What is an Antenna?

- Conductor that carries an electrical signal
 - Transmission
 - Radiates RF signal (electromagnetic energy) into space
 - Reception
 - Collects electromagnetic energy from space
 - The RF signal “is a copy of” the electrical signal in the conductor

- Two-way communication
 - Same antenna used for transmission and reception

- Efficiency of the antenna depends on its size, relative to the wavelength of the signal
 - e.g. quarter a wavelength
Radiation Patterns

- Radiation pattern
 - Graphical representation of radiation properties of an antenna
 - Depicted as two-dimensional cross section
 - Relative distance determines relative power
Radiation Patterns

- **Beam width (or half-power beam width)**
 - Measure of directivity of antenna
 - Angle at which the power radiated by the antenna is at least half of the power at the preferred direction

- **Reception pattern**
 - Receiving antenna’s equivalent to radiation pattern
Antenna Types: Dipoles

- **Simplest**
 - Quarter wave vertical (Marconi)
 - Automobile and portable radios
 - Half-wave dipole (Hertz)
 - Very simple and very common
 - Elements are quarter wavelength of frequency that is transmitted most efficiently
 - Donut shape
- **Many other designs**
Antenna Gain

- **Antenna gain**
- **Measure of directionality**
 - **Definition:** Power output, in a particular direction, compared to that produced in any direction by a perfect omnidirectional antenna.
 - **Example:** Antenna with a gain of 3dB
 - Improves on an omnidirectional antenna in that direction by 3dB (or a factor of 2).
 - Reduced power in other directions!
Antenna Gain

- Antenna gain
 - Measure of directionality
 - Definition: Power output, in a particular direction, compared to that produced in any direction by a perfect omnidirectional antenna
 - ex. Antenna with a gain of 3dB
 - Improves on an omnidirectional antenna in that direction by 3dB (or a factor of 2)
 - Reduced power in other directions!
 - Effective area
 - Related to physical size and shape of antenna
Propagation Modes

- **Ground-wave propagation**
 - More or less follows the contour of the earth
 - Past the visual horizon!
 - Electromagnetic wave induces a current in the earth’s surface
 - Slows the wavefront near the earth and causes the wavefront to tilt down
 - For frequencies up to about 2 MHz, e.g. AM radio
Propagation Modes

- **Sky wave propagation**
 - Signal “bounces” off the ionosphere back to earth
 - Can go multiple hops and 1000s of km
 - Used for amateur radio and international broadcasts
Propagation Modes

- **Line-of-sight (LOS) propagation**
 - Most common form of propagation
 - Happens above ~ 30 MHz
 - Subject to many forms of degradation!
Propagation Degrades RF Signals

- **Attenuation in free space**
 - Signal gets weaker as it travels over longer distances
 - Radio signal spreads out – free space loss
 - Refraction and absorption in the atmosphere

- **Obstacles can weaken signal through absorption or reflection**
 - Part of the signal is redirected
Propagation Degrades RF Signals

- **Multi-path effects**
 - Multiple copies of the signal interfere with each other
 - Similar to an unplanned directional antenna

- **Mobility**
 - Moving receiver causes another form of self interference
 - Node moves $\frac{1}{2}$ wavelength \rightarrow big change in signal strength
Refraction

- Speed of EM signals depends on the density of the material
 - Vacuum: 3×10^8 m/sec
 - Denser: slower
- Density is captured by refractive index
- Explains “bending” of signals in some environments
 - e.g. sky wave propagation
 - But also local, small scale differences in the air density, temperature, etc.
LOS Wireless Transmission

- Attenuation and attenuation distortion
- Free space loss
- Noise
- Atmospheric absorption
- Multipath
- Refraction
- Thermal noise
Attenuation

- Strength of signal falls off with distance over transmission medium

- Attenuation factors
 - Received signal must have sufficient strength so that circuitry in the receiver can interpret the signal
 - Signal must maintain a level sufficiently higher than noise to be received without error

⇒ Power control, amplifiers
 - Signal must not be too strong, overwhelming the circuitry of the receiver!
Attenuation

- Strength of signal falls off with distance over transmission medium

- Attenuation factors
 - Attenuation is greater at higher frequencies, causing distortion
 - Attenuation distortion
 ➞ Equalize attenuation
 - Amplify high frequencies more
Free Space Loss

- Loss increases quickly with distance \((d^2)\)
 - Ideal:

\[
\text{Loss} = \frac{P_t}{P_r} = \frac{(4\pi d)^2}{(G_r G_t \lambda^2)} = \frac{(4\pi f d)^2}{(G_r G_t c^2)}
\]

- Loss depends on frequency
 - Higher loss with higher frequency
 - Adjust gain of the antennas at transmitter and receiver
Log Distance Path Loss Model

- Log-distance path loss model
 - Captures free space attenuation plus additional absorption by obstacles:
 \[\text{Loss}_{\text{db}} = L_0 + 10 \ n \log_{10} \left(\frac{d}{d_0} \right) \]
 - \(L_0 \) is the loss at distance \(d_0 \)
 - \(n \) is the path loss distance component

- Value of \(n \) depends on the environment
 - 2 free space model
 - 2.2 office with soft partitions
 - 3 office with hard partitions
 - Higher if more and thicker obstacles
Noise Sources

- Noise = unwanted signals!
- Thermal noise
 - Agitation of the electrons
 - Function of temperature
 - Uniform across all frequencies (white noise)
 - Affects electronic devices and transmission media
 - We’re stuck with it!
 - Determines an upper bound on performance
Noise Sources

- **Intermodulation noise**
 - Mixing signals on same media
 - Appears as sum \((f_1 + f_2)\) or difference \((f_1 - f_2)\) of original frequencies

- **Cross talk**
 - Picking up other near-by signals
 - e.g. from other source-destination pairs
 - Significant in the ISM bands!

- **Impulse noise**
 - Irregular pulses of high amplitude and short duration
 - Harder to deal with
 - Interference from various RF transmitters
 - Should be dealt with at protocol level
 - Worse for digital data!
Other LOS Factors

- Absorption of energy in the atmosphere
 - Very serious at specific frequencies
 - e.g. water vapor (22 GHz) and oxygen (60 GHz)
 - If there is rain, use shorter paths or lower frequencies!
 - Obviously objects also absorb energy
Non LOS transmissions

- Signal can reach receiver indirectly
 - Reflection
 - Signal is reflected from a large (relative to wavelength) object
 - Diffraction
 - Signal is scattered by the edge of a large object – “bends”
 - Scattering
 - Signal is scattered by an object that is small relative to the wavelength
Multipath Effect

- Receiver receives multiple copies of the signal
 - Each copy follows a different path
 - Length of path determines phase-shift
- Copies can either strengthen or weaken each other
 - Depends on whether they are in our out of phase
Multipath Effect

- Changes of half a wavelength affect the outcome
 - Challenging for short wavelengths
 - 2.4 Ghz → 12 cm
 - 900 MHz → ~1 ft

- Small adjustments in location or orientation of the wireless devices can result in big changes in signal strength
Inter-Symbol Interference

- Larger difference in path length can cause inter-symbol interference (ISI)
 - Different from effect of carrier phase differences
- Delays on the order of a symbol time result in overlap of the symbols
 - Makes it very hard for the receiver to decode
 - Corruption issue – not signal strength
Can you still hear me ..

- **Fading**
 - Time variation of the received signal strength
 - Changes in the transmission medium or paths
 - Rain, moving objects, moving sender/receiver, …

- **Fast Fading**
 - Changes in distance of about half a wavelength
 - Big fluctuations in the instantaneous power

- **Slow Fading**
 - Changes in larger distances
 - Change in the average power levels
Fading - Example

- Frequency of 910 MHz or wavelength of about 33 cm
Fading Channel Models

- Statistical distribution that captures the properties of fading channels due to mobility
 - Fast versus slow
 - Flat versus selective

- Models depend on the physical environment
 - Obstacles in the environment
 - Movement in the environment
 - Mobility of devices

- Useful for evaluation of wireless technologies
 - How well does radio deal with channel impairments
 - Network simulators tend to use simpler channel models
Fading Channel Models

- Additive white Gaussian noise
 - Not representative of wireless channels

- Ricean distribution
 - LOS path plus indirect paths
 - Open space or small cells
 - $K =$ power in dominant path/power in scattered paths
 - Speed of movement and min-speed

- Rayleigh distribution
 - Multiple indirect paths but no dominating or direct LOS path
 - Lots of scattering, e.g. urban environment, in buildings
 - Sum of uncorrelated Gaussian variables
 - $K = 0$ is Raleigh fading

- Many others!
Selective versus Non-selective Fading

- Non-selective (flat) fading
 - Affects all frequency components in the signal equally
 - e.g. when only line of sight

- Selective fading
 - Frequency components experience different degrees of fading
 - Due to multipath
 - Region of interest is the spectrum used by the channel
Doppler Effect

- Movement by the transmitter, receiver, or objects in the environment can also create a doppler shift:
 \[f_m = \left(\frac{v}{c} \right) \times f \]

- Results in distortion of signal
 - Shift may be larger on some paths than on others
 - Shift is also frequency dependent (minor)

- Effect only an issue at higher speeds:
 - Speed of light: \(3 \times 10^8 \) m/s
 - Speed of car: \(10^5 \) m/h = 27.8 m/s
 - Shift at 2.4 GHz is 222 Hz
Power Budget

Receiver needs a certain SINR to be able to decode the signal
\[\text{Required SINR depends on coding and modulation schemes, i.e. the transmit rate} \]

Factors reducing power budget:
\[\text{Noise, attenuation (multiple sources), fading, ..} \]

Factors improving power budget:
\[\text{Antenna gain, transmit power} \]

\[R_{\text{power (dBm)}} = T_{\text{power (dBm)}} + \text{Gains (dB)} - \text{Losses (dB)} \]
Channel Reciprocity Theorem

- If the role of the transmitter and the receiver are interchanged, the instantaneous signal transfer function between the two remains unchanged.
 - Informally, the properties of the channel between two antennas is in the same in both directions.
 - I.e. the channel is symmetric.
- Channel in this case includes all the signal propagation effects and the antennas.
Reciprocity Does not Apply to Wireless “Links”

- “Link” corresponds to the packet level connection between the devices
 - In other words, the throughput you get in the two directions can be different

- The reason is that many factors that affect throughput may be different on the two devices
 - Transmit power and receiver threshold
 - Quality of the transmitter and receiver (radio)
 - Observed noise
 - Interference
 - Different antennas may be used