnson 2/2019

Why study games?
• Games are a traditional hallmark of intelligence
• Games are easy to formalize
• Games can be a good model of real-world competitive

or cooperative activities
• Military confrontations, negotiation, auctions, etc.

Game AI: Origins

• Minimax algorithm: Ernst Zermelo, 1912
• Chess playing with evaluation function, quiescence

search, selective search:
Claude Shannon, 1949 (paper)
• Alpha-beta search: John McCarthy, 1956
• Checkers program that learns its own evaluation

function by playing against itself: Arthur Samuel,
1956

http://archive.computerhistory.org/projects/chess/related_materials/text/2-0%20and%202-1.Programming_a_computer_for_playing_chess.shannon/2-0%20and%202-1.Programming_a_computer_for_playing_chess.shannon.062303002.pdf

Types of game environments
Deterministic Stochastic

Perfect
information
(fully observable)
Imperfect
information
(partially
observable)

Chess, checkers,
go

Backgammon,
monopoly

Battleship Scrabble,
poker,
bridge

Zero-sum Games

Alternating two-player zero-sum games

• Players take turns
• Each game outcome or terminal state has a utility for each player

(e.g., 1 for win, 0 for loss)
• The sum of both players’ utilities is a constant

Games vs. single-agent search
• We don’t know how the opponent will act

• The solution is not a fixed sequence of actions from start state
to goal state, but a strategy or policy (a mapping from state to
best move in that state)

Game tree
• A game of tic-tac-toe between two players, “max” and “min”

http://xkcd.com/832/

http://xkcd.com/832/

A more abstract game tree

Terminal utilities (for MAX)

A two-ply game

Minimax Search

The rules of every game

• Every possible outcome has a value (or “utility”) for me.
• Zero-sum game: if the value to me is +V, then the value to my

opponent is –V.
• Phrased another way:

• My rational action, on each move, is to choose a move that will
maximize the value of the outcome

• My opponent’s rational action is to choose a move that will minimize
the value of the outcome

• Call me “Max”
• Call my opponent “Min”

https://www.bing.com/images/search?q=cartoon+character+max&qpvt=cartoon+character+max
https://www.bing.com/images/search?q=cartoon+character+minnie&id=7B8D2A79A0325AB6D14097C87939B5864C09247F&FORM=IARRTH

Game tree search

• Minimax value of a node: the utility (for MAX) of being in the
corresponding state, assuming perfect play on both sides

• Minimax strategy: Choose the move that gives the best worst-case payoff

3 2 2

3

Computing the minimax value of a node

• Minimax(node) =
§ Utility(node) if node is terminal
§ maxaction Minimax(Succ(node, action)) if player = MAX
§ minaction Minimax(Succ(node, action)) if player = MIN

3 2 2

3

Optimality of minimax

• The minimax strategy is optimal against
an optimal opponent

• What if your opponent is suboptimal?
• Your utility will ALWAYS BE HIGHER than if

you were playing an optimal opponent!
• A different strategy may work better for a

sub-optimal opponent, but it will
necessarily be worse against an optimal
opponent

11

Example from D. Klein and P. Abbeel

More general games

• More than two players, non-zero-sum
• Utilities are now tuples
• Each player maximizes their own utility at their node
• Utilities get propagated (backed up) from children to parents

4,3,2 7,4,1

4,3,2

1,5,2 7,7,1

1,5,2

4,3,2

Alpha-Beta Pruning

Alpha-beta pruning
• It is possible to compute the exact minimax decision

without expanding every node in the game tree

Alpha-beta pruning
• It is possible to compute the exact minimax decision

without expanding every node in the game tree

3

³3

Alpha-beta pruning
• It is possible to compute the exact minimax decision

without expanding every node in the game tree

3

³3

£2

Alpha-beta pruning
• It is possible to compute the exact minimax decision

without expanding every node in the game tree

3

³3

£2 £14

Alpha-beta pruning
• It is possible to compute the exact minimax decision

without expanding every node in the game tree

3

³3

£2 £5

Alpha-beta pruning
• It is possible to compute the exact minimax decision

without expanding every node in the game tree

3

3

£2 2

Alpha-Beta Pruning

Key point that I find most counter-intuitive:

• MIN needs to calculate which move MAX will make.
• MAX would never choose a suboptimal move.
• So if MIN discovers that, at a particular node in the tree, she can

make a move that’s REALLY REALLY GOOD for her…
• She can assume that MAX will never let her reach that node.
• … and she can prune it away from the search, and never consider it

again.

Alpha-beta pruning

• α is the value of the best choice for
the MAX player found so far
at any choice point above node n

• More precisely: α is the highest
number that MAX knows how to force
MIN to accept

• We want to compute the
MIN-value at n

• As we loop over n’s children,
the MIN-value decreases

• If it drops below α, MAX will never
choose n, so we can ignore n’s
remaining children

Alpha-beta pruning

• β is the value of the best choice for
the MIN player found so far
at any choice point above node n

• More precisely: β is the lowest number
that MIN know how to force MAX to
accept

• We want to compute the
MAX-value at m

• As we loop over m’s children,
the MAX-value increases

• If it rises above β, MIN will never
choose m, so we can ignore m’s
remaining children

β

m

Alpha-beta pruning

An unexpected result:
• α is the highest number that MAX

knows how to force MIN to accept
• β is the lowest number that MIN know

how to force MAX to accept
So

! ≤ #

β

m

Alpha-beta pruning
Function action = Alpha-Beta-Search(node)

v = Min-Value(node, −∞, ∞)
return the action from node with value v

α: best alternative available to the Max player

β: best alternative available to the Min player

Function v = Min-Value(node, α, β)
if Terminal(node) return Utility(node)
v = +∞

for each action from node

v = Min(v, Max-Value(Succ(node, action), α, β))
if v ≤ α return v

β = Min(β, v)
end for
return v

node

Succ(node, action)

action

…

Alpha-beta pruning
Function action = Alpha-Beta-Search(node)

v = Max-Value(node, −∞, ∞)
return the action from node with value v

α: best alternative available to the Max player

β: best alternative available to the Min player

Function v = Max-Value(node, α, β)
if Terminal(node) return Utility(node)
v = −∞

for each action from node

v = Max(v, Min-Value(Succ(node, action), α, β))
if v ≥ β return v

α = Max(α, v)
end for
return v

node

Succ(node, action)

action

…

Alpha-beta pruning
• Pruning does not affect final result
• Amount of pruning depends on move ordering

• Should start with the “best” moves (highest-value for MAX or
lowest-value for MIN)

• For chess, can try captures first, then threats, then forward
moves, then backward moves

• Can also try to remember “killer moves” from other branches
of the tree

• With perfect ordering, the time to find the best move is
reduced to O(bm/2) from O(bm)
• Depth of search is effectively doubled

Limited-Horizon
Computation

Games vs. single-agent search
• We don’t know how the opponent will act

• The solution is not a fixed sequence of actions from start state
to goal state, but a strategy or policy (a mapping from state to
best move in that state)

Games vs. single-agent search
• We don’t know how the opponent will act

• The solution is not a fixed sequence of actions from start state
to goal state, but a strategy or policy (a mapping from state to
best move in that state)

• Efficiency is critical to playing well
• The time to make a move is limited
• The branching factor, search depth, and number of terminal

configurations are huge
• In chess, branching factor ≈ 35 and depth ≈ 100, giving a search tree of

10154 nodes
• Number of atoms in the observable universe ≈ 1080

• This rules out searching all the way to the end of the game

Evaluation function

• Cut off search at a certain depth and compute the value of an
evaluation function for a state instead of its minimax value
• The evaluation function may be thought of as the probability of winning from

a given state or the expected value of that state

• A common evaluation function is a weighted sum of features:

Eval(s) = w1 f1(s) + w2 f2(s) + … + wn fn(s)
• For chess, wk may be the material value of a piece (pawn = 1,

knight = 3, rook = 5, queen = 9) and fk(s) may be the advantage in terms of
that piece

• Evaluation functions may be learned from game databases or by
having the program play many games against itself

Cutting off search

• Horizon effect: you may incorrectly estimate the value of a state by
overlooking an event that is just beyond the depth limit
• For example, a damaging move by the opponent that can be delayed but not

avoided
• Possible remedies

• Quiescence search: do not cut off search at positions that are unstable – for
example, are you about to lose an important piece?

• Singular extension: a strong move that should be tried when the normal
depth limit is reached

Advanced techniques
• Transposition table to store previously expanded states
• Forward pruning to avoid considering all possible moves
• Lookup tables for opening moves and endgames

Chess playing systems
• Baseline system: 200 million node evalutions per move

(3 min), minimax with a decent evaluation function and

quiescence search

• 5-ply ≈ human novice

• Add alpha-beta pruning

• 10-ply ≈ typical PC, experienced player

• Deep Blue: 30 billion evaluations per move, singular

extensions, evaluation function with 8000 features,

large databases of opening and endgame moves

• 14-ply ≈ Garry Kasparov

• More recent state of the art (Hydra, ca. 2006): 36 billion

evaluations per second, advanced pruning techniques

• 18-ply ≈ better than any human alive?

http://en.wikipedia.org/wiki/Hydra_(chess)

Summary

• A zero-sum game can be expressed as a minimax tree
• Alpha-beta pruning finds the correct solution. In the best case, it has

half the exponent of minimax (can search twice as deeply with a given
computational complexity).
• Limited-horizon search is always necessary (you can’t search to the

end of the game), and always suboptimal.
• Estimate your utility, at the end of your horizon, using some type of learned

utility function
• Quiescence search: don’t cut off the search in an unstable position (need

some way to measure “stability”)
• Singular extension: have one or two “super-moves” that you can test at the

end of your horizon

