
CS440/ECE448 Spring 2019 Final Review Solutions 

Problem 1 Solution: 
Let S = event friend drives small car  
L = event friend drives large car  
T = event friend is at work on time 

P(S|T) = P(T,S)/P(T) = P(T,S) / (P(T,S)+P(T,L)) 

P(T,S) = P(T|S)*P(S) = 0.9*3/4 = 0.675 

P(T,L) = P(T|L)*P(L) = 0.6*1/4 = 0.15 

P(S|T) = 0.675 / (0.675+0.15) = 0.818 

 
Problem 2 Solution: 

a. Bayesian Network: 

 
b. Using the abbreviation C:=Coin to simplify the notation: 

Hence, the coin that is most likely to have been drawn from the bag, given the 
observations HHT, is b.  
 
 

Problem 3 Solution 
a.  



 
 

Flu Value 
T 3/7 
F 4/7 

 
 Flu ¬Flu 
Sore Throat 2/3 1/2 
¬Sore Throat 1/3 1/2 

 
 Flu ¬Flu 
Stomach Ache 1/3 1/2 
¬Stomach Ache 2/3 1/2 

 
 
 Flu ¬Flu 
Fever 2/3 1/4 
¬Fever 1/3 3/4 

 
b. Let α = P(Fever, Stomach Ache, ¬Sore Throat). 
P(Flu | Fever, Stomach ache, ¬Sore Throat)  
= (1/α) * P(Flu) * P(Stomach ache | Flu) * P(Fever | Flu) * P(¬Sore Throat | Flu) 
= (1/α) * 3/7 * 1/3 * 2/3 * 1/3 = (1/α) * 2/63 = (1/α) * 8 / 252.  
P(¬Flu | Fever, Stomach ache, ¬Sore Throat)  
= (1/α) * P(¬Flu) * P(Stomach ache | ¬Flu) * P(Fever | ¬Flu) * P(¬Sore Throat | ¬Flu) 
= (1/α) * 4/7 * 1/2 * 1/4 * 1/2 = (1/α) * 1/28 = (1/α) * (9/252). 
Adding these together, we have: α = (8+9)/252 = 17/ 252. 
Thus, the probability of having flu is 8/17. 
 

Problem 4 Solution 
𝑤 ← 𝑤 + 𝜂𝑦𝑥 

 
W1 W2 W3 Bias 
0 0 0 0 
-1 -1 1 1 
-1 -1 1 1 



-1 -1 1 1 
-1 -1 1 1 
0 0 0 2 
-1 -1 -1 1 

 
 

Problem 5 Solution: 
 
P(X | Y=0) = ∏ 𝑃*++

,-* (xi|Y=0) = a50(1-a)50 

P(X | Y=1) = ∏ 𝑃*++
,-* (xi|Y=1) = b50(1-b)50 

P(Y=1|X) = P(X|Y=1)P(Y=1) / [P(X|Y=0)P(Y=0) + P(X|Y=1)P(Y=1)]  
= b50(1-b)50/[ a50(1-a)50+ b50(1-b)50] 
 

Problem 6 Solution: 
a. Yes, there are no (undirected) cycles. 

 
b. D and E are not independent because P(D,E) != P(D)P€. However, they are 

independent given B, because P(D,E|B)=P(D|B)P(E|B).  

c. There are 6 random variables, so 26 − 1 = 63 parameters  

d. There are still 6 random variables, but each variable has 3 separate values it can take. 
Thus, 36 − 1 = 728. 
As for conditional probability tables, we have tables for P(A), P(B|A), P(C|A), 
P(D|B), P(E|B), and P(F|C). The number of values for these tables are 3-1=2, 32-3=6, 
32-3=6, 32-3=6, 32-3=6, 32-3=6. Adding these up, we have 2+6+6+6+6+6=32.  

e. Write down the expression for the joint probability distribution of all the variables in 
the network. P(A,B,C,D,E,F)=P(A)·P(B|A)·P(C|A)·P(D|B)·P(E|B)·P(F |C)  

f. P (A = 0, B = 1, C = 1, D = 0) = P (A = 0) · P (B = 1 | A = 0) · P (C = 1 | A = 0) · P 
(D = 0 | B = 1) = (1−0.8)·0.2·0.6·(1−0.5)  
= (1/5)(1/5)(3/5)(1/2) = 3/250  
 

g. P(B|A,¬D) = P(B,A,¬D)/(P(B,A,¬D)+ P(¬B,A,¬D))  
P(B,A,¬D) = P(A) P(B|A)P(¬D|B) = 0.8·0.5·0.5 = 0.2 
P(¬B,A,¬D)=P(A)P(¬B|A)P(¬D|¬B) = 0.8·0.5·0.4 = 0.16  
 
So 
P(B|A,¬D)=0.2/0.36 = 20/36 = 5/9 
 

h. P(A,B,C)=P(C|A)P(B|A)P(A) 



P(B,C) = sum_A P(A,B,C) 
P(E,B,C) = P(E|B) P(B,C) 
P(E,C) = sum_B P(E,B,C) 

 
 

Problem 7 Solution: 
 
a. Bayesian Network: 

  
 
 
 
 
Table for N: depends on the prior probabilities of observing different numbers of stars. 
 
Tables for F1 and F2: 
F Values 
True f 
False 1-f 

 
Table for M1 (resp. M2) given F1 (resp. F2) is false (we assume that the probabilities of 
undercounting and overcounting are the same): 

 M=0 M=1 M=2 M=3 M=4 
N=1 e/2 1-e e/2 0 0 
N=2 0 e/2 1-e e/2 0 
N=3 0 0 e/2 1-e e/2 

 
Table for M1 (resp. M2) given F1 (resp. F2) is true:  

 M=0 M=1 M=2 M=3 M=4 
N=1 1 0 0 0 0 
N=2 1 0 0 0 0 
N=3 1 0 0 0 0 

 
b. 

 M=0 M=1 M=2 M=3 M=4 
N=1 (e/2)(1-f)+f (1-e)(1-f) (e/2)(1-f) 0 0 
N=2 f (e/2)(1-f) (1-e)(1-f) (e/2)(1-f) 0 
N=3 f 0 (e/2)(1-f) (1-e)(1-f) (e/2)(1-f) 



 
 
 

Problem 8 Solution: 
 

a. Since reward depends only on the current state, we need to have two separate 
state variables for each current count: one representing a player who has decided 
to stop, one representing a player who has not yet decided to stop.  The states are 
therefore: 0, 0s, 2, 2s, 3, 3s, 4, 4s, 5, 5s, 6, where the state of “6” applies to any 
score of 6 or more regardless of whether the player wishes to stop or draw. The 
actions are {Draw, Stop}. 
 

b. The transition function is: 

𝑃(𝑁𝑠|𝑁, 𝑆𝑡𝑜𝑝) = 	1 

𝑃(𝑁;|𝑁, 𝐷𝑟𝑎𝑤) =

⎩
⎪
⎪
⎨

⎪
⎪
⎧

1
3
𝑖𝑓	𝑁; − 𝑁	 ∈ {2,3,4}

1
3 𝑖𝑓	𝑁 = 2	𝑎𝑛𝑑	𝑁; = 6
2
3
𝑖𝑓	𝑁 = 3	𝑎𝑛𝑑	𝑁; = 6

1	𝑖𝑓	𝑁 ∈ {4,5}	𝑎𝑛𝑑	𝑁; = 6
0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The reward function is: 

𝑅(𝑁𝑠) = 	𝑁 

𝑅(𝑁) = 	0 

c. In general, for finding the optimal policy for an MDP, we would use some method 
like value iteration followed by policy extraction. However, in this particular case, 
it is simple to work out that the optimal policy would be 

𝐷𝑟𝑎𝑤	𝑖𝑓	𝑠 ≤ 2, 𝑆𝑡𝑜𝑝	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

For completeness, we give below the value iteration steps based on the states and 
transition functions described above.  The table shows only the states where the 
player has not yet decided to stop; from any such state, the value iteration 
considers two possible actions: stop, or draw. The optimal policy is given by 
taking the 𝑎𝑟𝑔𝑚𝑎𝑥 instead of 𝑚𝑎𝑥, in the final iteration of value iteration. 

V 0 2 3 4 5 6 



V1 0 0 0 0 0 0 
V2 0 2 3 4 5 0 
V3 3 3 3 4 5 0 
V4 10/3 3 3 4 5 0 

 

d. The smallest number of rounds: 4.  After the first round of value iteration, the 
“stop” states have learned their value, but any non-stop state still has a value of 
zero.  After the fourth round, the value has converged to its correct value. 

 
 

Problem 9 Solution: 

Unsupervised learning. When the objective is to learn the structure or the property of a 
given dataset. 

Problem 10 Solution:  

In this case the input space of all possible examples with their target outputs is:  

 

 0  1 2 

2 1 1 1 

1 0 0 1 

0 0 0 1 

 

 

Since there is clearly no line that can separate the two classes, this function can not be 
learned by a linear classifier.  

 

Problem 11 Solution:  

a. The first row of the table is correctly classified, therefore the weights are not changed.  
The second row is incorrectly classified, therefore the weights are updated as W=W+(Y-
Y’)F=[1,6,4].  Using these weights results in misclassification of the third row, therefore 
the weights are updated again to [-1,-2,-6].  Using these weights results in 
misclassification of the fourth row, therefore the weights are updated again to [1,4,2].  
These weights correctly classify the fifth row.   



b. Yes, a perceptron can learn this function.  Any weights such that w1=w2 and w0 = -8 w1 
are correct; for example, the weights [-8,1,1]. 
 

c. This problem is the arithmetic complement of the XOR problem, therefore it is not 
linearly separable, and cannot be learned by a perceptron. 
 

Problem 12 Solution: convolutional layers have a lot fewer parameters than fully connected 
layers. Convolutional neurons have limited receptive fields (i.e., they respect image locality) and 
their responses are shift-invariant (i.e., the same pattern will produce the same response 
regardless of image location). Convolution is a very traditional image feature extraction operator 
and is easy to implement efficiently. 
 
Problem 13 Solution: might include two of the following possibilities 

1. Discretize the state space.  
2. Design a lower-dimensional set of discrete features to represent the states. 
3. Use a parametric approximator (e.g., a neural network) to estimate the Q function values 

and learn the parameters instead of directly learning the state-action value functions. 
 
Problem 14: Solution 
 
TD learning computes, in each iteration, Q(s,a)=Q(s,a)+alpha(R(s)+max_{a’} Q(s’,a’)-Q(s,a)).  
This is an O{MN} table, whose update requires one addition per time step, so the space 
complexity is O{MN}. 
SARSA learning first chooses the action a’, then computes Q(s,a)=Q(s,a)+alpha(R(s)+Q(s’,a’)-
Q(s,a)).  This has the same space complexity of O{MN}. 
 
Problem 15: Solution 
 
The actor computes P(a|s), the probability that a particular action, a, is the best action to take 
from state s.  The critic computes Q(s,a), the expected long-term discounted reward achieved by 
taking action a from state s.  If we multiply P(a|s)Q(s,a), and add over all possible actions, we get 
an estimate of the value of state s. 
 
Problem 16: Solution 
During the time that she lived in the White House, Malia Obama owned a dog named Bo.  The 
front door of the White House had a dog door, so that Bo could come and go as he pleased.  
Every Sunday, a Secret Service agent made sure that the dog door was locked.  Each weekday, 
on her way to school, Malia checked the dog door.  If it was locked, she unlocked it with 
probability 1/3.  If it was unlocked, she locked it with probability 1/4.  On days when the dog 
door was unlocked, Bo escaped the house with probability 3/4, and went wandering about 
unleashed on the White House lawn.  On days when the dog door was locked, the only way for 
Bo to escape was by begging to go out for a walk, and then breaking his leash; this happened 
with probability 1/10. 

 



a. What was the probability that Bo was found unleashed on the White House lawn on any 
given Sunday? 
  
Solution:  
P(escape|Sunday)=1/10. 
  

b. Given that Bo escaped on a Monday, what was the probability that the dog door was open 
on that day? 
Solution:  
P(escape, door open)=(1/3)(3/4)=1/4 
P(escape, door closed)=(2/3)(1/10)=1/15 
P(door open|escape) = (1/4)/(1/4+1/15)=15/19. 
 

c. A new janitor was hired at the White House.  He sometimes locked the dog door, and 
sometimes unlocked it.  He also sometimes let Bo escape by accident; at other times, he 
captured Bo and brought him back inside.  As a result of these changes, Malia discovered 
that her old model of Bo’s behavior was out of date, and had to be re-estimated.  She 
observed the following data: 
Day Dog Door Bo 
Sunday Locked Outside 
Monday  Unlocked Inside 
Tuesday Unlocked Outside 
Wednesday Locked Inside 
Thursday Locked Inside 
Friday Unlocked Outside 
Saturday Locked Inside 

 
Define Lt=1 to be the event “dog door locked on day t,” and define Ot=1 to be the event 
“Bo outside on day t.”  Estimate the conditional probability tables P(Lt+1|Lt) and P(Ot|Lt) 
from the table above. 

Solution:  

P(Lt+1=1|Lt=0)=2/3 

P(Lt+1=1|Lt=1)=1/3 

P(Ot=1|Lt=0)=2/3 

P(Ot=1|Lt=1)=1/4 

 

Problem 17 Solution 

The j’th softmax output, 𝐴X, is computed from the j’th softmax input, 𝑍X, in two steps: (1) first, 𝑍X 
is exponentiated, (2) second, exp(𝑍X) is divided by the summation of exp(𝑍]) over all possible 



values of k.  Each of these two steps is necessary so that the output, 𝐴X, will satisfy all of the 
axioms of probability.  

a. Which of the three axioms of probability does 𝐴X satisfy only because it is proportional to 
exp(𝑍X)?  State the axiom, in words, or give an equation. 

Solution: The first axiom: A probability must be non-negative, i.e., 𝐴X ≥ 0. 

b. Which of the three axioms of probability does 𝐴X satisfy only because it is proportional to 
1/∑ exp(𝑍])𝑘 ?  State the axiom, in words, or give an equation. 
 

Solution: The second axiom : P(True)=1, and the third axiom : 𝑃(𝐴 ∨ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) −
𝑃(𝐴 ∧ 𝐵).  Partial credit for saying that 1 = ∑ 𝐴]] , since that is true, but it is not an axiom of 
probability. 
 

Problem 18 

The softmax function is given by 

𝐴X =
exp 𝑍X

∑ exp 𝑍]]
 

Find 𝑑 ln 𝐴g /𝑑𝑍h. 

Solution : 

𝑑 ln 𝐴g
𝑑𝑍h

=
1
𝐴g
𝑑𝐴g
𝑑𝑍h

= −
1
𝐴g

exp 𝑍g
(∑ exp 𝑍]] )h

𝑑 exp 𝑍h
𝑑𝑍h

= −
exp𝑍h

∑ exp 𝑍]]
= −𝐴h 

Problem 19 

In an HMM-DNN hybrid, the DNN softmax outputs compute 𝑃(𝑄j|𝐸j), where 𝑄j is the HMM 
state variable, and 𝐸j is the observed evidence at time t.  Before using this probability in the 
HMM, we first need to divide it by 𝑃(𝑄j).  Why? 
 

Solution : 

An HMM needs the likelihood of each state 𝑃(𝐸j|𝑄j), not the state posterior 𝑃(𝑄j|𝐸j).  These 
two quantities are related as: 

𝑃(𝐸j|𝑄j) =
𝑃(𝑄j|𝐸j)𝑃(𝐸j)

𝑃(𝑄j)
 



So if we compute 𝑃(𝑄j|𝐸j)/𝑃(𝑄j), that is proportional to 𝑃(𝐸j|𝑄j).  The constant of 
proportionality is 𝑃(𝐸j), which doesn’t depend on the state variable, so it is irrelevant if our goal 
is to find the most probable state variable sequence (e.g., for a filtering operation, or a prediction 
operation).   

 


