CS/ECE 439: Wireless Networking

MAC Layer – Power!
Energy Conservation Techniques

- Wi-Fi devices consume significant amounts of energy when idle
 - Idle ≈ 1W

- Conservation Approach: Device suspension (sleep)
 - Reduced energy consumption
 - Sleep ≈ 0.05W
 - Suspended communication capabilities
 - Buffer overflow
 - Wasted bandwidth
 - Lost messages
 - If all nodes are asleep, no one can communicate!
Communication Device Suspension

- **Goal**
 - Adapt the sleep duration to reflect the communication patterns of the application
 - Remain awake when there is active communication
 - Otherwise, suspend

- **Ideal**
 - Sleep whenever there is no data to receive from the base station
 - Wake up for any incoming receptions
Communication Device Suspension

- **Problems**
 - How can a sender differentiate between a suspended node and a node that has gone away?
 - Suspended receiver ⇒ buffer packet
 - Confused sender ⇒ dropped packet, extra energy consumption
 - How can a suspended node know there is communication for it?
 - Wake up too soon ⇒ waste energy
 - Wake up too late ⇒ delay/miss packets
Communication Device Suspension

- **Approach**
 - Ensure overlap between sender’s and receiver’s awake times

- **Protocols**
 - Triggered Resume
 - Periodic Resume
 - Synchronous
 - Asynchronous
Triggered Resume

Approach

- Use a second control channel (second radio)
 - Sender transmits RTS or beacon messages in control channel
 - Receiver replies in control channel and turns on main channel

- Main channel is only used for data

- Second channel
 - Must consume less energy than the main channel
 - Must not interfere with the main channel
 - Ex: RFID, 915Mhz
Triggered Resume

- **Protocols**
 - **Power Aware Multi-Access Protocol (PAMAS)**
 - Shut off device when channel is busy
 - **Wake-on-Wireless**
 - Control channel is always active
 - **STEM**
 - Control channel is managed similar to IEEE 802.11 PSM
Triggered Resume

- **Approach – PAMAS**
 - **Data channel**
 - Power off radio when data is destined to a different node
 - **Control channel**
 - Probe neighbors to find longest remaining transfer

![Diagram showing the PAMAS approach with nodes A, B, C, D, and E.]

- Node A
- Node B
- Node C

Legend:
- **Awake/listen**
- **RTS/CTS**
- **Data transmission/reception**
Triggered Resume

- **Dual radio**
 - Low duty cycle paging channel to wake up a neighboring node
 - Use separate radio for the paging channel to avoid interference with regular data forwarding
 - Trades off energy savings for setup latency
Triggered Resume

- Dual radio

- Node A - control

- Node A - data

- Node B - control

- Node B - data

- Time

- Awake/listen
- Transmit request
- Receive and reply
- Data transmission/reception
Triggered Resume

Challenges

- Two radios are more complex than one
- Channel characteristics may not be the same for both radios
 - A successful RTS on the control channel does not guarantee a the reverse channel works
 - A failed RTS on the control channel does not indicate that the reverse channel does not work
Periodic Resume

- **Approach**
 - Suspend most of the time
 - Periodically resume to check for pending communication

- **Communication indications**
 - Out-of-band channel
 - In-band signaling

- **Protocols**
 - Synchronous
 - Asynchronous
Synchronous Periodic Resume

- **Basic Idea**
 - Time is slotted
 - Nodes selectively remain awake for full slot duration
 - Discovery occurs when two active slots overlap
 - If all nodes are synchronized, all nodes are guaranteed to have overlapping awake periods
Synchronous Periodic Resume

- **Protocol: IEEE 802.11 Power Save Mode (PSM)**
 - Nodes are synchronized and wakeup periodically (Beacon Period)
 - Each beacon period is broken up into two segments
 - **Ad-hoc Traffic Indication Map (ATIM) Window**
 - Announcement in the ATIM indicates data
 - Target node responds with an ATIM ACK
 - If a node receives no announcements, it goes back to sleep
 - **Transmission period**
 - Sender can transmit packet until the end of the beacon period
Synchronous Periodic Resume

IEEE 802.11 PSM

Node 1

- B_1 Beacon Frame
- Random Delay
- Transmit ATIM
- B_2 ATIM window
- Transmit Data
- B_1 Beacon Interval

Node 2

- B_2 Beacon Frame
- Random Delay
- Transmit ATIM
- B_2 ATIM window
- Acknowledge ATIM
- d Acknowledge Data
- a Acknowledge Data

Time (t)
Synchronous Periodic Resume

- **Centralized solution**
 - Synchronization driven by base station
 - In beacon message

- **Distributed solution**
 - No base station
 - Synchronization protocols can be used to loosely synchronize nodes
 - Nodes wake up for a short period and check for channel activity
 - Return to sleep if no activity detected
Distributed Synchronous Periodic Resume

- Persistent loose synchronization
 - Constant, high synchronization overhead
Distributed Synchronous Periodic Resume

- **Signaling**
 - No synchronization overhead
 - High signaling overhead
 - Long preambles, all nodes wake up

A has data for B
Long preamble wakes up B

Unnecessary preamble

Overhearing
Distributed Synchronous Periodic Resume

- **Signaling: Wake-up packets**
 - Send wake-up packets instead of preamble
 - Wake-up packets tell when data is starting so that receiver can go back to sleep as soon as it receives one wake-up packet

A has data for B
Distributed Synchronous Periodic Resume

- **Signaling: Multiple send**
 - Send data several times
 - Receiver can listen at any time and get all data

- **Problem with all approaches**
 - Communication costs are mostly paid by the sender
 - The amount of time the sender spends transmitting may be much longer than the actual data length
Synchronous Periodic Resume

- Problems
 - Maintaining synchronization may be difficult
 - Throughput is limited by the size of the notification window
 - If the notification window is too small, packets get buffered
 - Buffers may eventually overflow
Asynchronous Periodic Resume

Approach
- Stay awake longer to guarantee overlap of awake periods
- Overlap is guaranteed if the awake periods are more than half the beacon period
Asynchronous Periodic Resume

- Basic protocol
 - Use beacon messages at the start of awake periods
 - Some protocols use notification messages (similar to ATIM)
Asynchronous Periodic Resume

Problem

- No guarantee that all nodes will hear each other’s beacon or notification messages
Solution

- Have a beacon at the beginning and end of the beacon interval
Asynchronous Periodic Resume

- **Alternate solution**
 - Beacon at the beginning of odd periods
 - Beacon at the end of even periods
Asynchronous Periodic Resume

Problem

- Nodes stay awake more than half the time
- Wastes too much energy!
Asynchronous Periodic Resume

- **Reduce awake time**
 - Do not wake up every beacon interval
 - Delay depends on number of overlapping intervals

![Diagram](image)

- Beacon Interval
- Node 1
- Node 2
- Beacon window
- Awake Period
- Beacon Message
- time
Asynchronous Periodic Resume

- **Randomized Approach**
 - **Birthday protocol**
 - Randomly select a slot to wake up in with a given probability
 - Advantage
 - Good average case performance
 - Disadvantage
 - No bounds on worst-case discovery latency

![Awake slots](image.png)
Asynchronous Periodic Resume

- **Extended sleep**
 - Wake up once every T intervals
 - Adds delay up to $T \times$ length of beacon interval

![Diagram](image)
Asynchronous Periodic Resume

- **Quorum**
 - Increase number of beacon intervals in cycle \((n)\)
 - Increase number of awake periods \((2n - 1)\) of \(n^2\)

Delay is determined by where the overlap is (worst case \(n^2\))
Asynchronous Periodic Resume

- **Quorum**
 - Example: $n = 4$, $n^2 = 16$, $2n-1 = 7$
 - Two overlapping intervals: delay $= n^2 - 2$

![Node i and Node j diagrams with awake states indicated]

- Node i is awake
- Node j is awake
- Both nodes are awake
Asynchronous Periodic Resume

- **Deterministic**
 - Find a feasible overlapping pattern
 - Guarantee at least one overlapping interval
 - Requires knowledge of number of nodes

![Awake Pattern Diagram]

© CS/ECE 439 Staff, University of Illinois Fall 2016
Asynchronous Periodic Resume

- Deterministic: Prime-based

 - Disco
 - Pick two primes p_1 and p_2
 - Wake up every p_1 and p_2 slot
 - Guarantees discovery in $p_1 \times p_2$ slots
Asynchronous Periodic Resume

- Deterministic: Prime-based
 - U-Connect
 - Select 1 prime p
 - Wake up every pth slot and $(p-1)/2$ slots every p^2 slots
 - Overlap is guaranteed within p^2 slots
Asynchronous Periodic Resume

- **Searchlight**
 - Have a **deterministic** discovery schedule that has a **pseudo-random** component

Node A:

Node B:
Asynchronous Periodic Resume

- **Searchlight**
 - Two slots per t slots (period)
 - Anchor slot: Keep one slot fixed at slot 0
 - Probe slot: Move around the other slot sequentially
 - Guaranteed overlap in \(t \times t/2 \) slots
 - Based on the time needed to ensure a probe-anchor overlap
 - Probe-probe overlap can also lead to discovery
 - Sequential scanning means less chance of a probe-probe overlap

Discovery through anchor-probe overlap
Asynchronous Periodic Resume

- **Searchlight**
 - Extension: randomized probing
 - Move the probe slot randomly
 - Each node randomly chooses a schedule for its probe slot that repeats every \((t*t/2)\) slots
 - Schedules of two nodes appear random to each other
- **Advantage**
 - Retains the same worst-case bound
 - Improves average case performance

Discovery through probe-probe overlap
Asynchronous Periodic Resume

- **Challenges**
 - Reducing time spent awake
 - Reducing delay
 - No support for broadcast
 - None of the current approaches provide an interval where all nodes are awake