
Spring 2020 © CS 438 Staff - University of Illinois 1

Reliable Transmission

Spring 2020 © CS 438 Staff - University of Illinois 2

Reliable Transmission

Hello!

My

computer’s

name

is

Alice.

Hello!

Alice.

Alice Bob

Spring 2020 © CS 438 Staff - University of Illinois 3

Reliable Transmission

Hello!

My

Computer’
s

name

is

Alice.

My

name

is

Alice.Alice Bob

Spring 2020 © CS 438 Staff - University of Illinois 4

Reliable Transmission

 Suppose error protection identifies
valid and invalid packets
 How?

 Can we make the channel appear
reliable?
 Insure packet delivery
 Maintain packet order
 Provide reliability at full link capacity

Reliable Transmission Outline

 Fundamentals of Automatic Repeat reQuest
(ARQ) algorithms
 A family of algorithms that provide reliability

through retransmission
 ARQ algorithms (simple to complex)

 stop-and-wait
 concurrent logical channels
 sliding window

 go-back-n
 selective repeat

 Alternative: forward error correction (FEC)

Spring 2020 © CS 438 Staff - University of Illinois 5

Spring 2020 © CS 438 Staff - University of Illinois 6

Terminology

 Acknowledgement (ACK)
 Receiver tells the sender when a frame is

received
 Selective acknowledgement (SACK)

 Specifies set of frames received
 Cumulative acknowledgement (ACK)

 Have received specified frame and all previous
 Negative acknowledgement (NAK)

 Receiver refuses to accept frame now,
e.g., when out of buffer space

Spring 2020 © CS 438 Staff - University of Illinois 7

Terminology

 Timeout (TO)
 Sender decides the frame (or ACK) was

lost
 Sender can try again

Spring 2020 © CS 438 Staff - University of Illinois 8

Stop-and-Wait

 Basic idea
1. Send a frame
2. Wait for an ACK or TO
3. If TO, go to 1
4. If ACK, get new frame, go to 1

Spring 2020 © CS 438 Staff - University of Illinois 9

Stop-and-Wait: Success

Sender

Ti
m

eo
ut

Ti
m

e
Receiver

RTT

What can go
wrong?

How will it affect
our protocol?

How long should
the timeout be?

Spring 2020 © CS 438 Staff - University of Illinois 10

Stop-and-Wait: Lost Frame

Sender

Ti
m

eo
ut

Ti
m

e
Receiver

Ti
m

eo
ut

RTT

Spring 2020 © CS 438 Staff - University of Illinois 11

Stop-and-Wait: Lost ACK

Sender

Ti
m

eo
ut

Ti
m

e
Receiver

Ti
m

eo
ut

RTT

Spring 2020 © CS 438 Staff - University of Illinois 12

Stop-and-Wait: Delayed
Frame

Sender

Ti
m

eo
ut

Ti
m

e
Receiver

Ti
m

eo
ut

RTT

How can receiver
distinguish between

two frames?

How many bits do you
need for sequence

numbers?

Spring 2020 © CS 438 Staff - University of Illinois 13

Stop-and-Wait

 Goal
 Guaranteed, at-most-once delivery

 Protocol Challenges
 Dropped frame/ACK
 Duplicate frame/ACK

 Requirements
 1-bit sequence numbers (if physical network

maintains order)
 sender tracks frame ID to send
 receiver tracks next frame ID expected

Spring 2020 © CS 438 Staff - University of Illinois 14

Stop-and-Wait State Diagram

Expect: ?
Send: ?

Send: 1
Expect: 0

Expect: 1
Send: 0

Send: 1
Expect: 1

Receive frame
0

Receive frame
1

Receive
ACK 1

Receive
ACK 0

Receive ACK 1

Receive frame
0

Expect: 0
Send: 0

Receiver
Sender

Spring 2020 © CS 438 Staff - University of Illinois 15

Stop-and-Wait

 We have achieved
 Frames delivered reliably and in order
 Is that enough?

 Problem
 Only allows one outstanding frame

 Does not keep the pipe full
 Example

 100ms RTT
 One frame per RTT = 1KB
 1024x8x10 = 81920 kbps
 Regardless of link bandwidth!

Spring 2020 © CS 438 Staff - University of Illinois 16

Concurrent Logical Channels

 Used in ARPANET IMP-IMP protocol
 Idea

 Multiplex logical channels over a physical link
 Include channel ID in header

 Use stop-and-wait for each channel
 Result

 Each channel is limited to stop-and-wait
bandwidth

 Aggregate bandwidth uses full physical channel
 Supports multiple communicating processes
 Can use more than one channel per process

Spring 2020 © CS 438 Staff - University of Illinois 17

Concurrent Logical Channels

 Problem
 Bandwidth

 Use of a single channel per process may
waste BW

 Ordering
 Use of multiple channel per process does not

maintain packet ordering across channels!
 If application has n channels, and one needs

a retransmission, it will always be one packet
behind the other channels

Spring 2020 © CS 438 Staff - University of Illinois 18

ARQ: Where are We?

 Goals for reliable transmission
 Make channel appear reliable
 Maintain packet order (usually)
 Impose low overhead/allow full use of link

 Stop-and-Wait
 Provides reliable in-order delivery
 Sacrifices performance

 Concurrent Logical Channels
 Provides reliable delivery at full link bandwidth
 Sacrifices packet ordering

 Sliding Window Protocol
 Achieves all three!

Spring 2020 © CS 438 Staff - University of Illinois 19

Sliding Window Protocol

 Most important and general ARQ algorithm
 Used by TCP
 Outline

 Concepts
 Terminology (from P&D)
 Details
 Code example
 Proof of eventual in-order delivery
 Classification scheme

 (go-back-n, selective repeat)

Spring 2020 © CS 438 Staff - University of Illinois 20

Keeping the Pipe Full

ReceiverSender

Ti
m

e

ReceiverSender

Ti
m

e

Advantages:
More frames in pipe
Less time overall
Piggybacked ACKs

Stop-and-Wait Goal

Spring 2020 © CS 438 Staff - University of Illinois 21

Concepts

 Consider an ordered stream of data frames
 Stop-and-Wait

 Window of one frame
 Slides along stream over time

Time

Spring 2020 © CS 438 Staff - University of Illinois 22

Concepts

 Sliding Window Protocol
 Multiple-frame send window
 Multiple frame receive window

Time

Spring 2020 © CS 438 Staff - University of Illinois 23

Sliding Window

 Send Window
 Fixed length
 Starts at earliest unacknowledged frame
 Only frames in window are active

Time

Sent and
acknowledged

Sent and not
acknowledged

Available, outside
send window Unavailable

Spring 2020 © CS 438 Staff - University of Illinois 24

Sliding Window

 Receive Window
 Fixed length (unrelated to send window)
 Starts at earliest frame not received
 Only frames in window accepted

Received and
acknowledged

Received and not
acknowledged

Received, outside
receive window Not yet received

Time

Spring 2020 © CS 438 Staff - University of Illinois 25

Sliding Window Terminology

 Sender Parameters
 Send Window Size (SWS)
 Last Acknowledgement Received (LAR)
 Last Frame Sent (LFS)

SWS = 4

LAR = 14 LFS = 18

13 14 15 16 17 18 19 20 21 22 23 24

Time

Invariant: LFS – LAR ≤ SWS

Spring 2020 © CS 438 Staff - University of Illinois 26

Sliding Window Terminology

 Receiver Parameters
 Receive Window Size (RWS)
 Next Frame Expected (NFE)
 Last Frame Acceptable (LFA)

RWS = 6

NFE = 4 LFA = 9 Invariant: LFA – NFE + 1 ≤ RWS

2 3 5 7 10 11 12 13

Time

4 6 8 9

Spring 2020 © CS 438 Staff - University of Illinois 27

SWS = 4

LAR = 14 LFS = 18

13 14 15 16 17 18 19 20 21 22 23 24

Time

Receive ACK 16

SWS = 4

LAR = 14 LFS = 18

13 14 15 16 17 18 19 20 21 22 23 24

TimeSWS = 4

LAR = 16 LFS = 20

13 17 18 19 20 21 22 23 24

Time

14 15 16

Sliding Window Details

 Sender Tasks
 Assign sequence numbers
 On ACK Arrival

 Advance LAR
 Slide window

Spring 2020 © CS 438 Staff - University of Illinois 28

Sliding Window Details

 Receiver Tasks
 On Frame Arrival (N)

 Silently discard if outside of window
 N < NFE (NACK possible, too)
 N >= NFE + RWS

 Send cumulative ACK if within window
RWS = 6

NFE = 4 LFA = 9

2 3 5 7 10 11 12 13

Time

4 6 8 9

Receive Frame 6

Send ACK 3

Receive Frame 4

64

Send ACK 7

Spring 2020 © CS 438 Staff - University of Illinois 29

Sliding Window Details

 Receiver Tasks
 On Frame Arrival (N)

 Silently discard if outside of window
 N < NFE (NACK possible, too)
 N >= NFE + RWS

 Send cumulative ACK if within window
RWS = 6

NFE = 8 LFA = 13

2 3 7 10 11 12 13

Time

4 8 95 6

Spring 2020 © CS 438 Staff - University of Illinois 30

Sliding Window Details

 Sequence number space
 Finite number, so wrap around
 Need space larger than SWS

(outstanding frames)
 In fact, need twice as large

 Example
 3-bit sequence numbers (0-7)
 RWS = SWS = 7

Sliding Window Details

 Is log2(SWS+1) bits enough?
 No. Example:
 3-bit sequence numbers (0-7)
 RWS = SWS = 7
 Why isn’t 3 bits enough (can you think of

an example where it doesn’t work?)

Spring 2020 © CS 438 Staff - University of Illinois 31

Spring 2020 © CS 438 Staff - University of Illinois 32

Sliding Window Details

 Example of incorrect
behavior
 3-bit sequence

numbers 0-7
 RWS = SWS = 7
 Sender transmits 0-6
 All arrive, but ACK’s

lost
 Sender retransmits
 Receiver accepts as

second incarnation of
0-6

Send(0)
Send(1)
Send(2)
Send(3)
Send(4)
Send(5)
Send(6)

Send(0)
Send(1)
Send(2)
Send(3)
Send(4)
Send(5)
Send(6)

Timeout

Spring 2020 © CS 438 Staff - University of Illinois 33

Sliding Window Sequence
Numbers

 How many sequence numbers are
necessary?
 Key questions

 Where can the send window be?
 What frame can be received next?

Spring 2020 © CS 438 Staff - University of Illinois 34

Sliding Window Sequence
Numbers

 Assume SWS = RWS (simplest, and typical)
 Sender transmits full SWS
 Two extreme cases:

 None received (waiting for 0...SWS - 1)
 All received (waiting for SWS...2 SWS - 1)

 All possible packets must have unique sequence
numbers

Send WindowSend WindowSend WindowSend Window

Receive Window
NFE

Send Window

1 2 3 4 5 6 7 8 9 10 11 12

Spring 2020 © CS 438 Staff - University of Illinois 35

Sliding Window Sequence
Numbers

 Extreme Locations for SWS
 Requirements

 If a received packet is not in the receive window with no
wrap, then it must not be in the receive window with wrap!

 Correctness condition:
 Number of Sequence Numbers ≥ SWS + RWS
 Alternates between two halves of the sequence number

space

Send Window Send Window

Receive Window
NFE

1 2 3 4 5 6 7 8 9 10 11 12

Spring 2020 © CS 438 Staff - University of Illinois 36

Sliding Window Sequence
Numbers

 Example
 If SWS = RWS = 8
 At least 16 sequence numbers are needed
 A 4-bit sequence number space is enough

 Warning
 P&D sometimes uses the variable Max_Seq_Num for the

number of sequence numbers and sometimes for the
maximum sequence number (these differ by one!)

 Use Num_Seq_Num for the number of sequence
numbers: 0, 1, …, Num_Seq_Num – 1

Window Sizes

 How big should we make SWS?
 Compute from delay x bandwidth

 How big should we make RWS?
 Depends on buffer capacity of receiver

Spring 2020 © CS 438 Staff - University of Illinois 37

Delay x Bandwidth Product -
Revisited

 Amount of data in “pipe”

 channel = pipe
 delay = length
 bandwidth = area of a cross section
 bandwidth x delay product = volume

Spring 2020 © CS 438 Staff - University of Illinois 38

Bandwidth

Delay

Delay x Bandwidth Product

 Bandwidth x delay product
 How many bits the sender must transmit before the first bit

arrives at the receiver if the sender keeps the pipe full
 Takes another one-way latency to receive a response

from the receiver

Spring 2020 © CS 438 Staff - University of Illinois 40

A B

4567891011 123

15 16 17 18 19 20 21 2212 13 14

Spring 2020 © CS 438 Staff - University of Illinois 41

Sliding Window Protocol Code
Example

 Parameters
 last acknowledgement received (LAR)
 last frame sent (LFS)
 next frame expected (NFE)
 last frame acceptable (LFA)

Spring 2020 © CS 438 Staff - University of Illinois 42

Sliding Window Protocol Code
Example

 Constants
 Rend/receive window size (SWS/RWS)
 Maximum sequence number

(MAX_SEQ_NO)
 Frame size (FRAME_SIZE, constant for

simplicity)

Spring 2020 © CS 438 Staff - University of Illinois 43

Sliding Window Protocol Code
Example

 Data structures
 Next frame expected (an integer)
 One frame buffer for each entry in receive

window
 One presence bit for each entry

 Receive window cycles through
 Sequence numbers
 Data structures (thus RWS must divide

MAX_SEQ_NO)

Spring 2020 © CS 438 Staff - University of Illinois 44

Sliding Window Protocol Code
Example
#define RWS 8 /* receive window size */
#define MAX_SEQ_NO 16 /* max. sequence number+1 */

/* (must be multiple of */
/* RWS for this code) */

#define FRAME_SIZE 1000 /* constant for simplicity*/

char buf[RWS][FRAME_SIZE]; /* RWS frame buffers */
int present[RWS]; /* are frame buffers full?*/

/* (initialized to 0’s) */
int NFE = 0; /* next frame expected */
extern void send_ack (int seq_no);
extern void pass_to_app (char* data);
void recv_frame (char* data, int seq_no);

Spring 2020 © CS 438 Staff - University of Illinois 45

Sliding Window Protocol Code
Example
void recv_frame (char* data, int seq_no)
{

int idx; /* index into data structures */
int i; /* loop index */

/* Map sequence numbers NFE...predecessor (NFE)
into 0...MAX_SEQ_NO - 1, then see if seq_no
falls within the receive window. */

if (((seq_no + (MAX_SEQ_NO - NFE)) % MAX_SEQ_NO)
< RWS) {

/* Frames outside the window */
/* are ignored. (but an ACK */
/* is sent; why?) */

if (seq_no - NFE)< RWS)

Spring 2020 © CS 438 Staff - University of Illinois 46

Sliding Window Protocol Code
Example

/* Calculate index into data structures. */
idx = (seq_no % RWS);

if (!present[idx]) {/* frame is not dup */
present[idx] = 1;/* mark received */
memcpy (buf[idx], data, FRAME_SIZE);

/* copy data into buf */

Spring 2020 © CS 438 Staff - University of Illinois 47

Sliding Window Protocol Code
Example

/* Got a new frame; pass frames up to host? */
for (i = 0; i < RWS; i++) {

idx = (i + NFE) % RWS; /* Re-use idx.*/
/* first missing frame becomes NFE */
/* after this loop terminates */
if (!present[idx]) break;

/* Frame is present—send it up! */
pass_to_app (buf[idx]);
present[idx] = 0; /* Mark buffer empty. */

}
/* Advance NFE to first missing frame. */
NFE = (NFE + i) % MAX_SEQ_NO;

}
NFE = NFE + i;

Spring 2020 © CS 438 Staff - University of Illinois 48

Sliding Window Protocol Code
Example

/* Frame handled (might have */
/* been duplicate). */

} /* (Send ACK for any frame received */

/* Now send acknowledgement for */
/* predecessor (NFE). */
send_ack ((NFE + MAX_SEQ_NO - 1) % MAX_SEQ_NO);

}
send_ack (NFE - 1);

Correctness

 Claim
 A sliding window protocol leads to in-order delivery of all

frames
 Assumptions

 All sequence numbers are different
 Frames can be lost
 Frames can be delayed an arbitrarily finite amount of time
 Frames are not reordered
 Frames can arrive with detectable errors

 Are these assumption adequate?

Spring 2020 © CS 438 Staff - University of Illinois 49

Spring 2020 © CS 438 Staff - University of Illinois 50

Sliding Window Protocol
Correctness

 Need one more assumption
 Any given frame is received without errors after

a finite number of retransmissions
 Proof in two steps

 Establish correctness assuming infinite
sequence number space

 Show that finite sequence number space does
not affect result as long as it has
>= 2 max (SWS, RWS) possible numbers

Spring 2020 © CS 438 Staff - University of Illinois 51

Sliding Window Protocol
Correctness

 Step 1: establish correctness assuming
infinite sequence number space
 Use induction on k with invariant

“the kth frame is eventually received”

 Step 2: show that finite sequence number
space does not affect result as long as it has
>= 2 max (SWS, RWS) possible numbers

RWS = 6

NFE = 4 LFA = 9 What frame can arrive next?

2 3 5 7 10 11 12 13

Time

4 6 8 9

Spring 2020 © CS 438 Staff - University of Illinois 52

ARQ Algorithm Classification

 Three Types:
 Stop-and-Wait: SWS = 1 RWS = 1
 Go-Back-N: SWS = N RWS = 1
 Selective Repeat: SWS = N RWS = M

 Usually M = N

Selective Repeat
Go-Back-N

Stop-And-Wait

Spring 2020 © CS 438 Staff - University of Illinois 53

Sliding Window Variations:
Go-Back-N

 SWS = N, RWS = 1
 Receiver only buffers one frame
 If a frame is lost, the sender may need to

retransmit up to N frames
 i.e., sender “goes back” N frames

 Variations
 How long is the frame timeout?
 Does receiver send NACK for out-of-sequence

frame?

Spring 2020 © CS 438 Staff - University of Illinois 54

Go-Back-N: Cumulative ACKs

A

B

Packets 2,3,4,5
are

retransmitted

loss

Timeout for Packet 2

Spring 2020 © CS 438 Staff - University of Illinois 55

Sliding Window Variations:
Selective Repeat

 SWS = N, RWS = M
 Receiver buffer M frames
 If a frame is lost, sender must only resend

 Frames lost within the receive window
 Variations

 How long is the frame timeout?
 Use cumulative or per-frame ACK?
 Does protocol adapt timeouts?
 Does protocol adapt SWS and/or RWS?

Spring 2020 © CS 438 Staff - University of Illinois 56

Selective Repeat

A

B

Packet 2 is
retransmitted

loss

Spring 2020 © CS 438 Staff - University of Illinois 57

Roles of a Sliding Window
Protocol

 Reliable delivery on an unreliable link
 Core function

 Preserve delivery order
 Controlled by the receiver

 Flow control
 Allow receiver to throttle sender

 Separation of Concerns
 Must be able to distinguish between different functions

that are sometimes rolled into one mechanism

Spring 2020 © CS 438 Staff - University of Illinois 58

Forward Error Correction
(FEC)

 Alternative to ARQ algorithms
 Idea

 Error correction instead of error detection
 Send extra information to avoid retransmission

(i.e., fix errors first/forward rather than
afterward/backward)

 Why
 Very high latency connections
 Difficult for retransmission

	Reliable Transmission
	Reliable Transmission
	Reliable Transmission
	Reliable Transmission
	Reliable Transmission Outline
	Terminology
	Terminology
	Stop-and-Wait
	Stop-and-Wait: Success
	Stop-and-Wait: Lost Frame
	Stop-and-Wait: Lost ACK
	Stop-and-Wait: Delayed Frame
	Stop-and-Wait
	Stop-and-Wait State Diagram
	Stop-and-Wait
	Concurrent Logical Channels
	Concurrent Logical Channels
	ARQ: Where are We?
	Sliding Window Protocol
	Keeping the Pipe Full
	Concepts
	Concepts
	Sliding Window
	Sliding Window
	Sliding Window Terminology
	Sliding Window Terminology
	Sliding Window Details
	Sliding Window Details
	Sliding Window Details
	Sliding Window Details
	Sliding Window Details
	Sliding Window Details
	Sliding Window Sequence Numbers
	Sliding Window Sequence Numbers
	Sliding Window Sequence Numbers
	Sliding Window Sequence Numbers
	Window Sizes
	Delay x Bandwidth Product - Revisited
	Delay x Bandwidth Product
	Sliding Window Protocol Code Example
	Sliding Window Protocol Code Example
	Sliding Window Protocol Code Example
	Sliding Window Protocol Code Example
	Sliding Window Protocol Code Example
	Sliding Window Protocol Code Example
	Sliding Window Protocol Code Example
	Sliding Window Protocol Code Example
	Correctness
	Sliding Window Protocol Correctness
	Sliding Window Protocol Correctness
	ARQ Algorithm Classification
	Sliding Window Variations: Go-Back-N
	Go-Back-N: Cumulative ACKs
	Sliding Window Variations: Selective Repeat
	Selective Repeat
	Roles of a Sliding Window Protocol
	Forward Error Correction (FEC)

