
Spring 2020 © CS 438 Staff - University of Illinois 1

Reliable Transmission



Spring 2020 © CS 438 Staff - University of Illinois 2

Reliable Transmission

Hello!

My

computer’s

name

is

Alice.

Hello!

Alice.

Alice Bob



Spring 2020 © CS 438 Staff - University of Illinois 3

Reliable Transmission

Hello!

My

Computer’
s

name

is

Alice.

My

name

is

Alice.Alice Bob



Spring 2020 © CS 438 Staff - University of Illinois 4

Reliable Transmission

 Suppose error protection identifies 
valid and invalid packets
 How?

 Can we make the channel appear 
reliable?
 Insure packet delivery
 Maintain packet order
 Provide reliability at full link capacity



Reliable Transmission Outline

 Fundamentals of Automatic Repeat reQuest
(ARQ) algorithms
 A family of algorithms that provide reliability 

through retransmission
 ARQ algorithms (simple to complex)

 stop-and-wait
 concurrent logical channels
 sliding window

 go-back-n
 selective repeat

 Alternative: forward error correction (FEC)
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Terminology

 Acknowledgement (ACK)
 Receiver tells the sender when a frame is 

received
 Selective acknowledgement (SACK)

 Specifies set of frames received
 Cumulative acknowledgement (ACK)

 Have received specified frame and all previous
 Negative acknowledgement (NAK) 

 Receiver refuses to accept frame now, 
e.g., when out of buffer space
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Terminology

 Timeout (TO)
 Sender decides the frame (or ACK) was 

lost
 Sender can try again
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Stop-and-Wait

 Basic idea
1. Send a frame
2. Wait for an ACK or TO
3. If TO, go to 1
4. If ACK, get new frame, go to 1
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Stop-and-Wait: Success
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Stop-and-Wait: Lost Frame
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Stop-and-Wait: Lost ACK
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Stop-and-Wait: Delayed 
Frame
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distinguish between 

two frames?

How many bits do you 
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numbers?
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Stop-and-Wait

 Goal
 Guaranteed, at-most-once delivery

 Protocol Challenges
 Dropped frame/ACK
 Duplicate frame/ACK

 Requirements
 1-bit sequence numbers (if physical network 

maintains order)
 sender tracks frame ID to send
 receiver tracks next frame ID expected
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Stop-and-Wait State Diagram

Expect: ?
Send: ?

Send: 1
Expect: 0

Expect: 1
Send: 0

Send: 1
Expect: 1

Receive frame 
0

Receive frame 
1

Receive 
ACK 1

Receive 
ACK 0

Receive ACK 1

Receive frame 
0

Expect: 0
Send: 0

Receiver
Sender
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Stop-and-Wait

 We have achieved
 Frames delivered reliably and in order
 Is that enough?

 Problem
 Only allows one outstanding frame

 Does not keep the pipe full
 Example

 100ms RTT
 One frame per RTT = 1KB
 1024x8x10 = 81920 kbps
 Regardless of link bandwidth!
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Concurrent Logical Channels

 Used in ARPANET IMP-IMP protocol 
 Idea

 Multiplex logical channels over a physical link
 Include channel ID in header

 Use stop-and-wait for each channel
 Result

 Each channel is limited to stop-and-wait 
bandwidth

 Aggregate bandwidth uses full physical channel
 Supports multiple communicating processes
 Can use more than one channel per process
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Concurrent Logical Channels

 Problem
 Bandwidth

 Use of a single channel per process may 
waste BW

 Ordering
 Use of multiple channel per process does not 

maintain packet ordering across channels!
 If application has n channels, and one needs 

a retransmission, it will always be one packet 
behind the other channels
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ARQ: Where are We?

 Goals for reliable transmission
 Make channel appear reliable
 Maintain packet order (usually)
 Impose low overhead/allow full use of link

 Stop-and-Wait
 Provides reliable in-order delivery
 Sacrifices performance

 Concurrent Logical Channels
 Provides reliable delivery at full link bandwidth
 Sacrifices packet ordering

 Sliding Window Protocol
 Achieves all three!
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Sliding Window Protocol

 Most important and general ARQ algorithm
 Used by TCP
 Outline

 Concepts
 Terminology (from P&D)
 Details
 Code example
 Proof of eventual in-order delivery
 Classification scheme 

 (go-back-n, selective repeat)
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Keeping the Pipe Full

ReceiverSender
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Advantages:
More frames in pipe
Less time overall
Piggybacked ACKs

Stop-and-Wait Goal
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Concepts

 Consider an ordered stream of data frames
 Stop-and-Wait

 Window of one frame
 Slides along stream over time

Time
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Concepts

 Sliding Window Protocol
 Multiple-frame send window
 Multiple frame receive window

Time
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Sliding Window

 Send Window
 Fixed length
 Starts at earliest unacknowledged frame
 Only frames in window are active

Time

Sent and 
acknowledged

Sent and not 
acknowledged

Available, outside 
send window Unavailable
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Sliding Window

 Receive Window
 Fixed length (unrelated to send window)
 Starts at earliest frame not received
 Only frames in window accepted

Received and 
acknowledged

Received and not 
acknowledged

Received, outside 
receive window Not yet received

Time
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Sliding Window Terminology

 Sender Parameters
 Send Window Size (SWS)
 Last Acknowledgement Received (LAR)
 Last Frame Sent (LFS)

SWS = 4

LAR = 14 LFS = 18

13 14 15 16 17 18 19 20 21 22 23 24

Time

Invariant: LFS – LAR ≤ SWS
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Sliding Window Terminology

 Receiver Parameters
 Receive Window Size (RWS)
 Next Frame Expected (NFE)
 Last Frame Acceptable (LFA)

RWS = 6

NFE = 4 LFA = 9 Invariant: LFA – NFE + 1 ≤ RWS

2 3 5 7 10 11 12 13

Time

4 6 8 9
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SWS = 4

LAR = 14 LFS = 18

13 14 15 16 17 18 19 20 21 22 23 24

Time

Receive ACK 16

SWS = 4

LAR = 14 LFS = 18

13 14 15 16 17 18 19 20 21 22 23 24

TimeSWS = 4

LAR = 16 LFS = 20

13 17 18 19 20 21 22 23 24

Time

14 15 16

Sliding Window Details

 Sender Tasks
 Assign sequence numbers
 On ACK Arrival

 Advance LAR
 Slide window
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Sliding Window Details

 Receiver Tasks
 On Frame Arrival (N)

 Silently discard if outside of window
 N < NFE (NACK possible, too)
 N >= NFE + RWS

 Send cumulative ACK if within window
RWS = 6

NFE = 4 LFA = 9

2 3 5 7 10 11 12 13

Time

4 6 8 9

Receive Frame 6

Send ACK 3

Receive Frame 4

64

Send ACK 7
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Sliding Window Details

 Receiver Tasks
 On Frame Arrival (N)

 Silently discard if outside of window
 N < NFE (NACK possible, too)
 N >= NFE + RWS

 Send cumulative ACK if within window
RWS = 6

NFE = 8 LFA = 13

2 3 7 10 11 12 13

Time

4 8 95 6
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Sliding Window Details

 Sequence number space
 Finite number, so wrap around
 Need space larger than SWS 

(outstanding frames)
 In fact, need twice as large

 Example
 3-bit sequence numbers (0-7)
 RWS = SWS = 7



Sliding Window Details

 Is log2(SWS+1) bits enough?
 No. Example:
 3-bit sequence numbers (0-7)
 RWS = SWS = 7
 Why isn’t 3 bits enough (can you think of 

an example where it doesn’t work?)
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Sliding Window Details

 Example of incorrect 
behavior
 3-bit sequence 

numbers 0-7
 RWS = SWS = 7
 Sender transmits 0-6
 All arrive, but ACK’s 

lost
 Sender retransmits
 Receiver accepts as 

second incarnation of 
0-6

Send(0)
Send(1)
Send(2)
Send(3)
Send(4)
Send(5)
Send(6)

Send(0)
Send(1)
Send(2)
Send(3)
Send(4)
Send(5)
Send(6)

Timeout
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Sliding Window Sequence 
Numbers

 How many sequence numbers are 
necessary?
 Key questions

 Where can the send window be?
 What frame can be received next? 
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Sliding Window Sequence 
Numbers

 Assume SWS = RWS (simplest, and typical)
 Sender transmits full SWS
 Two extreme cases:

 None received (waiting for 0...SWS - 1)
 All received (waiting for SWS...2 SWS - 1)

 All possible packets must have unique sequence 
numbers

Send WindowSend WindowSend WindowSend Window

Receive Window
NFE

Send Window

1 2 3 4 5 6 7 8 9 10 11 12
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Sliding Window Sequence 
Numbers

 Extreme Locations for SWS
 Requirements

 If a received packet is not in the receive window with no 
wrap, then it must not be in the receive window with wrap!

 Correctness condition:
 Number of Sequence Numbers ≥ SWS + RWS
 Alternates between two halves of the sequence number 

space

Send Window Send Window

Receive Window
NFE

1 2 3 4 5 6 7 8 9 10 11 12
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Sliding Window Sequence 
Numbers

 Example
 If SWS = RWS = 8
 At least 16 sequence numbers are needed
 A 4-bit sequence number space is enough

 Warning
 P&D sometimes uses the variable Max_Seq_Num for the 

number of sequence numbers and sometimes for the 
maximum sequence number (these differ by one!)

 Use Num_Seq_Num for the number of sequence 
numbers: 0, 1, …, Num_Seq_Num – 1



Window Sizes

 How big should we make SWS?
 Compute from delay x bandwidth

 How big should we make RWS?
 Depends on buffer capacity of receiver
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Delay x Bandwidth Product -
Revisited

 Amount of data in “pipe”

 channel = pipe
 delay = length
 bandwidth = area of a cross section
 bandwidth x delay product = volume
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Bandwidth

Delay



Delay x Bandwidth Product

 Bandwidth x delay product
 How many bits the sender must transmit before the first bit 

arrives at the receiver if the sender keeps the pipe full
 Takes another one-way latency to receive a response 

from the receiver
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Sliding Window Protocol Code 
Example

 Parameters
 last acknowledgement received (LAR)
 last frame sent (LFS)
 next frame expected (NFE)
 last frame acceptable (LFA)
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Sliding Window Protocol Code 
Example

 Constants
 Rend/receive window size (SWS/RWS)
 Maximum sequence number 

(MAX_SEQ_NO)
 Frame size (FRAME_SIZE, constant for 

simplicity)
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Sliding Window Protocol Code 
Example

 Data structures
 Next frame expected (an integer)
 One frame buffer for each entry in receive 

window
 One presence bit for each entry

 Receive window cycles through
 Sequence numbers
 Data structures (thus RWS must divide 

MAX_SEQ_NO)



Spring 2020 © CS 438 Staff - University of Illinois 44

Sliding Window Protocol Code 
Example
#define RWS 8 /* receive window size    */
#define MAX_SEQ_NO 16 /* max. sequence number+1 */

/* (must be multiple of   */
/*  RWS for this code)    */

#define FRAME_SIZE 1000 /* constant for simplicity*/

char buf[RWS][FRAME_SIZE]; /* RWS frame buffers */
int present[RWS]; /* are frame buffers full?*/

/*   (initialized to 0’s) */
int NFE = 0; /* next frame expected    */
extern void send_ack (int seq_no);
extern void pass_to_app (char* data);
void recv_frame (char* data, int seq_no);
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Sliding Window Protocol Code 
Example
void recv_frame (char* data, int seq_no)
{

int idx; /* index into data structures */
int i; /* loop index                 */

/* Map sequence numbers NFE...predecessor (NFE)
into 0...MAX_SEQ_NO - 1, then see if seq_no
falls within the receive window. */

if (((seq_no + (MAX_SEQ_NO - NFE)) % MAX_SEQ_NO)
< RWS) {

/* Frames outside the window */
/* are ignored. (but an ACK  */
/* is sent; why?)            */

if (seq_no - NFE)< RWS)
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Sliding Window Protocol Code 
Example

/* Calculate index into data structures. */
idx = (seq_no % RWS);

if (!present[idx]) {/* frame is not dup */
present[idx] = 1;/* mark received       */
memcpy (buf[idx], data, FRAME_SIZE);

/* copy data into buf  */
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Sliding Window Protocol Code 
Example

/* Got a new frame; pass frames up to host? */
for (i = 0; i < RWS; i++) {

idx = (i + NFE) % RWS;    /* Re-use idx.*/
/* first missing frame becomes NFE */
/* after this loop terminates */
if (!present[idx]) break;

/* Frame is present—send it up! */
pass_to_app (buf[idx]);
present[idx] = 0; /* Mark buffer empty. */

}
/* Advance NFE to first missing frame. */
NFE = (NFE + i) % MAX_SEQ_NO;

}
NFE = NFE + i;
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Sliding Window Protocol Code 
Example

/* Frame handled (might have */
/* been duplicate). */

} /* (Send ACK for any frame received */

/* Now send acknowledgement for               */
/* predecessor (NFE).                         */
send_ack ((NFE + MAX_SEQ_NO - 1) % MAX_SEQ_NO);

}
send_ack (NFE - 1);



Correctness

 Claim
 A sliding window protocol leads to in-order delivery of all 

frames
 Assumptions

 All sequence numbers are different
 Frames can be lost
 Frames can be delayed an arbitrarily finite amount of time
 Frames are not reordered
 Frames can arrive with detectable errors

 Are these assumption adequate?
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Sliding Window Protocol 
Correctness

 Need one more assumption
 Any given frame is received without errors after 

a finite number of retransmissions
 Proof in two steps

 Establish correctness assuming infinite 
sequence number space

 Show that finite sequence number space does 
not affect result as long as it has 
>= 2 max (SWS, RWS) possible numbers
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Sliding Window Protocol 
Correctness

 Step 1: establish correctness assuming 
infinite sequence number space
 Use induction on k with invariant

“the kth frame is eventually received”

 Step 2: show that finite sequence number 
space does not affect result as long as it has  
>= 2 max (SWS, RWS) possible numbers

RWS = 6

NFE = 4 LFA = 9 What frame can arrive next?

2 3 5 7 10 11 12 13

Time

4 6 8 9
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ARQ Algorithm Classification

 Three Types:
 Stop-and-Wait: SWS = 1 RWS = 1
 Go-Back-N: SWS = N RWS = 1
 Selective Repeat: SWS = N RWS = M

 Usually M = N

Selective Repeat
Go-Back-N

Stop-And-Wait
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Sliding Window Variations: 
Go-Back-N

 SWS = N, RWS = 1
 Receiver only buffers one frame
 If a frame is lost, the sender may need to 

retransmit up to N frames
 i.e., sender “goes back” N frames

 Variations
 How long is the frame timeout?
 Does receiver send NACK for out-of-sequence 

frame?
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Go-Back-N: Cumulative ACKs

A

B

Packets 2,3,4,5 
are 

retransmitted

loss

Timeout for Packet 2
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Sliding Window Variations: 
Selective Repeat

 SWS = N, RWS = M
 Receiver buffer M frames
 If a frame is lost, sender must only resend

 Frames lost within the receive window
 Variations

 How long is the frame timeout?
 Use cumulative or per-frame ACK?
 Does protocol adapt timeouts?
 Does protocol adapt SWS and/or RWS?
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Selective Repeat

A

B

Packet 2 is 
retransmitted

loss
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Roles of a Sliding Window 
Protocol

 Reliable delivery on an unreliable link
 Core function

 Preserve delivery order
 Controlled by the receiver

 Flow control
 Allow receiver to throttle sender

 Separation of Concerns
 Must be able to distinguish between different functions 

that are sometimes rolled into one mechanism
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Forward Error Correction 
(FEC)

 Alternative to ARQ algorithms
 Idea

 Error correction instead of error detection
 Send extra information to avoid retransmission 

(i.e., fix errors first/forward rather than 
afterward/backward)

 Why
 Very high latency connections
 Difficult for retransmission
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