Lecture 5: Search informed by lookahead heuristics: Greedy, Admissible A*, Consistent A*

Mark Hasegawa-Johnson, January 2019
With some slides by Svetlana Lazebnik, 9/2016
Distributed under CC-BY 3.0
Title image: By Harrison Weir - From reuseableart.com, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=47879234
Outline of lecture

1. Search heuristics
2. Greedy best-first search: minimum $h(n)$
3. Nearly-A^*: $f(n)=h(n)+g(n)$
4. A^*: Optimal search
5. Bad interaction between A^* and the explored set
6. Dijkstra = A^* with $h(n)=0$
7. Designing heuristics: Relaxed problem, Sub-problem, Dominance
Review: DFS and BFS

- **Depth-first search**
 - LIFO: expand the deepest node (farthest from START)
 - Pro: reach the end of the path as quickly as possible (space is $O(b^m)$). Good if there are many paths to goal.
 - Con: not optimal, or even complete. Time is $O(b^m)$.

- **Breadth-first search**
 - FIFO: expand the shallowest node (closest to START)
 - Pro: complete and optimal. Time is $O(b^d)$
 - Con: no path is found until the best path is found. Space is $O(b^d)$.
Why don’t we just measure...

Instead of FARTHEST FROM START (DFS):
why not choose the node that’s CLOSEST TO GOAL?
Why not choose the node CLOSEST TO GOAL?

• Answer: because we don’t know which node that is!!

• Example: which of these two is closest to goal?
We don’t know which state is closest to goal

• Finding the shortest path is the whole point of the search
• If we already knew which state was closest to goal, there would be no reason to do the search
• Figuring out which one is closest, in general, is a complexity $O(b^d)$ problem.
Search heuristics: estimates of distance-to-goal

- Often, even if we don’t know the distance to the goal, we can estimate it.
- This estimate is called a heuristic.
- A heuristic is useful if:
 1. **Accurate**: $h(n) \approx d(n)$, where $h(n)$ is the heuristic estimate, and $d(n)$ is the true distance to the goal
 2. **Cheap**: It can be computed in complexity less than $O\{b^d\}$
Example heuristic: Manhattan distance

If there were no walls in the maze, then the number of steps from position (x_n, y_n) to the goal position (x_G, y_G) would be

$$h(n) = |x_n - x_G| + |y_n - y_G|$$

If there were no walls, this would be the path to goal: straight down, then straight right.
Outline of lecture

1. Search heuristics
2. Greedy best-first search: minimum $h(n)$
3. Nearly-A^*: $f(n) = h(n) + g(n)$
4. A^*: Optimal search
5. Bad interaction between A^* and the explored set
6. Dijkstra = A^* with $h(n) = 0$
7. Designing heuristics: Relaxed problem, Sub-problem, Dominance
Greedy Best-First Search

Instead of FARTHEST FROM START (DFS):
 why not choose the node whose
 HEURISTIC ESTIMATE
 indicates that it might be
 CLOSEST TO GOAL?
Greedy Search Example

According to the Manhattan distance heuristic, these two nodes are equally far from the goal, so we have to choose one at random.
Greedy Search Example

If our random choice goes badly, we might end up very far from the goal.

★ = states in the explored set

○ = states on the frontier
The problem with Greedy Search

Having gone down a bad path, it’s very hard to recover, because now, the frontier node closest to goal (according to the Manhattan distance heuristic) is this one:
The problem with Greedy Search

That’s not a useful path...
The problem with Greedy Search

Neither is that one...
What went wrong?
Outline of lecture

1. Search heuristics
2. Greedy best-first search: minimum \(h(n) \)
3. Nearly-A*: \(f(n)=h(n)+g(n) \)
4. A*: Optimal search
5. Bad interaction between A* and the explored set
6. Dijkstra = A* with \(h(n)=0 \)
7. Designing heuristics: Relaxed problem, Sub-problem, Dominance
The problem with Greedy Search

Among nodes on the frontier, this one seems closest to goal (smallest $h(n)$, where $h(n) \approx d(n)$).

But it’s also farthest from the start. Let’s say $g(n) =$ total path cost so far.

So the total distance from start to goal, going through node n, is

$$c(n) = g(n) + d(n) \approx g(n) + h(n)$$
The problem with Greedy Search

Of these three nodes, this one has the smallest $g(n) + h(n)$.

So if we want to find the lowest-cost path, then it would be better to try that node, instead of this one.
Smart Greedy Search

In fact, let’s back up. Already, at this point in the search, this node has the smallest $g(n) + h(n)$.

![Maze Diagram with Start and Goal States]
Smart Greedy Search

So we move forward along THAT path instead, until we reach this point, where all three nodes have the same $g(n) + h(n)$.

Start state

Goal state
Smart Greedy Search

Moving forward on all three paths...
Smart Greedy Search

All of the new star nodes here had EXACTLY THE SAME value of $g(n) + h(n) = 34$.

Now these four circles, shown here, are the new frontier, the set of nodes with $g(n) + h(n) = 35$.
Smart Greedy Search

\[g(n) + h(n) = 36 \]
And so on...

I’m going to stop using this maze, at this point, because this maze was designed (by an author on Wikipedia) to be uniquely bad for A* search. A* search, on this maze, is just as bad as BFS.

Usually, A* search is much better than BFS. But not always.
“Almost-A* Search”

- Idea: avoid expanding paths that are already expensive
- The **evaluation function** \(f(n) \) is the estimated total cost of the path through node \(n \) to the goal:

\[
 f(n) = g(n) + h(n)
\]

- \(g(n) \): cost so far to reach \(n \) (path cost)
- \(h(n) \): estimated cost from \(n \) to goal (heuristic)

- This is called A* search if and only if the heuristic, \(h(n) \), is admissible. That’s a term I’ll define a few slides from now. But first, let’s look at an example where A* is much better than BFS.
BFS vs. A* Search
The heuristic $h(n)=\text{Manhattan distance}$ favors nodes on the main diagonal. Those nodes all have the same $g(n)+h(n)$, so A* evaluates them first.

Outline of lecture

1. Search heuristics
2. Greedy best-first search: minimum $h(n)$
3. Nearly-A^*: $f(n)=h(n)+g(n)$
4. A^*: Optimal search
5. Bad interaction between A^* and the explored set
6. Dijkstra = A^* with $h(n)=0$
7. Designing heuristics: Relaxed problem, Sub-problem, Dominance
Problems with “Almost-A*”

• “Almost-A*” search looks pretty good! So are we done?
• There’s one more problem. What, exactly, do we mean by the squiggly lines in these two equations:

Distance from n to Goal is “approximately” \(h(n) \):

\[
d(n) \approx h(n)
\]

Total cost of the path through n is “approximately” \(g(n) + h(n) \):

\[
c(n) \approx g(n) + h(n)
\]
Problems with “Almost A*”

- Suppose we’ve found one path to G; the path goes through node m. Since we’ve calculated the whole path, we know its total path cost to be $c(m)$.
- Suppose that, for every other node on the frontier n, we have
 $$h(n) + g(n) > c(m)$$

 Does that mean that $c(m)$ is really the best path?
- No!! Because all we know is that $c(n) \approx g(n) + h(n)$.
- “Approximately” allows the possibility that $c(n) < g(n) + h(n)$.
- Therefore it’s possible that $c(n) < c(m)$.
Admissible heuristic

• We want to guarantee that
 \[c(n) \geq g(n) + h(n) \]
• Then if we can find a best path, \(m \), such that for every node \(n \) left on the frontier,
 \[h(n) + g(n) \geq c(m) \]
• Then we are guaranteed that there is no better node. We are guaranteed that for every node \(n \) that is not on the path \(m \),
 \[c(n) \geq h(n) + g(n) \geq c(m) \]
Admissible heuristic

- Remember that the total path cost is $c(n) = g(n) + d(n)$. So in order to guarantee that $c(n) \geq g(n) + h(n)$, we just need $d(n) \geq h(n)$.

Definition: A heuristic $h(n)$ is **admissible** if $d(n) \geq h(n)$, i.e., if the heuristic is guaranteed to be less than or equal to the remaining path cost from node n to the goal state.
A* Search

Definition: A* SEARCH

- If $h(n)$ is admissible ($d(n) \geq h(n)$), and
- if the frontier is a priority queue sorted according to $g(n) + h(n)$, then
- the FIRST path to goal uncovered by the tree search, path m, is guaranteed to be the SHORTEST path to goal

 \[(h(n) + g(n) \geq c(m) \text{ for every node } n \text{ that is not on path } m)\]
Example A* Search: Manhattan Distance

• Manhattan distance is guaranteed to be less than or equal to the true path to goal
• Therefore, “smart greedy” search with Manhattan distance heuristic = A* Search
Outline of lecture

1. Search heuristics
2. Greedy best-first search: minimum $h(n)$
3. Smart greedy: $f(n)=h(n)+g(n)$
4. A*: Optimal search
5. Bad interaction between A* and the explored set
6. Dijkstra = A* with $h(n)=0$
7. Designing heuristics: Relaxed problem, Sub-problem, Dominance
Bad interaction between A* and the explored set

Frontier
S: \(g(n) + h(n) = 2 \), parent=none

Explored Set

Select from the frontier: S
Bad interaction between A* and the explored set

Frontier
A: $g(n)+h(n)=5$, parent=S
B: $g(n)+h(n)=2$, parent=S

Explored Set
S

Select from the frontier: B
Bad interaction between A* and the explored set

Frontier
A: $g(n)+h(n)=5$, parent=S
C: $g(n)+h(n)=4$, parent=B

Explored Set
S, B

Select from the frontier: C
Bad interaction between A* and the explored set

Frontier
A: g(n)+h(n)=5, parent=S
G: g(n)+h(n)=6, parent=C

Explored Set
S, B, C

Select from the frontier: A
Bad interaction between A* and the explored set

Frontier
G: g(n)+h(n)=6, parent=C
• Now we would place C in the frontier, with parent=A and h(n)+g(n)=3, except that C was already in the explored set!

Explored Set
S, B, C

Select from the frontier: Would be C, but instead it’s G
Bad interaction between A* and the explored set

Return the path S, B, C, G
Path cost = 6

OOPS
Bad interaction between A* and the explored set: Three possible solutions

1. Don’t use an explored set
 • This option is OK for any finite state space, as long as you check for loops.

2. Nodes on the explored set are tagged by their $h(n)+g(n)$. If you find a node that’s already in the explored set, test to see if the new $h(n)+g(n)$ is smaller than the old one.
 • If so, put the node back on the frontier
 • If not, leave the node off the frontier

3. Use a heuristic that’s not only admissible, but also consistent.
Consistent (monotonic) heuristic

Definition: A **consistent heuristic** is one for which, for every pair of nodes in the graph, \(d(n) - d(p) \geq h(n) - h(p) \).

In words: the distance between any pair of nodes is greater than or equal to the difference in their heuristics.
A* with an inconsistent heuristic

Frontier
A: \(g(n)+h(n)=5 \), parent=S
C: \(g(n)+h(n)=4 \), parent=B

Explored Set
S, B

Select from the frontier: C
A* with a **consistent** heuristic

Frontier
A: $g(n)+h(n)=2$, parent=S
C: $g(n)+h(n)=4$, parent=B

Explored Set
S, B

Select from the frontier: A
A* with a **consistent** heuristic

Frontier

\[C: g(n) + h(n) = 2, \text{ parent}=A \]

Explored Set

S, B, A

Select from the frontier: \(C \)
A* with a **consistent** heuristic

Frontier
.
G: \(g(n) + h(n) = 5 \), parent=C

Explored Set
S, B, **A**, C

Select from the frontier: G
How consistency works

Suppose that, on the best path from start to node \(p \), node \(m \) is \(p \)'s parent, and say that \(d(m) - d(p) \) is the distance between them. Then the distance from start to node \(p \) is

\[
g(p) = g(m) + (d(m) - d(p)) \leq g(n) + (d(n) - d(p))
\]

Definition: A **consistent heuristic** is one for which, for every pair of nodes in the graph,

\[
d(n) - d(p) \geq h(n) - h(p).
\]

Implication:

\[
g(p) \leq g(n) + (h(n) - h(p))
\]

\[
g(p) + h(p) \leq g(n) + h(n)
\]

- \(g(p) + h(p) \) is monotonically non-increasing!!
- The only predecessors of \(p \) that will be evaluated before \(p \) are those for which \(g(p) + h(p) = g(n) + h(n) \) exactly, i.e., those that are on the best path between \(S \) and \(p \).
Bad interaction between A* and the explored set: Three possible solutions

1. Don’t use an explored set.
 This works for the MP!

2. If you find a node that’s already in the explored set, test to see if the new $h(n)+g(n)$ is smaller than the old one.
 Most students find that this is the most computationally efficient solution to the multi-dots problem.

3. Use a consistent heuristic.
 This works for the single-dot problem, because Manhattan distance is a consistent heuristic.
Outline of lecture

1. Search heuristics
2. Greedy best-first search: minimum $h(n)$
3. Smart greedy: $f(n)=h(n)+g(n)$
4. A*: Optimal search
5. Bad interaction between A* and the explored set
6. Dijkstra = A* with $h(n)=0$
7. Designing heuristics: Relaxed problem, Sub-problem, Dominance
The trivial case: $h(n)=0$

- A heuristic is **admissible** if and only if $d(n) \geq h(n)$ for every n.
- A heuristic is **consistent** if and only if $d(n,p) \geq h(n) - h(p)$ for every n and p.
- Both criteria are satisfied by $h(n) = 0$.
Dijkstra = A* with h(n)=0

• Suppose we choose $h(n) = 0$
• Then the frontier is a priority queue sorted by $g(n) + h(n) = g(n)$
• In other words, the first node we pull from the queue is the one that’s closest to START!! (The one with minimum $g(n)$).
• So this is just Dijkstra’s algorithm!
Outline of lecture

1. Search heuristics
2. Greedy best-first search: minimum $h(n)$
3. Smart greedy: $f(n)=h(n)+g(n)$
4. A^*: Optimal search
5. Bad interaction between A^* and the explored set
6. Dijkstra = A^* with $h(n)=0$
7. Designing heuristics: Relaxed problem, Sub-problem, Dominance
Designing heuristic functions
Now we start to see things that actually resemble the multi-dot problem...

- Heuristics for the 8-puzzle
 - $h_1(n) =$ number of misplaced tiles
 - $h_2(n) =$ total Manhattan distance (number of squares from desired location of each tile)

 \[
 h_1(\text{start}) = 8
 \]
 \[
 h_2(\text{start}) = 3+1+2+2+2+3+3+2 = 18
 \]

- Are h_1 and h_2 admissible?
Heuristics from relaxed problems

- A problem with fewer restrictions on the actions is called a relaxed problem.
- The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem.
- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution.
- If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution.
Heuristics from subproblems

This is also a trick that many students find useful for the multi-dot problem.

- Let $h_3(n)$ be the cost of getting a subset of tiles (say, 1,2,3,4) into their correct positions.
- Can precompute and save the exact solution cost for every possible subproblem instance – pattern database.
- If the subproblem is $O(9^4)$, and the full problem is $O(9^9)$, then you can solve as many as 9^5 subproblems without increasing the complexity of the problem!!

![Start State](image1)

![Goal State](image2)
Dominance

• If \(h_1 \) and \(h_2 \) are both admissible heuristics and
 \(h_2(n) \geq h_1(n) \) for all \(n \), (both admissible) then
 \(h_2 \) dominates \(h_1 \)

• Which one is better for search?
 • A* search expands every node with \(f(n) < C* \) or
 \(h(n) < C* - g(n) \)
 • Therefore, A* search with \(h_1 \) will expand more nodes =
 \(h_1 \) is more computationally expensive.
Dominance

• Typical search costs for the 8-puzzle (average number of nodes expanded for different solution depths):

 • \(d=12\)

 - BFS expands 3,644,035 nodes
 - \(A^*(h_1)\) expands 227 nodes
 - \(A^*(h_2)\) expands 73 nodes

 • \(d=24\)

 - BFS expands 54,000,000,000 nodes
 - \(A^*(h_1)\) expands 39,135 nodes
 - \(A^*(h_2)\) expands 1,641 nodes
Combining heuristics

• Suppose we have a collection of admissible heuristics $h_1(n)$, $h_2(n)$, ..., $h_m(n)$, but none of them dominates the others
• How can we combine them?

$$h(n) = \max\{h_1(n), h_2(n), ..., h_m(n)\}$$
All search strategies. C*=cost of best path.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complete?</th>
<th>Optimal?</th>
<th>Time complexity</th>
<th>Space complexity</th>
<th>Implement the Frontier as a...</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFS</td>
<td>Yes</td>
<td>If all step costs are equal</td>
<td>O(b^d)</td>
<td>O(b^d)</td>
<td>Queue</td>
</tr>
<tr>
<td>DFS</td>
<td>No</td>
<td>No</td>
<td>O(b^m)</td>
<td>O(bm)</td>
<td>Stack</td>
</tr>
<tr>
<td>IDS</td>
<td>Yes</td>
<td>If all step costs are equal</td>
<td>O(b^d)</td>
<td>O(bd)</td>
<td>Stack</td>
</tr>
<tr>
<td>UCS</td>
<td>Yes</td>
<td>Yes</td>
<td>Number of nodes w/ g(n) ≤ C*</td>
<td>Number of nodes w/ g(n) ≤ C*</td>
<td>Priority Queue sorted by g(n)</td>
</tr>
<tr>
<td>Greedy</td>
<td>No</td>
<td>No</td>
<td>Worst case: O(b^m)</td>
<td>Worse case: O(b^m)</td>
<td>Priority Queue sorted by h(n)</td>
</tr>
<tr>
<td>A*</td>
<td>Yes</td>
<td>Yes</td>
<td>Number of nodes w/ g(n)+h(n) ≤ C*</td>
<td>Number of nodes w/ g(n)+h(n) ≤ C*</td>
<td>Priority Queue sorted by h(n)+g(n)</td>
</tr>
</tbody>
</table>