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Performance Metrics and 

Analysis

◼ Metrics
 Traditional and extensions

 Sources of delay

 Optimizing communication systems

 Measuring systems

◼ Basic queueing theory
 Distributions and processes

 Single, memoryless queues
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Performance Metrics

◼ Traditional metrics

 End-to-end latency/RTT
◼ Measures time delay

◼ Across all layers of network

◼ Often abbreviated to “latency” (even for 
RTT)

 Bandwidth/throughput
◼ Measures data sent per unit time

◼ Across all layers of network
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Performance Metrics

◼ Sources of delay

 Latency: three main components

◼ DMA from sending/to receiving host memory

◼ Propagation delay in network

◼ Queueing delay in routers

 Overhead: also three main components

◼ Data copy between buffers (e.g., into kernel memory)

◼ Protocol (TCP, IP, etc.) processing

◼ PIO to write description of frame

 Note that overhead has fixed and per-byte costs
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Performance Metrics

◼ Optimizing communication systems

 Optimize the common case

◼ Send/receive usually more important than connection 

setup/teardown

 TCP header changes little between segments

 Often only a few connections at end hosts

◼ Minimize context switches

◼ Minimize copying of data
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Performance Metrics

◼ Optimizing communication systems
 General rule of thumb

◼ Most (80-90%) messages are short

◼ Most data (80-90%) travel in long messages

 Focus on bottlenecks
◼ Reduce overhead to improve short message 

performance

◼ Reduce number of copies to improve long message 
performance

 Thus, CPU speed is often more important than 
network speed
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Performance Metrics

◼ Optimizing communication systems

 Maximize network utilization

◼ Use large packets when possible

◼ Fill delay-bandwidth pipe

 Avoid timeouts

◼ Set timers conservatively

◼ Use “smarter” receiver (e.g., with selective ACK’s)

 Avoid congestion rather than recovering from it
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Performance Metrics

◼ Measuring communication systems
 Latency

◼ Measure RTT for 0-byte (or 1-byte) messages

◼ Also report variability

 Bandwidth
◼ Measure RTT for range of long messages

◼ Divide by number of bytes sent

◼ Report as graph or as value in asymptotic limit

 Overhead
◼ Time multiple N-byte message send operations

◼ Be careful of flow control and aggregation



Modeling and Analysis

◼ Problem

 The inputs to a system (i.e., number of packets and their arrival 

times) and the exact resource requirements of these packets 

cannot be predetermined in advance exactly

◼ But, we can probabilistically characterize these quantities

 On average, 100 packets arrive per second

 On average, packets are 500KB

◼ So, given a probabilistic characterization of these quantities

 Can we draw some intelligent conclusions about the 

performance of the system
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Delay

◼ Link delay consists of four components
 Processing delay

◼ From when the packet is correctly received to when it 
is put on the queue

 Queueing delay
◼ From when the packet is put on the queue to when it is 

ready to transmit

 Transmission delay
◼ From when the first bit is transmitted to when the last 

bit is transmitted

 Propagation delay
◼ From when the last bit is transmitted to when the last 

bit is received
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Delay Models

◼ Consider a data link using stop-and-wait ARQ

 What is the throughput?

 Given

◼ MSS = packet payload size

◼ C = raw link data rate

◼ RTT = round trip time (for one bit)

◼ p = probability a packet is successful

Packets

Acknowledgements
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Delay Models

◼ Calculate the maximum throughput for stop-and-

wait

 Max throughput = packetlength/(RTT + (packetlength/C))

 Could also multiply by (payload/packetlength) and 

p = probability of correct reception

◼ But what about the delay incurred?

 There may be multiple bursty data sources

Packets

Acknowledgements
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Basic Queueing Theory

◼ Elementary notions

 Things arrive at a queue according to some 

probability distribution

 Things leave a queue according to a second 

probability distribution

 Averaged over time

◼ Things arriving and things leaving must be equal

◼ Or the queue length will grow without bound

 Convenient to express probability distributions 

as average rates
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Little’s Law

◼ Goal
 Estimate relevant values

◼ Average number of customers in the system

 The number of customers either waiting in queue or receiving 
service

◼ Average delay per customer

 The time a customer spends waiting plus the service time

 In terms of known values

◼ Customer arrival rate

 The number of customers entering the system per unit time

◼ Customer service rate

 The number of customers the system serves per unit time
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Little’s Law

◼ For any box with something steady 

flowing through it

N = T

Mean amount in box

(average number of 

things in the box)

Mean time spent in box 

(average time spent by a 

thing in the box)

Mean arrival to the system

(rate at which things enter 

the box)

Allows us to express 

the natural idea that 

crowded systems 

(large N) are 

associated with long 

customer delays
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Little’s Law

◼ Example

 Suppose you arrive at a busy restaurant in a major city

 Some people are waiting in line, while other are already seated (i.e., 
being served)

 You want to estimate how long you will have to wait to be seated if you 
join the end of the line

◼ Do you apply Little’s Law? If so

 What is the box?

 What is N?

 What is ?

 What is T?

N = T

Mean amount in box Mean time spent in box

Mean arrival
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Little’s Law

◼ Box

 Include the people seated (i.e., being served)

 Include the people waiting in line (i.e., in the queue)

◼ Let N = the number of people seated (say 150 seated + 50 in line)

◼ Let T = mean amount of time a person waits and then eats (say 90 

min)

◼ Conclusion

 Arrivals (and departures) = 200/90 = 2.22 persons per minute

N = T

Mean amount in box Mean time spent in box

Mean arrival
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Little’s Law

◼ Suppose data streams are multiplexed at an output 
link with speed 622 Mbps

◼ Question
 If 200 50 B packets are queued on average, what is the 

average time in the system?

◼ Answer
 T  = N/

 T = 200 * 50 * 8 / 622M

 T = 0.128 ms

STS-12 Link

622 Mbps
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Little’s Law

◼ Variables

 N(t) = number of customers in the system at 

time t

 A(t) = number of customers who arrived in the 

interval [0,t]

 Ti = time spent in the system by the ith customer

 t = average arrival rate over the interval [0,t]
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Proof of Little’s Law

◼ But this is Nt = ttt
 With time averaging over [0,t]

◼ Let t tend to infinity: N = t

Arrivals: A(s)

Departures: D(s)

System is initially empty 

N(0) = 0
A(t)

t
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Time

 N(t) = number of customers

 A(t) = number of customers who arrived in the 

interval [0,t]

 Ti = time spent in the system by the ith

customer

 t = average arrival rate over the interval [0,t]
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Memoryless Distributions/ 

Poisson Arrivals

◼ Goal for easy analysis

 Want processes (arrival, departure) to be independent of 

time

 i.e., likelihood of arrival should depend neither on earlier 

nor on later arrivals

◼ In terms of probability distribution in time (defined 

for t > 0),







+
=

t
td)tf(

t)f(t
f(t) for all t  0
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Memoryless Distributions/ 

Poisson Arrivals

solution is:
tef(t)  −=

what is ?

•it’s the rate of 

events

•note that the 

average time 

until the next 

event is

( 
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Plan

◼ Review exponential and Poisson 

probability distributions

◼ Discuss Poisson point processes and 

the M/M/1 queue model
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Exponential Distribution

◼ A random variable X has an exponential 

distribution with parameter  if it has a 

probability density function

 (x) =  e-x, for x  0

P[X > c] = e-c

Note: E[X] = 1/



Spring 20 © CS 438 Staff - University of Illinois 25

Exponential Distribution

◼ Suppose a waiting time X is 
exponentially distributed with 
parameter  = 2/sec

 Mean wait time is ½ sec

◼ What is

 P[X>2]?

 P[X>6]?

 P[X>6 | X>4]?
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Exponential Distribution

◼ Remember:  = 2

◼ P[X>2] 
 = e-2 = 0.183

◼ P[X>6]
 = e-6 = 6.14 x 10-6

◼ P[X>6|X>4]
 = P[X>6,X>4]/P[X>4]

 = P[X>6]/P[X>4]

 = e-6/e-4

 = e-2

 = 0.183!

◼ Note: this demonstrates the memoryless property of 
exponential distributions
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Poisson Distribution

◼ The random variable X has a Poisson distribution with mean 
, if for non-negative integers i:
 P[X = i] = (ie-)/i!

◼ Facts
 E[X] = 

 If there are many independent events, 
◼ The kth of which has probability pk (which is small) and

◼  = the sum of the pk is moderate

◼ Then the number of events that occur has approximately the 
Poisson distribution with mean 
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Poisson Distribution

◼ Example

 Consider a CSMA/CD like scenario

 There are 20 stations, each of which 

transmits in a slot with probability 0.03.  

What is the probability that exactly one 

transmits?
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Poisson Distribution

◼ Exact answer

 20 * (0.03) * (1 – 0.03)19 = 0.3364

◼ Poisson approximation

 Use P[X = i] = (ie-)/i!

 With i = 1 and  = 20 * (0.03) = 0.6

 Approximate answer = e = 0.3393

0
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There are 20 stations, each of which 

transmits in a slot with probability 

0.03.  What is the probability that 

exactly one transmits?
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Poisson Point Process

◼ Definition

 A Poisson point process with parameter 

◼ A point process with interpoint times that are independent 

and exponentially distributed with parameter .

Mean interarrival time = 1/, with 

exponential distribution
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Poisson Point Process

◼ Equivalently

 The number of points in disjoint intervals are independent, 

and the number of points in an interval of length t has a 

Poisson distribution with mean t

Shown are three disjoint intervals.  For a Poisson point process, the 

number of points in each interval has a Poisson distribution.
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Poisson Point Process

◼ Exercise
 Given a Poisson point process with rate  = 0.4, 

what is the probability of NO arrivals in an 
interval of length 5?

Try to answer two ways, using two equivalent descriptions of a 

Poisson process

Mean = 1/

Length 5 interval

a b = a + 5
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Poisson Point Process

Solution 1: P[X > 5] = e-5 = 0.1353

N = number of points in 

interval 

(Poisson with mean 5)

X = time from a until next point
X

Solution 2: P[N = 0] = e-5 = 0.1353

(remember: P[N = i] = (5)i * (e-5) / i!, for i = 0)

Given a Poisson point process 
with rate  = 0.4, what is the 
probability of NO arrivals in an 
interval of length 5?
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Simple Queueing Systems

◼ Classify by 

 “arrival pattern/service pattern/number of 

servers”
◼ Interarrival time probability density function

◼ The service time probability density function

◼ The number of servers

◼ The queueing system

◼ The amount of buffer space in the queues

 Assumptions

◼ Infinite number of customers



Spring 20 © CS 438 Staff - University of Illinois 35

Simple Queueing Systems

◼ Terminology

 M = Markov (exponential probability density)

 D = deterministic (all have same value)

 G  = general (arbitrary probability density)

◼ Example

 M/D/4

◼ Markov arrival process

◼ Deterministic service times

◼ 4 servers
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M/M/1 System

◼ Goal

 Describe how the queue evolves over time as customers arrive 

and depart

◼ An M/M/1 system with arrival rate  and departure rate  has

 Poisson arrival process, rate 

 Exponentially distributed service times, parameter 

 One server

N(t) = number in 

system (system = 

queue + server)

Time
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M/M/1 System

◼ If the arrival rate  is greater then the 

departure rate 

 N(t) drifts up at rate  - 

N(t)

Time
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M/M/1 System

◼ On the other hand, 
 if  < , expect an equilibrium distribution.

◼ The state of the queue is completely described by 
the number of customers in the queue
 Due to the memoryless property of exponential 

distributions, N is described by a single state transition 
diagram

 N is a Markov process, meaning past and future are 
independent given present

0 1 2 3 …
States of the queue
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M/M/1 System

◼ N is a discrete random variable

 pk = probability that there are k customers 

in the queue

 Equivalently, 

◼ pk = probability that queue is in state k

0 1 2 3 …
States of the queue
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M/M/1 System

◼ Goal

 Find the steady state (long run) probabilities of the queue being in state i, 

i = 0, 1, 2, 3, …

◼ Transitions occur only when

 A customer finishes service

 A customer arrives

◼ Birth-death process

 Transition from state i to state i+1 on arrival

 Transition from state i to state i-1 on departure

0 1 2 3

   

   

…
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M/M/1: Transition rates

◼ If the queue is in state i with probability pi

 Then equivalently , the queue is in state i a fraction of pi of 
the time

◼ The number of transitions/second out of state i onto 
state i+1 is given by
 (fraction of time queue is in state i) * (arrival rate)

 pi * 

◼ The number of transitions/second out of state i onto 
state i-1 is given by
 (fraction of time queue is in state i) * (departure rate)

 pi * 
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M/M/1: Steady State

◼ Claim

 For the steady state to exist, # of transitions/sec from state i to state i+1

must equal # of transitions/sec from state i+1 to state i

◼ Result

 Net flow across boundary between states must be zero

◼ Basic idea (not a real proof)

 Otherwise, in the long run, the net flow of the system would always drift 

to the higher state with probability 1

0 1 2 3

   

   

…

Flow up

Flow down
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M/M/1 System

◼ Given that we must balance flow across all 

boundaries,

 pi = pi+1 for all i  0

◼ Balance Equations

p0 = p1

p1 = p2

p2 = p3

…

pi = pi+1

 p1 = (/) p0

 p2 = (/) p1

 p3 = (/) p2

…

 pi+1 = (/) pi

 p2 = (/)2 p0

 p3 = (/)3 p0

…

 pi+1 = (/)i+1 p0
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M/M/1 System

◼ Problem

 To solve the balance equations, we need one more equation: 

◼ i=0
 pi = 1

◼ Thus

 pk = (/)k p0 (1)

 i=0
 pi = 1 (2)

◼ Plugging 1 into 2, we get

 i=0
 p0 * (/)i = 1

◼ Result (for  < )

 p0 = 1 / ( (/)i) = … = 1 - /

 pk = (/)k * (1 - /) 
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M/M/1 System

◼ So What?

 We now know the probability that there are 0, 1, 2, 3, … 

customers in the queue (pi)

◼ Define Navg

 = average # of customers in queue

 = expected value of the # of customers in the queue

◼ Navg

 = all possible # of cust i * P[i customers]

 = i=0
 i * pi = i=0

 (1 - /)  * (/)i * i

 = (/)/(1 - /)
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M/M/1 System

◼ Define Qavg

 = average # of customers in waiting area of the 
queue

◼ Qavg

 =  all possible # of cust in waiting area i * P[i customers in 
waiting area]

 = i=0
 i * P[i+1 customers in queue]

 = i=0
 (1 - /)  * (/)i+1 * i

 = (/)/(1 - /) - /

 = Navg - /



Spring 20 © CS 438 Staff - University of Illinois 47

M/M/1 System - Utilization

◼ Utilization 

 The fraction of time the server is busy

 = P[server is busy]

 = 1 – P[server is NOT busy]

 = 1 – P[zero customers in queue]

 = 1 – p0

 = 1 – (1 - /)

 = /

◼ Since utilization cannot be greater then 1,

 Utilization = min(1.0, /)
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M/M/1 System - Utilization

◼ Utilization example

 Packets arrive for transmission at an average 

(Poisson) rate of 0.1 packets/sec

 Each packet requires 2 seconds to transmit on 

average (exponentially distributed)

 What are Navg, Qavg and ?
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M/M/1 System - Utilization

◼ Utilization example

 Packets arrive for transmission at an average 

(Poisson) rate of 0.1 packets/sec

 Each packet requires 2 seconds to transmit on 

average (exponentially distributed)

 Navg = (/)/(1 - /) = 0.1*2 /(1 – 0.1*2) = 0.25

 Qavg = Navg - / = 0.25 – 0.1*2 = 0.05

  = / = 0.2
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M/M/1 System - Utilization

◼ Intuitively, as the number of packets arriving per 

second () increases, the number of packets in the 

queue should increase

0

1

2

3

4
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6
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8
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M/M/1 System - Utilization

◼ Normalized Traffic Parameter ()
 Note that Navg and Qavg only depend on the ratio /

 Define 

◼ = (avg arrival rate * avg service time)

◼ =  * 1/ = /

 Intuitively, if we scale both arrival rate and service time by a 
constant factor, Navg and Qavg should remain the same

 Note

◼ If  >  (i.e. / > 1), then more packets are arriving per 
second than can be serviced

◼ Thus, Navg and Qavg are unbounded when   1!
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M/M/1 System – Time Delays

◼ Given {p0, p1, p2, …}, we can derive 

Navg and Qavg

◼ We may also want to know the 

following

 Tavg = average time from when a packet 

arrives until it completes transmission

 Wavg = average time from when a packet 

arrives until it starts transmission
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M/M/1 System – Time Delays

Qavg

Navg

Wavg

Tavg

1/
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M/M/1 System – Little’s Law

◼ Now we can use Little’s Law to relate 

Navg and  Qavg to Tavg and Wavg 

 Navg = Tavg  Tavg = Navg/

 Qavg = Wavg  Wavg = Qavg/

 Also note: Wavg + 1/ = Tavg
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M/M/1 System

◼ Packets arrive with the following parameters
  = 2 packets per second

 1/ = ¼ sec per packets

  = 0.5

◼ Utilization =  = / = 2/4 = 0.5

◼ Navg = /(1 - ) = 0.5/1-0.5 = 1 packet
  Tavg = Navg/ = ½ = 0.5 sec

◼ Qavg = Navg -  = 1 – 0.5 = 0.5
 Wavg = Qavg/ = 0.5/2 = 0.25 sec
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M/M/1 System - Summary

1. Draw state diagram

1/

0 1 2 3
   

   
…

2. Write down balance equations

flow “up” = flow “down”

3. Solve balance equations using 

i=0
 pi = 1 for {p0, p1, p2, …}

4. Compute Navg and  Qavg from {pi} 

5. Compute Tavg and Wavg using Little’s Theorem
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M/M/1 System - Example

◼ Packets arrive ant an output link according to a 
Poisson process
 The mean total data rate is 80Kbps (including headers)

 The mean packet length is 1500

 The link speed is 100Kbps

◼ Questions 
 What assumptions can we make to fit this situation to the 

M/M/1 model?

 Under these assumptions, what is the mean time needed 
for queueing and transmission of a packet?

100Kbps
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M/M/1 System - Example

◼ Answer Part 1:
 “Customers”

◼ Packets

 “Server”
◼ The transmitter

 Service times 
◼ The transmission times

 Packets sizes
◼ Variable lengths, with a exponential distribution

◼ Packet lengths are independent of each other and 
independent of arrival time
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M/M/1 System - Example

◼ Remember
 The mean total data rate is 80Kbps 

 The mean packet length is 1500

 The link speed is 100Kbps 

◼ Answer Part 2: Find ,  and T
 Need to convert from bit rates to packet rates

◼  = 80Kbps/12Kb = 6.66 packets/sec

◼  = 100 Kbps/12Kb = 8.33 packets/sec

 So, T = mean time for queueing and transmission
◼ T = 1/( - ) = 1/1.67 = 0.6 sec



M/M/1 System - Example

◼ Also

 The mean transmission time is 

◼ 1/ = 0.12 sec, 

 So the mean time spent in queue is 

◼ W = T - 1/ = 0.6 – 0.12 = 0.48sec

 The mean number of packets is 

◼ N = /(1 - ) = 0.8/(1 – 0.8) = 4 packets
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M/M/1 System in Practice

◼ The assumptions we made are often not realistic

◼ We still get the correct qualitative behavior

◼ Simple formulas for predictive delay are useful for 

provisioning resources in a network and setting 

controls

◼ Real traffic seems to have bursty behavior on 

multiple time scales

 This is not true for Poisson processes


