
Metrics, Analysis, and

Examples

Performance Analysis

Spring 20 © CS 438 Staff - University of Illinois 1

Spring 20 © CS 438 Staff - University of Illinois 2

Performance Metrics and

Analysis

◼ Metrics
 Traditional and extensions

 Sources of delay

 Optimizing communication systems

 Measuring systems

◼ Basic queueing theory
 Distributions and processes

 Single, memoryless queues

Spring 20 © CS 438 Staff - University of Illinois 3

Performance Metrics

◼ Traditional metrics

 End-to-end latency/RTT
◼ Measures time delay

◼ Across all layers of network

◼ Often abbreviated to “latency” (even for
RTT)

 Bandwidth/throughput
◼ Measures data sent per unit time

◼ Across all layers of network

Spring 20 © CS 438 Staff - University of Illinois 4

Performance Metrics

◼ Sources of delay

 Latency: three main components

◼ DMA from sending/to receiving host memory

◼ Propagation delay in network

◼ Queueing delay in routers

 Overhead: also three main components

◼ Data copy between buffers (e.g., into kernel memory)

◼ Protocol (TCP, IP, etc.) processing

◼ PIO to write description of frame

 Note that overhead has fixed and per-byte costs

Spring 20 © CS 438 Staff - University of Illinois 5

Performance Metrics

◼ Optimizing communication systems

 Optimize the common case

◼ Send/receive usually more important than connection

setup/teardown

 TCP header changes little between segments

 Often only a few connections at end hosts

◼ Minimize context switches

◼ Minimize copying of data

Spring 20 © CS 438 Staff - University of Illinois 6

Performance Metrics

◼ Optimizing communication systems
 General rule of thumb

◼ Most (80-90%) messages are short

◼ Most data (80-90%) travel in long messages

 Focus on bottlenecks
◼ Reduce overhead to improve short message

performance

◼ Reduce number of copies to improve long message
performance

 Thus, CPU speed is often more important than
network speed

Spring 20 © CS 438 Staff - University of Illinois 7

Performance Metrics

◼ Optimizing communication systems

 Maximize network utilization

◼ Use large packets when possible

◼ Fill delay-bandwidth pipe

 Avoid timeouts

◼ Set timers conservatively

◼ Use “smarter” receiver (e.g., with selective ACK’s)

 Avoid congestion rather than recovering from it

Spring 20 © CS 438 Staff - University of Illinois 8

Performance Metrics

◼ Measuring communication systems
 Latency

◼ Measure RTT for 0-byte (or 1-byte) messages

◼ Also report variability

 Bandwidth
◼ Measure RTT for range of long messages

◼ Divide by number of bytes sent

◼ Report as graph or as value in asymptotic limit

 Overhead
◼ Time multiple N-byte message send operations

◼ Be careful of flow control and aggregation

Modeling and Analysis

◼ Problem

 The inputs to a system (i.e., number of packets and their arrival

times) and the exact resource requirements of these packets

cannot be predetermined in advance exactly

◼ But, we can probabilistically characterize these quantities

 On average, 100 packets arrive per second

 On average, packets are 500KB

◼ So, given a probabilistic characterization of these quantities

 Can we draw some intelligent conclusions about the

performance of the system

Spring 20 © CS 438 Staff - University of Illinois 9

Spring 20 © CS 438 Staff - University of Illinois 10

Delay

◼ Link delay consists of four components
 Processing delay

◼ From when the packet is correctly received to when it
is put on the queue

 Queueing delay
◼ From when the packet is put on the queue to when it is

ready to transmit

 Transmission delay
◼ From when the first bit is transmitted to when the last

bit is transmitted

 Propagation delay
◼ From when the last bit is transmitted to when the last

bit is received

Spring 20 © CS 438 Staff - University of Illinois 11

Delay Models

◼ Consider a data link using stop-and-wait ARQ

 What is the throughput?

 Given

◼ MSS = packet payload size

◼ C = raw link data rate

◼ RTT = round trip time (for one bit)

◼ p = probability a packet is successful

Packets

Acknowledgements

Spring 20 © CS 438 Staff - University of Illinois 12

Delay Models

◼ Calculate the maximum throughput for stop-and-

wait

 Max throughput = packetlength/(RTT + (packetlength/C))

 Could also multiply by (payload/packetlength) and

p = probability of correct reception

◼ But what about the delay incurred?

 There may be multiple bursty data sources

Packets

Acknowledgements

Spring 20 © CS 438 Staff - University of Illinois 13

Basic Queueing Theory

◼ Elementary notions

 Things arrive at a queue according to some

probability distribution

 Things leave a queue according to a second

probability distribution

 Averaged over time

◼ Things arriving and things leaving must be equal

◼ Or the queue length will grow without bound

 Convenient to express probability distributions

as average rates

Spring 20 © CS 438 Staff - University of Illinois 14

Little’s Law

◼ Goal
 Estimate relevant values

◼ Average number of customers in the system

 The number of customers either waiting in queue or receiving
service

◼ Average delay per customer

 The time a customer spends waiting plus the service time

 In terms of known values

◼ Customer arrival rate

 The number of customers entering the system per unit time

◼ Customer service rate

 The number of customers the system serves per unit time

Spring 20 © CS 438 Staff - University of Illinois 15

Little’s Law

◼ For any box with something steady

flowing through it

N = T

Mean amount in box

(average number of

things in the box)

Mean time spent in box

(average time spent by a

thing in the box)

Mean arrival to the system

(rate at which things enter

the box)

Allows us to express

the natural idea that

crowded systems

(large N) are

associated with long

customer delays

Spring 20 © CS 438 Staff - University of Illinois 16

Little’s Law

◼ Example

 Suppose you arrive at a busy restaurant in a major city

 Some people are waiting in line, while other are already seated (i.e.,
being served)

 You want to estimate how long you will have to wait to be seated if you
join the end of the line

◼ Do you apply Little’s Law? If so

 What is the box?

 What is N?

 What is ?

 What is T?

N = T

Mean amount in box Mean time spent in box

Mean arrival

Spring 20 © CS 438 Staff - University of Illinois 17

Little’s Law

◼ Box

 Include the people seated (i.e., being served)

 Include the people waiting in line (i.e., in the queue)

◼ Let N = the number of people seated (say 150 seated + 50 in line)

◼ Let T = mean amount of time a person waits and then eats (say 90

min)

◼ Conclusion

 Arrivals (and departures) = 200/90 = 2.22 persons per minute

N = T

Mean amount in box Mean time spent in box

Mean arrival

Spring 20 © CS 438 Staff - University of Illinois 18

Little’s Law

◼ Suppose data streams are multiplexed at an output
link with speed 622 Mbps

◼ Question
 If 200 50 B packets are queued on average, what is the

average time in the system?

◼ Answer
 T = N/

 T = 200 * 50 * 8 / 622M

 T = 0.128 ms

STS-12 Link

622 Mbps

Spring 20 © CS 438 Staff - University of Illinois 19

Little’s Law

◼ Variables

 N(t) = number of customers in the system at

time t

 A(t) = number of customers who arrived in the

interval [0,t]

 Ti = time spent in the system by the ith customer

 t = average arrival rate over the interval [0,t]

Spring 20 © CS 438 Staff - University of Illinois 20

Proof of Little’s Law

◼ But this is Nt = ttt
 With time averaging over [0,t]

◼ Let t tend to infinity: N = t

Arrivals: A(s)

Departures: D(s)

System is initially empty

N(0) = 0
A(t)

t

Number in system: N(s)

Area(t)

t

A(t)

t

Area(t)

A(t)
= *

N
u
m

b
e

r
o
f
A

rr
iv

a
ls

/

N
u

m
b

e
r

o
f
D

e
p

a
rt

u
re

s

Time

 N(t) = number of customers

 A(t) = number of customers who arrived in the

interval [0,t]

 Ti = time spent in the system by the ith

customer

 t = average arrival rate over the interval [0,t]

Spring 20 © CS 438 Staff - University of Illinois 21

Memoryless Distributions/

Poisson Arrivals

◼ Goal for easy analysis

 Want processes (arrival, departure) to be independent of

time

 i.e., likelihood of arrival should depend neither on earlier

nor on later arrivals

◼ In terms of probability distribution in time (defined

for t > 0),







+
=

t
td)tf(

t)f(t
f(t) for all t  0

Spring 20 © CS 438 Staff - University of Illinois 22

Memoryless Distributions/

Poisson Arrivals

solution is:
tef(t)  −=

what is ?

•it’s the rate of

events

•note that the

average time

until the next

event is

(









1

0

t1

0

t

0

t

0

e

dtetetdtf(t)

=





 −−=

+=




−


−




what is ?

Spring 20 © CS 438 Staff - University of Illinois 23

Plan

◼ Review exponential and Poisson

probability distributions

◼ Discuss Poisson point processes and

the M/M/1 queue model

Spring 20 © CS 438 Staff - University of Illinois 24

Exponential Distribution

◼ A random variable X has an exponential

distribution with parameter  if it has a

probability density function

 (x) =  e-x, for x  0

P[X > c] = e-c

Note: E[X] = 1/

Spring 20 © CS 438 Staff - University of Illinois 25

Exponential Distribution

◼ Suppose a waiting time X is
exponentially distributed with
parameter  = 2/sec

 Mean wait time is ½ sec

◼ What is

 P[X>2]?

 P[X>6]?

 P[X>6 | X>4]?

Spring 20 © CS 438 Staff - University of Illinois 26

Exponential Distribution

◼ Remember:  = 2

◼ P[X>2]
 = e-2 = 0.183

◼ P[X>6]
 = e-6 = 6.14 x 10-6

◼ P[X>6|X>4]
 = P[X>6,X>4]/P[X>4]

 = P[X>6]/P[X>4]

 = e-6/e-4

 = e-2

 = 0.183!

◼ Note: this demonstrates the memoryless property of
exponential distributions

Spring 20 © CS 438 Staff - University of Illinois 27

Poisson Distribution

◼ The random variable X has a Poisson distribution with mean
, if for non-negative integers i:
 P[X = i] = (ie-)/i!

◼ Facts
 E[X] = 

 If there are many independent events,
◼ The kth of which has probability pk (which is small) and

◼  = the sum of the pk is moderate

◼ Then the number of events that occur has approximately the
Poisson distribution with mean 

Spring 20 © CS 438 Staff - University of Illinois 28

Poisson Distribution

◼ Example

 Consider a CSMA/CD like scenario

 There are 20 stations, each of which

transmits in a slot with probability 0.03.

What is the probability that exactly one

transmits?

Spring 20 © CS 438 Staff - University of Illinois 29

Poisson Distribution

◼ Exact answer

 20 * (0.03) * (1 – 0.03)19 = 0.3364

◼ Poisson approximation

 Use P[X = i] = (ie-)/i!

 With i = 1 and  = 20 * (0.03) = 0.6

 Approximate answer = e = 0.3393

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 1 2 3 4 5 6 7 8 9 10

There are 20 stations, each of which

transmits in a slot with probability

0.03. What is the probability that

exactly one transmits?

Spring 20 © CS 438 Staff - University of Illinois 30

Poisson Point Process

◼ Definition

 A Poisson point process with parameter 

◼ A point process with interpoint times that are independent

and exponentially distributed with parameter .

Mean interarrival time = 1/, with

exponential distribution

Spring 20 © CS 438 Staff - University of Illinois 31

Poisson Point Process

◼ Equivalently

 The number of points in disjoint intervals are independent,

and the number of points in an interval of length t has a

Poisson distribution with mean t

Shown are three disjoint intervals. For a Poisson point process, the

number of points in each interval has a Poisson distribution.

Spring 20 © CS 438 Staff - University of Illinois 32

Poisson Point Process

◼ Exercise
 Given a Poisson point process with rate  = 0.4,

what is the probability of NO arrivals in an
interval of length 5?

Try to answer two ways, using two equivalent descriptions of a

Poisson process

Mean = 1/

Length 5 interval

a b = a + 5

Spring 20 © CS 438 Staff - University of Illinois 33

Poisson Point Process

Solution 1: P[X > 5] = e-5 = 0.1353

N = number of points in

interval

(Poisson with mean 5)

X = time from a until next point
X

Solution 2: P[N = 0] = e-5 = 0.1353

(remember: P[N = i] = (5)i * (e-5) / i!, for i = 0)

Given a Poisson point process
with rate  = 0.4, what is the
probability of NO arrivals in an
interval of length 5?

Spring 20 © CS 438 Staff - University of Illinois 34

Simple Queueing Systems

◼ Classify by

 “arrival pattern/service pattern/number of

servers”
◼ Interarrival time probability density function

◼ The service time probability density function

◼ The number of servers

◼ The queueing system

◼ The amount of buffer space in the queues

 Assumptions

◼ Infinite number of customers

Spring 20 © CS 438 Staff - University of Illinois 35

Simple Queueing Systems

◼ Terminology

 M = Markov (exponential probability density)

 D = deterministic (all have same value)

 G = general (arbitrary probability density)

◼ Example

 M/D/4

◼ Markov arrival process

◼ Deterministic service times

◼ 4 servers

Spring 20 © CS 438 Staff - University of Illinois 36

M/M/1 System

◼ Goal

 Describe how the queue evolves over time as customers arrive

and depart

◼ An M/M/1 system with arrival rate  and departure rate  has

 Poisson arrival process, rate 

 Exponentially distributed service times, parameter 

 One server

N(t) = number in

system (system =

queue + server)

Time

Spring 20 © CS 438 Staff - University of Illinois 37

M/M/1 System

◼ If the arrival rate  is greater then the

departure rate 

 N(t) drifts up at rate  - 

N(t)

Time

Spring 20 © CS 438 Staff - University of Illinois 38

M/M/1 System

◼ On the other hand,
 if  < , expect an equilibrium distribution.

◼ The state of the queue is completely described by
the number of customers in the queue
 Due to the memoryless property of exponential

distributions, N is described by a single state transition
diagram

 N is a Markov process, meaning past and future are
independent given present

0 1 2 3 …
States of the queue

Spring 20 © CS 438 Staff - University of Illinois 39

M/M/1 System

◼ N is a discrete random variable

 pk = probability that there are k customers

in the queue

 Equivalently,

◼ pk = probability that queue is in state k

0 1 2 3 …
States of the queue

Spring 20 © CS 438 Staff - University of Illinois 40

M/M/1 System

◼ Goal

 Find the steady state (long run) probabilities of the queue being in state i,

i = 0, 1, 2, 3, …

◼ Transitions occur only when

 A customer finishes service

 A customer arrives

◼ Birth-death process

 Transition from state i to state i+1 on arrival

 Transition from state i to state i-1 on departure

0 1 2 3

   

   

…

Spring 20 © CS 438 Staff - University of Illinois 41

M/M/1: Transition rates

◼ If the queue is in state i with probability pi

 Then equivalently , the queue is in state i a fraction of pi of
the time

◼ The number of transitions/second out of state i onto
state i+1 is given by
 (fraction of time queue is in state i) * (arrival rate)

 pi * 

◼ The number of transitions/second out of state i onto
state i-1 is given by
 (fraction of time queue is in state i) * (departure rate)

 pi * 

Spring 20 © CS 438 Staff - University of Illinois 42

M/M/1: Steady State

◼ Claim

 For the steady state to exist, # of transitions/sec from state i to state i+1

must equal # of transitions/sec from state i+1 to state i

◼ Result

 Net flow across boundary between states must be zero

◼ Basic idea (not a real proof)

 Otherwise, in the long run, the net flow of the system would always drift

to the higher state with probability 1

0 1 2 3

   

   

…

Flow up

Flow down

Spring 20 © CS 438 Staff - University of Illinois 43

M/M/1 System

◼ Given that we must balance flow across all

boundaries,

 pi = pi+1 for all i  0

◼ Balance Equations

p0 = p1

p1 = p2

p2 = p3

…

pi = pi+1

 p1 = (/) p0

 p2 = (/) p1

 p3 = (/) p2

…

 pi+1 = (/) pi

 p2 = (/)2 p0

 p3 = (/)3 p0

…

 pi+1 = (/)i+1 p0

Spring 20 © CS 438 Staff - University of Illinois 44

M/M/1 System

◼ Problem

 To solve the balance equations, we need one more equation:

◼ i=0
 pi = 1

◼ Thus

 pk = (/)k p0 (1)

 i=0
 pi = 1 (2)

◼ Plugging 1 into 2, we get

 i=0
 p0 * (/)i = 1

◼ Result (for  < )

 p0 = 1 / ( (/)i) = … = 1 - /

 pk = (/)k * (1 - /)

Spring 20 © CS 438 Staff - University of Illinois 45

M/M/1 System

◼ So What?

 We now know the probability that there are 0, 1, 2, 3, …

customers in the queue (pi)

◼ Define Navg

 = average # of customers in queue

 = expected value of the # of customers in the queue

◼ Navg

 = all possible # of cust i * P[i customers]

 = i=0
 i * pi = i=0

 (1 - /) * (/)i * i

 = (/)/(1 - /)

Spring 20 © CS 438 Staff - University of Illinois 46

M/M/1 System

◼ Define Qavg

 = average # of customers in waiting area of the
queue

◼ Qavg

 =  all possible # of cust in waiting area i * P[i customers in
waiting area]

 = i=0
 i * P[i+1 customers in queue]

 = i=0
 (1 - /) * (/)i+1 * i

 = (/)/(1 - /) - /

 = Navg - /

Spring 20 © CS 438 Staff - University of Illinois 47

M/M/1 System - Utilization

◼ Utilization

 The fraction of time the server is busy

 = P[server is busy]

 = 1 – P[server is NOT busy]

 = 1 – P[zero customers in queue]

 = 1 – p0

 = 1 – (1 - /)

 = /

◼ Since utilization cannot be greater then 1,

 Utilization = min(1.0, /)

Spring 20 © CS 438 Staff - University of Illinois 48

M/M/1 System - Utilization

◼ Utilization example

 Packets arrive for transmission at an average

(Poisson) rate of 0.1 packets/sec

 Each packet requires 2 seconds to transmit on

average (exponentially distributed)

 What are Navg, Qavg and ?

Spring 20 © CS 438 Staff - University of Illinois 49

M/M/1 System - Utilization

◼ Utilization example

 Packets arrive for transmission at an average

(Poisson) rate of 0.1 packets/sec

 Each packet requires 2 seconds to transmit on

average (exponentially distributed)

 Navg = (/)/(1 - /) = 0.1*2 /(1 – 0.1*2) = 0.25

 Qavg = Navg - / = 0.25 – 0.1*2 = 0.05

  = / = 0.2

Spring 20 © CS 438 Staff - University of Illinois 50

M/M/1 System - Utilization

◼ Intuitively, as the number of packets arriving per

second () increases, the number of packets in the

queue should increase

0

1

2

3

4

5

6

7

8

0 0.1 0.2 0.3 0.4 0.5 0.6

Spring 20 © CS 438 Staff - University of Illinois 51

M/M/1 System - Utilization

◼ Normalized Traffic Parameter ()
 Note that Navg and Qavg only depend on the ratio /

 Define 

◼ = (avg arrival rate * avg service time)

◼ =  * 1/ = /

 Intuitively, if we scale both arrival rate and service time by a
constant factor, Navg and Qavg should remain the same

 Note

◼ If  >  (i.e. / > 1), then more packets are arriving per
second than can be serviced

◼ Thus, Navg and Qavg are unbounded when   1!

Spring 20 © CS 438 Staff - University of Illinois 52

M/M/1 System – Time Delays

◼ Given {p0, p1, p2, …}, we can derive

Navg and Qavg

◼ We may also want to know the

following

 Tavg = average time from when a packet

arrives until it completes transmission

 Wavg = average time from when a packet

arrives until it starts transmission

Spring 20 © CS 438 Staff - University of Illinois 53

M/M/1 System – Time Delays

Qavg

Navg

Wavg

Tavg

1/

Spring 20 © CS 438 Staff - University of Illinois 54

M/M/1 System – Little’s Law

◼ Now we can use Little’s Law to relate

Navg and Qavg to Tavg and Wavg

 Navg = Tavg  Tavg = Navg/

 Qavg = Wavg  Wavg = Qavg/

 Also note: Wavg + 1/ = Tavg

Spring 20 © CS 438 Staff - University of Illinois 55

M/M/1 System

◼ Packets arrive with the following parameters
  = 2 packets per second

 1/ = ¼ sec per packets

  = 0.5

◼ Utilization =  = / = 2/4 = 0.5

◼ Navg = /(1 - ) = 0.5/1-0.5 = 1 packet
  Tavg = Navg/ = ½ = 0.5 sec

◼ Qavg = Navg -  = 1 – 0.5 = 0.5
 Wavg = Qavg/ = 0.5/2 = 0.25 sec

Spring 20 © CS 438 Staff - University of Illinois 56

M/M/1 System - Summary

1. Draw state diagram

1/

0 1 2 3
   

   
…

2. Write down balance equations

flow “up” = flow “down”

3. Solve balance equations using

i=0
 pi = 1 for {p0, p1, p2, …}

4. Compute Navg and Qavg from {pi}

5. Compute Tavg and Wavg using Little’s Theorem

Spring 20 © CS 438 Staff - University of Illinois 57

M/M/1 System - Example

◼ Packets arrive ant an output link according to a
Poisson process
 The mean total data rate is 80Kbps (including headers)

 The mean packet length is 1500

 The link speed is 100Kbps

◼ Questions
 What assumptions can we make to fit this situation to the

M/M/1 model?

 Under these assumptions, what is the mean time needed
for queueing and transmission of a packet?

100Kbps

Spring 20 © CS 438 Staff - University of Illinois 58

M/M/1 System - Example

◼ Answer Part 1:
 “Customers”

◼ Packets

 “Server”
◼ The transmitter

 Service times
◼ The transmission times

 Packets sizes
◼ Variable lengths, with a exponential distribution

◼ Packet lengths are independent of each other and
independent of arrival time

Spring 20 © CS 438 Staff - University of Illinois 59

M/M/1 System - Example

◼ Remember
 The mean total data rate is 80Kbps

 The mean packet length is 1500

 The link speed is 100Kbps

◼ Answer Part 2: Find ,  and T
 Need to convert from bit rates to packet rates

◼  = 80Kbps/12Kb = 6.66 packets/sec

◼  = 100 Kbps/12Kb = 8.33 packets/sec

 So, T = mean time for queueing and transmission
◼ T = 1/( - ) = 1/1.67 = 0.6 sec

M/M/1 System - Example

◼ Also

 The mean transmission time is

◼ 1/ = 0.12 sec,

 So the mean time spent in queue is

◼ W = T - 1/ = 0.6 – 0.12 = 0.48sec

 The mean number of packets is

◼ N = /(1 - ) = 0.8/(1 – 0.8) = 4 packets

Spring 20 © CS 438 Staff - University of Illinois 60

Spring 20 © CS 438 Staff - University of Illinois 61

M/M/1 System in Practice

◼ The assumptions we made are often not realistic

◼ We still get the correct qualitative behavior

◼ Simple formulas for predictive delay are useful for

provisioning resources in a network and setting

controls

◼ Real traffic seems to have bursty behavior on

multiple time scales

 This is not true for Poisson processes

