
Planning and Theorem Proving
Slides by Svetlana Lazebnik, 9/2016
with modifications by Mark Hasegawa-Johnson, 2/2019

CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=18656684

By%20am%20not%20-https:/commons.wikimedia.org/w/index.php?curid=18656684

Planning and Theorem Proving

• Examples
• Automatic Theorem Proving: forward-chaining, backward-chaining
• Planning: forward-chaining, backward-chaining
• Admissible Heuristics for Planning and Theorem Proving

• Number of Steps
• Planning Graph

• Computational Complexity

Example: River Crossing Problems
https://en.wikipedia.org/wiki/River_crossing_puzzle

• A farmer has a fox, a goat, and a
bag of beans to get across the
river
• His boat will only carry him +

one object
• He can’t leave the fox with the

goat
• He can’t leave the goat with the

bag of beans

https://en.wikipedia.org/wiki/River_crossing_puzzle

Solution
https://en.wikipedia.org/wiki/River_crossing_puzzle

fgb -----(farmer, goat)----à fGb
fGb ß-----(farmer)-----------

-----(farmer,fox)-----à FGb
Fgb ß--(farmer,goat)------

-----(farmer,beans)---à FgB
FgB ß-------(farmer)--------

-----(farmer,goat)----à FGB

https://en.wikipedia.org/wiki/River_crossing_puzzle

Example: Cargo delivery problem

• You have packages waiting for pickup at Atlanta, Boston, Charlotte,
Denver, Edmonton, and Fairbanks
• They must be delivered to Albuquerque, Baltimore, Chicago, Des

Moines, El Paso, and Frisco
• You have two trucks. Each truck can hold only two packages at a

time.

Example: Design for Disassembly
”Simultaneous Selective Disassembly and End-of-Life Decision Making for Multiple Products
That Share Disassembly Operations,” Sara Behdad, Minjung Kwak, Harrison Kim and
Deborah Thurston. J. Mech. Des 132(4), 2010, doi:10.1115/1.4001207

• Design decisions limit the
sequence in which you can
disassemble a product at the
end of its life
• Problem statement: design the

product in order to make
disassembly as cheap as possible

doi:10.1115/1.4001207

Application of planning: the Gale-Church
alignment algorithm for machine translation

Application of planning: the Gale-Church
alignment algorithm for machine translation

Example: Tower of Hanoi
https://en.wikipedia.org/wiki/Tower_of_Hanoi

Description English: This is a visualization generated with the
walnut based on my implementation at [1] of the iterative
algorithm described in Tower of Hanoi

Date 30 April 2015
Source I designed this using http://thewalnut.io/
Author Trixx

https://en.wikipedia.org/wiki/Tower_of_Hanoi
http://thewalnut.io/
https://thewalnut.io/visualizer/visualize/1322/342/
https://commons.wikimedia.org/wiki/Tower_of_Hanoi
http://thewalnut.io/
https://commons.wikimedia.org/wiki/User:Trixx

Planning and Theorem Proving

• Examples
• Automatic Theorem Proving: forward-chaining, backward-chaining
• Planning: forward-chaining, backward-chaining
• Admissible Heuristics for Planning and Theorem Proving

• Number of Steps
• Planning Graph

• Computational Complexity

The Syntax of First-Order Logic (Textbook p. 293)
!"#$"#%" →

'(#%$)*# +",-,…
| ¬ !"#$"#%"

| !"#$"#%" ∧ !"#$"#%"
| !"#$"#%" ∨ !"#$"#%"

| !"#$"#%" ⟹ !"#$"#%"
| !"#$"#%" ⟺ !"#$"#%"

| 6(7#$)8)", 97,)7:;",…!"#$"#%"

+",- → '(#%$)*# +",-
97,)7:;" <*#=$7#$

6(7#$)8)", → ∃ | ∀

A “sentence” is
• an evaluated function, or
• a negated sentence, or
• the conjunction of 2 sentences, or
• the disjunction of 2 sentences, or
• an implication, or
• an equivalence, or
• a sentence with a quantified variable.

A “term” is an evaluated function, or a
variable, or a constant.

A “quantifier” is “there exists,” or “for all.”

Examples (Textbook, p. 330)
English First-Order Logic Notation
It is a crime for Americans to sell
weapons to hostile nations.

!"#$%&'() ∧+#',-(. ∧
/#001), ., 3 ∧ 4-15%0# 3

⟹ 7$%"%('0())
Colonel West sold missiles to
Ganymede.

∃),;%11%0#())
∧ /#001(+#15,), <'(."#=#)

Colonel West is American. !"#$%&'((+#15)
Ganymede is an enemy of
America.

>(#".(<'(."#=#, !"#$%&')

Missiles are weapons. ;%11%0#()) ⟹+#',-(())
An enemy of America is a hostile
nation.

>(#".(), !"#$%&')
⟹ 4-15%0#())

Automatic Theorem Proving

Can we prove the theorem:

!"#$#%&'()*+,)?

First-Order Logic Notation
.$*"#/&% 0 ∧)*&23% 4 ∧
5*''+ 0, 4, 7 ∧ 83+,#'* 7

⟹ !"#$#%&'(0)
∃0,;#++#'*(0)

∧ 5*''+()*+,, 0, <&%4$*=*)
.$*"#/&%()*+,)

>%*$4(<&%4$*=*, .$*"#/&)
;#++#'*(0) ⟹)*&23%(0)

>%*$4(0, .$*"#/&)
⟹ 83+,#'*(0)

Actions that a Theorem Prover can Take
• Universal Instantiation:

• given the sentence ∀", $%&'()*&("),
• for any known constant -,
• it is possible to generate the sentence $%&'()*&(-).

• Existential Instantiation:
• given the proposition ∃", $%&'()*&("),
• if no known constant / is known to satisfy $%&'()*&(/), then
• it is possible to define a new, otherwise unspecified constant 0, and
• to generate the sentence $%&'()*&(0).

• Generalized Modus Ponens:
• Given the sentence 12("2)⋀ 14("4)⋀…⋀ 16("6) ⟹ 8("2, … , "6), and
• given the sentences 12(-2), … , 16 (-6) for any constants -2, … , -6,
• it is possible to generate the sentence 8(-2, … , -6)

Automatic Theorem Proving Example
• Existential Instantiation:

• Input: ∃",$%&&%'((") ∧ ,(''&(-(&., ", /0123(4()
• Output: $%&&%'(($) ∧ ,(''&(-(&.,$, /0123(4()

• Generalized Modus Ponens:
• Input: $%&&%'($ and $%&&%'((") ⟹-(09:1(")
• Output: -(09:1($)

• Generalized Modus Ponens:
• Input: ;1(32(/0123(4(, <3(=%>0) and ;1(32(", <3(=%>0) ⟹ ?:&.%'((")
• Output: ?:&.%'((/0123(4()

• Generalized Modus Ponens:
• Input: <3(=%>01 " ∧-(09:1 2 ∧ ,(''& ", 2, @ ∧ ?:&.%'(@ ⟹ A=%3%10'(")

and
<3(=%>01 -(&. ,-(09:1 $, ,(''& -(&.,$, /0123(4(,?:&.%'((/0123(4()

• Output: A=%3%10'(-(&.)

Automatic Theorem Proving as Search

• State = the set of all currently known sentences
• Action = generate a new sentence
• Goal State = a set of sentences that includes the target sentence

(Question to ponder: how do you disprove a target sentence?)

Forward Chaining
•What’s Special About Theorem Proving:
• A state, at level n, can be generated by the combination of

several states at level n-1.
• Definition: Forward Chaining is a search algorithm in which

each action
• generates a new sentence,
• by combining as many different preceding states as

necessary.

Example: Forward Chaining to prove !"
#$, #&, #$ ⟹ !$, #& ⟹ !&, !$ ∧ !& ⟹ !"

#$, #&, #$ ⟹ !$, #& ⟹ !&, !$ ∧ !& ⟹ !", !$
#$, #&, #$ ⟹ !$, #& ⟹ !&, !$ ∧ !& ⟹ !", !&

#$, #&, #$ ⟹ !$, #& ⟹ !&, !$ ∧ !& ⟹ !", !$, !&, !"

Initial State

Search ”Tree” Level 1

Search ”Tree” Level 2:
Goal Achieved

Backward Chaining
•What Else is Special About Theorem Proving:
• The ”Goal State” is defined to be any set of sentences that

includes the target sentence
• Definition: Backward Chaining is a search algorithm in which
• State = {set of known sentences}, {set of desired

sentences}
• Action = apply a known sentence, backward, to a target

sentence, in order to generate a new set of desired
sentences
• Goal = all “desired sentences” are part of the set of

“known sentences”

Example: Backward Chaining to prove !"
KNOWN: #$, #&, #$ ⟹ !$, #& ⟹ !&, !$ ∧ !& ⟹ !"

DESIRED: {!"}

DESIRED: !$, !&

Initial State

Search Tree Level 1

Search Tree Level 2DESIRED: #$, !& DESIRED: !$, #&

DESIRED: #$, #& DESIRED: #$, #& Search Tree Level 3:
Goal Achieved

Planning and Theorem Proving

• Examples
• Automatic Theorem Proving: forward-chaining, backward-chaining
• Planning: forward-chaining, backward-chaining
• Admissible Heuristics for Planning and Theorem Proving

• Number of Steps
• Planning Graph

• Computational Complexity

Search review

• A search problem is defined by:
• Initial state
• Goal state
• Actions
• Transition model
• Cost

A representation for planning
• STRIPS (Stanford Research Institute Problem Solver): classical

planning framework from the 1970s
• States are specified as conjunctions of predicates

• Start state: At(home) Ù Sells(SM, Milk) Ù Sells(SM, Bananas) Ù Sells(HW, drill)
• Goal state: At(home) Ù Have(Milk) Ù Have(Banana) Ù Have(drill)

• Actions are described in terms of preconditions and effects:
• Go(x, y)

• Precond: At(x)
• Effect: ¬At(x) Ù At(y)

• Buy(x, store)
• Precond: At(store) Ù Sells(store, x)
• Effect: Have(x)

• Planning is “just” a search problem

http://en.wikipedia.org/wiki/STRIPS

Planning as Theorem Proving

•A planning action is like a “! ⟹ #” statement.
• In order to be applied, it requires certain input sentences to be

true. For example, the action “put the goat in the boat” requires,
as its precondition, that the boat is empty.
• The result of the action is the generation of an output sentence.

For example: “the goat is now in the boat.”
• The initial state is a set of sentences that are initially true.
• The goal state is a set of sentences that we want to “prove.”

Important differences between Planning and
Theorem Proving, #1: Negating your preconditions
•A planning action may NEGATE some of its

preconditions.
• Example: the action “put the goat in the boat” requires, as its

precondition, the sentence ¬Boat(goat).
• It generates, as its output, the sentence: Boat(goat).

• No action can combine two world states that contain
contradictory sentences. For example, you can’t combine
the states {p,q} and {p,¬q} to get the state {p,q,¬q}.

Algorithms for planning: Forward Chaining

Starting with the start state, find all applicable actions
(actions for which preconditions are satisfied), compute the
successor state based on the effects, keep searching until
goals are met
• Can work well with good heuristics

Forward-Chaining Example: Fox, Goat & Beans
!"#$ %&' , !"#$)&*$, !"#$(,"*-.)

,&*$ %&' ,
!"#$)&*$,
!"#$(,"*-.)

!"#$ %&' ,
,&*$)&*$,
!"#$(,"*-.)

!"#$ %&' ,
!"#$)&*$,
,&*$(,"*-.)

X X
!"#$ %&' ,
!"#$)&*$,
!"#$(,"*-.)

!"#$ %&' ,
012ℎ$)&*$,
!"#$(,"*-.)

… …

Algorithms for planning: Backward Chaining

Starting with the goal state (a set of target sentences),
• find all applicable actions (actions that would generate a

sentence in the goal state).
• For each, generate the predecessor state as a new set of

target sentences.
• Keep searching until all target sentences are in the initial

state.

Backward-Chaining Example: Fox, Goat & Beans
!"#ℎ% &'(, !"#ℎ% *'+% , !"#ℎ%(-.+/0)

-'+% &'(,
!"#ℎ% *'+% ,
!"#ℎ%(-.+/0)

!"#ℎ% &'(,
-'+% *'+% ,
!"#ℎ%(-.+/0)

!"#ℎ% &'(,
!"#ℎ% *'+% ,
-'+%(-.+/0)X X

!"#ℎ% &'(,
!"#ℎ% *'+% ,
!"#ℎ%(-.+/0)

!"#ℎ% &'(,
2.3% *'+% ,
!"#ℎ%(-.+/0)

… …

Planning and Theorem Proving

• Examples
• Automatic Theorem Proving: forward-chaining, backward-chaining
• Planning: forward-chaining, backward-chaining
• Admissible Heuristics for Planning and Theorem Proving

• Number of Steps
• Planning Graph

• Computational Complexity

A* Heuristics by Constraint Relaxation

• Heuristics from Constraint Relaxation: The heuristic h(n) is the
number of steps it would take to get from n to G, if problem
constraints were relaxed --- this guarantees that h(n) is admissible
• ℎ"($) dominates ℎ&($) (ℎ"($) ≥ ℎ&($)) if ℎ"($) is computed by

relaxing fewer constraints.

First heuristic: number of goal sentences left
to achieve
Heuristic #1: Count the number of actions necessary to
generate all of the sentences in the goal state that aren’t
already true.
•What got relaxed: we ignore action pre-requisites.

Example: 6 people on left side of the river, we want 6 people
on the right side, we have a 2-person boat. Minimum #
actions: h(n) = 3.

Second heuristic: planning graph
A planning graph is a trellis whose stages are:
• Action stages (!"): list all of the actions whose pre-

requisites are available in “Sentences stage” #"
• Sentence stages (#"$%): list all of the sentences that were

available in #", plus any new sentences that could have
been generated by any action in !"

And within each stage, we have:
•Mutex links: If ALL actions that generate output sentence &

also generate ¬(, then the sentences & and (become
mutex (mutually exclusive).

Example planning graph

• !" has only two possible actions:
• Do nothing: reproduces the initial state, {Have(Cake), ¬Eaten(Cake)}
• Eat(Cake): generates {¬Have(Cake), Eaten(Cake)}

• Therefore, at $%, Have(Cake) is mutex with Eaten(Cake)
• !%: Bake(Cake) → Have(Cake), without generating ¬Eaten(Cake), so…
• $%: Have(Cake) and Eaten(Cake) are no longer mutex.

Convergence of the Planning Graph

• # of mutex links is monotonically non-increasing: If a pair of
sentences are not mutex at stage !", then they are also not
mutex at !"#$
• # possible actions is monotonically non-decreasing: If an action

is possible at stage %", then it is also possible at %"#$

Heuristic #2: Number of stages until target sentences are
non-mutex

Heuristic: # stages between the current stage and the first stage at
which all of the goal-state sentences are no longer mutex

Planning and Theorem Proving

• Examples
• Automatic Theorem Proving: forward-chaining, backward-chaining
• Planning: forward-chaining, backward-chaining
• Admissible Heuristics for Planning and Theorem Proving

• Number of Steps
• Planning Graph

• Computational Complexity

Complexity
• Planning is PSPACE-complete > NP-complete

• The computational complexity of finding a plan is exponential
• The length of the plan is exponential

• Space necessary to represent it
• Time necessary to implement it

• The only thing that’s polynomial: the amount of space necessary
to represent the world state while finding or implementing a plan

• Example: towers of Hanoi

http://en.wikipedia.org/wiki/PSPACE-complete

Complexity of planning
• Planning is PSPACE-complete

• The length of a plan can be exponential in the number of
“objects” in the problem!

• So is game search

• Archetypal PSPACE-complete problem: quantified boolean
formula (QBF)
• Example: is this formula true?

$x1"x2 $x3"x4 (x1Ú¬x3Úx4)Ù(¬x2Úx3Ú¬x4)
• Compare to SAT:

$x1 $x2 $x3 $x4 (x1Ú¬x3Úx4)Ù(¬x2Úx3Ú¬x4)
• Relationship between SAT and QBF is akin to the relationship

between puzzles and games

http://en.wikipedia.org/wiki/PSPACE-complete

Real-world planning

• Resource constraints
• Instead of “static,” the world is “semidynamic:” we can’t think forever

• Actions at different levels of granularity: hierarchical planning
• In order to make the depth of the search smaller, we might convert the world

from “fully observable” to “partially observable”

• Contingencies: actions failing
• Instead of being “deterministic,” maybe the world is “stochastic”

• Incorporating sensing and feedback
• Possibly necessary to address stochastic or multi-agent environments

