
Spring 2020 © CS 438 Staff - University of Illinois 1

Congestion Control

Overview

Queueing Disciplines

TCP Congestion Control

Congestion Avoidance Mechanisms

Quality of Service

Spring 2020 © CS 438 Staff - University of Illinois 2

Congestion Control

reading: Peterson and Davie, Ch. 6

◼ Basics:
 Problem, terminology, approaches, metrics

◼ Solutions
 Router-based: queueing disciplines

 Host-based: TCP congestion control

◼ Congestion avoidance
 DECbit

 RED gateways

◼ Quality of service

Spring 2020 © CS 438 Staff - University of Illinois 3

Congestion Control Basics

◼ Problem

 Demand for network resources can grow beyond

the resources available

 Want to provide “fair” amount to each user

◼ Examples

 Bandwidth between Chicago and San Francisco

 Bandwidth in a network link

 Buffers in a queue

Congestion Collapse

◼ Definition

 Increase in network load results in decrease of useful work

done

◼ Many possible causes

 Spurious retransmissions of packets still in flight

◼ Classical congestion collapse

◼ Solution: better timers and TCP congestion control

 Undelivered packets

◼ Packets consume resources and are dropped elsewhere in

network

◼ Solution: congestion control for ALL traffic

Spring 2020 © CS 438 Staff - University of Illinois 4

Dealing with Congestion

◼ Range of solutions

 Congestion control

◼ Cure congestion when it happens

 Congestion avoidance

◼ Predict when congestion might occur and avoid causing it

 Resource allocation

◼ Prevent congestion from occurring

◼ Model of network

 Packet-switched internetwork (or network)

 Connectionless flows (logical channels/connections)

between hosts

Spring 2020 © CS 438 Staff - University of Illinois 5

Spring 2020 © CS 438 Staff - University of Illinois 6

Congestion Control

◼ Goal

 Effective and fair allocation of resources among

a collection of competing users

 Learning when to say no and to whom

◼ Resources

 Bandwidth

 Buffers

◼ Problem

 Contention at routers causes packet loss

Spring 2020 © CS 438 Staff - University of Illinois 7

Flow Control vs. Congestion

Control

◼ Flow control

 Preventing one sender from overrunning

the capacity of a slow receiver

◼ Congestion control

 Preventing a set of senders from

overloading the network!

Congestion is Natural

◼ Because Internet traffic is bursty!

◼ If two packets arrive at the same time

 The node can only transmit one

 … and either buffers or drops the other

Spring 2020 © CS 438 Staff - University of Illinois 8

Congestion is Natural

◼ Because Internet traffic is bursty!

◼ If two packets arrive at the same time

 The node can only transmit one

 … and either buffers or drops the other

◼ If many packets arrive in a short period of time

 The node cannot keep up with the arriving traffic

 Causes delays, and the buffer may eventually overflow

Spring 2020 © CS 438 Staff - University of Illinois 9

Load and Delay

Spring 2020 © CS 438 Staff - University of Illinois 10

Average

Packet delay

Load

Typical behavior of queueing

systems with bursty arrivals:

Power

Load

Load
Power

Delay
=

“optimal

load”

Ideal: low delays and high utilization

Reality: must balance the two

Maximizing “power” is an example

Spring 2020 © CS 438 Staff - University of Illinois 11

Basic Design Choices

◼ Prevention or Cure?
 Pre-allocate resources to avoid congestion

 Send data and control congestion if and when it
occurs

◼ Possible implementation points
 Hosts at the edge of the network

◼ Transport protocol

 Routers inside the network
◼ Queueing disciplines

◼ Underlying service model
 Best effort vs. quality of service (QoS)

Spring 2020 © CS 438 Staff - University of Illinois 12

Flows

◼ Sequence of packets sent between
source/destination pair
 Similar to end-to-end abstraction of channel, but seen at

routers

◼ Maintain per-flow soft state at the routers

Router

Router

Router

Source 1

Source 2

Source 3

Destination 1

Destination 2

Router State

◼ Soft state:

 Information about flows

 Helps control congestion

 Not necessary for correct

routing

◼ Hard state:

 state used to support

routing

Spring 2020 © CS 438 Staff - University of Illinois 13

Router

Router

Router

Source 1

Source 2

Source 3

Destination 1

Destination 2

Spring 2020 © CS 438 Staff - University of Illinois 14

Congestion Control

◼ Router role
 Controls forwarding and dropping policies

 Can send feedback to source

◼ Host role
 Monitors network conditions

 Adjusts accordingly

◼ Routing vs. congestion
 Effective adaptive routing schemes

can sometimes help congestion

 But not always

Spring 2020 © CS 438 Staff - University of Illinois 15

Congestion Control Taxonomy

feedback-based

reservation-based,

implemented by routers,

controlled by rate,

a.k.a. quality of service/QoS

explicit feedback,

implemented by routers,

but not per flow…why?

implicit feedback,

implemented by hosts,

controlled by window

abstraction,

a.k.a. best effort

congestion control

Router-Centric vs. Host-

Centric Flow Control

◼ Router-centric

 Each router takes

responsibility for

deciding

◼ When packets are

forwarded

◼ Which packets are

to be dropped

◼ Informing hosts of

sending limitations

◼ Host-centric

 Hosts observe

network conditions

and adjust their

behavior

accordingly

Spring 2020 © CS 438 Staff - University of Illinois 16

Reservation-Based vs.

Feedback-Based Flow Control

◼ Reservation-based

 End host asks network

for capacity at flow

establishment time

 Routers along flow’s

route allocate

appropriate resources

 If resources are not

available, flow is

rejected

 Implies the use of

router-centric

mechanisms

◼ Feedback-based

 End host begins

sending without asking

for capacity

 End host adjusts

sending rate according

to feedback

◼ Explicit vs. implicit

feedback mechanisms

 May use router-centric

(explicit) or host-centric

(implicit) mechanisms

Spring 2020 © CS 438 Staff - University of Illinois 17

Per-flow Congestion Feedback

◼ Question

 Why is explicit per-flow congestion

feedback from routers rarely used in

practice?

Spring 2020 © CS 438 Staff - University of Illinois 18

Per-flow Congestion Feedback

◼ Problem

 Too many sources to track

◼ Millions of flows may fan in to one router

◼ Can’t send feedback to all of them

 Adds complexity to router

◼ Need to track more state

◼ Certainly can’t track state for all sources

 Wastes bandwidth: network already congested,

not the time to generate more traffic

 Can’t force the sources (hosts) to use feedback

Spring 2020 © CS 438 Staff - University of Illinois 19

Spring 2020 © CS 438 Staff - University of Illinois 20

Window-based vs. Rate-based

Flow Control

◼ Remember

 Given a RTT and window size W, long term throughput

rate is

◼ Rate = min(link speed, W/RTT)

◼ Since rate can be controlled by the window size, is

there really any difference between controlling the

window size and controlling the rate?

Rate

W

Spring 2020 © CS 438 Staff - University of Illinois 21

Rate Control

◼ Question

 Why consider rate control?

◼ Problems

 Buffer space (window size) is
an intrinsic physical quantity

 Can provide rate control with
window control

 Only need estimate of RTT

time

0 2 RTT1 RTT

window-controlled

transmissions

rate-controlled

transmissions

Answer

Want rate control

when granularity of

averaging must be

smaller than RTT

Spring 2020 © CS 438 Staff - University of Illinois 22

Criticisms of Resource

Allocation

◼ Example

 Divide 10 Gbps bandwidth out of UIUC

◼ Case 1: reserve whatever you want

 Users’ line of thought

◼ On average, I don’t need much bandwidth, but when

my personal Web crawler goes to work, I need at least

100 Mbps, so I’ll reserve that much.

 Result

◼ 100 users consume all bandwidth, all others get 0

Spring 2020 © CS 438 Staff - University of Illinois 23

Criticisms of Resource

Allocation

◼ Example

 Divide 10 Gbps bandwidth out of UIUC

◼ Case 2: fair/equitable reservations

 35,000 students + 5,000 faculty and staff

 Each user gets 250 kbps, almost 5x a modem!

Spring 2020 © CS 438 Staff - University of Illinois 24

Resource Allocation

◼ Back to the air travel analogy

 Daily Chicago to San Francisco flight, 198 seats

 Case 1: reserve whatever you want

◼ 198 of us get seats. I’m Gold...are you?

 Case 2: fair/equitable reservations

◼ 2,000,000 possible customers

◼ 0.000099 seats per customer per flight

◼ Disclaimer:

the passenger assumes all risks and damages

related to unsuccessful reassembly in Chicago

Spring 2020 © CS 438 Staff - University of Illinois 26

Window Size

Source Destination
C

For non-random network with bottleneck capacity C:

Rate = Throughput

W

C

Delay

W
RTT/2

Power = throughput/delay

W

RTT*C

Fairness

◼ Goals

 Allocate resources “fairly”

 Isolate ill-behaved users

 Still achieve statistical multiplexing
◼ One flow can fill entire pipe if no contenders

◼ Work conserving → scheduler never idles link if it has a

packet

◼ At what granularity?

 Flows, connections, domains?

Spring 2020 © CS 438 Staff - University of Illinois 27

Spring 2020 © CS 438 Staff - University of Illinois 28

What’s Fair?

Flow A

Flow B Flow C Flow D

This is the so-

called “max-min

fair” rate

allocation. The

minimum rate is

maximized.

Which is more fair:

Globally Fair: Fa = Capacity/4, Fb = Fc = Fd =

3Capacity/4

or

Locally Fair: Fa = Fb = Fc = Fd = Capacity/2

Spring 2020 © CS 438 Staff - University of Illinois 29

Max-Min Fairness

Flow A

Flow B Flow C Flow D

1. No user receives more than requested bandwidth

2. No other scheme with 1 has higher min bandwidth

3. 2 remains true recursively on removing minimal

user I = MIN(fair, i)

Max-Min Fairness: Example

◼ Capacity(C) = 10

 3 Flows: r1 = 8, r2 = 6, r3 = 2

◼ C/3 = 3.33 →

 Can service all of r3

 Remove r3 from the accounting: C = C – r3 = 8; N = 2

◼ C/2 = 4 →

 Can’t service all of r1 or r2

 So hold them to the remaining fair share: f = 4

Spring 2020 © CS 438 Staff - University of Illinois 30

8

6

2

4
4

2

10

Queueing Disciplines

◼ Goal

 Decide how packets are buffered while waiting

to be transmitted

 Provide protection from ill-behaved flows

 Each router MUST implement some queuing

discipline regardless of what the resource

allocation mechanism is

◼ Impact

 Directly impacts buffer space usage

 Indirectly impacts flow control
Spring 2020 © CS 438 Staff - University of Illinois 31

Queueing Disciplines

◼ Allocate bandwidth

 Which packets get transmitted

◼ Allocate buffer space

 Which packets get discarded

◼ Affect packet latency

 When packets get transmitted

Spring 2020 © CS 438 Staff - University of Illinois 32

Spring 2020 © CS 438 Staff - University of Illinois 33

Scheduling Policies

◼ FIFO (First In First Out) a.k.a. FCFS (First Come
First Serve)
 Service

◼ In order of arrival to the queue

 Management

◼ Packets that arrive to a full buffer are discarded

◼ Another option: discard policy determines which packet to
discard (new arrival or something already queued)

Spring 2020 © CS 438 Staff - University of Illinois 34

Scheduling Policies

◼ FIFO (First In First Out)

 Problem 1: send more packets, get more service

◼ Selfish senders trying to grab as much as they can

◼ Malicious senders trying to deny service to others

 Problem 2: not all packets should be equal

Spring 2020 © CS 438 Staff - University of Illinois 35

Scheduling Policies

◼ FIFO
 Does not discriminate between traffic sources

 Congestion control left to the sources

 Tail drop dropping policy

 Fairness for latency

 Minimizes per-packet delay

 Bandwidth not considered (not good for congestion)

Spring 2020 © CS 438 Staff - University of Illinois 36

Scheduling Policies

◼ Priority Queuing
 Classes have different priorities

◼ May depend on explicit marking or other header info

 e.g., IP source or destination, TCP Port numbers, etc.

 Service

◼ Transmit packet from highest priority class with a non-empty

queue

Spring 2020 © CS 438 Staff - University of Illinois 37

Scheduling Policies

◼ Priority Queuing

 Isolation for the high-priority traffic

◼ Almost like it has a dedicated link

◼ Except for the (small) delay for packet transmission

 High-priority packet arrives during transmission of low-priority

 Router completes sending the low-priority traffic first

Spring 2020 © CS 438 Staff - University of Illinois 38

Scheduling Policies

◼ Priority Queueing Versions

 Preemptive

◼ Postpone low-priority processing if high-priority packet

arrives

 Non-preemptive

◼ Any packet that starts getting processed finishes

before moving on

◼ Limitation

 May starve lower priority flows

Spring 2020 © CS 438 Staff - University of Illinois 39

Scheduling Policies

◼ Round Robin

 Each flow gets its own queue

 Circulate through queues, process one packet (if

queue non-empty), then move to next queue

Spring 2020 © CS 438 Staff - University of Illinois 40

Scheduling Policies

◼ Fair Queueing (FQ)

 Explicitly segregates

traffic based on flows

 Ensures no flow

captures more than its

share of the capacity

 Fairness for

bandwidth

 Delay not considered

Flow 1

Flow 2

Flow 3

Flow 4

Round-

Robin

service

Each flow is guaranteed ¼

of capacity

Spring 2020 © CS 438 Staff - University of Illinois 41

Fair Queueing with Variable

Packet Length

◼ How should we implement FQ if packets are not all

the same length?

 Bit-by-bit round-robin

◼ Not feasible to implement, must use packet scheduling

◼ Solution: approximate

4 8

6 10

44 4 5

?

Spring 2020 © CS 438 Staff - University of Illinois 42

Fair Queueing with Variable

Packet Length

◼ Idea
 Let Si = amount of service flow i has received so far

 Always serve a flow with minimum value of Si

◼ Can also use minimum (Si + next packet length)

 Upon serving a packet of length P from flow i, update:

◼ Si = Si + P

◼ Never leave the link idle if there is a packet to send
 Work conserving

◼ A source will gets its fair share of the bandwidth

◼ Unused bandwidth will be evenly divided between other
sources

Spring 2020 © CS 438 Staff - University of Illinois 43

Fair Queueing with Variable

Packet Length

◼ Problem
 A flow resumes sending packets after being quiet for a

long time

◼ Effect
 Such a flow could be considered to have “saved up

credit”

 Can lock out all other flows until credits are level again

◼ Solution
 Enforce “use it or lose it policy”

◼ Compute Smin = min(Si such that queue i is not empty)

◼ If queue j is empty, set Sj = Smin

Spring 2020 © CS 438 Staff - University of Illinois 44

Fair Queueing with Variable

Packet Length

◼ Problem
 A flow resumes sending packets after being quite for a

long time

◼ Effect
 Such a flow could be considered to have “saved up

credit”

 Can lock out all other flows until credits are level again

◼ Solution
 Enforce “use it or lose it policy”

◼ Compute Smin = min(Si such that queue i is not empty)

◼ If queue j is empty, set Sj = Smin

Note:
The text book computes

F = MAX(Fi-1, Ai) = Pi

And then for multiple flows
• Calculate Fi for each packet

that arrives on each flow

• Treat all Fi as timestamps

• Next packet to transmit is one

with lowest timestamp

Spring 2020 © CS 438 Staff - University of Illinois 45

Extension: Weighted Fair

Queueing

◼ Extend fair queueing

 Notion of importance for each flow

◼ Suppose flow i has weight wi

 Example: wi could be the fraction of total

service that flow i is targeted for

◼ Need only change basic update to

 Si = Si + P/wi

Fair Queuing Tradeoffs

◼ FQ can control congestion by monitoring flows

 Non-adaptive flows can still be a problem – why?

◼ Complex state

 Must keep queue per flow

◼ Hard in routers with many flows (e.g., backbone routers)

◼ Flow aggregation is a possibility (e.g. do fairness per

domain)

◼ Complex computation

 Classification into flows may be hard

 Must keep queues sorted by finish times

 Changes whenever the flow count changes

Spring 2020 © CS 438 Staff - University of Illinois 46

Spring 2020 © CS 438 Staff - University of Illinois 47

Fair Queueing

◼ Question
 What makes up a flow for fair queueing in the

Internet?

◼ Considerations

 Too many resources to have separate

queues/variables for host-to-host flows

 Scale down number of flows

 Typically just based on inputs

◼ e.g., share outgoing STS-12 between incoming ISP’s

Spring 2020 © CS 438 Staff - University of Illinois 48

TCP Congestion Control

Host Solutions

◼ Host has very little information

 Assumes best-effort network

 Acts independently of other hosts

◼ Host actions

 Reduce transmission rate below

congestion threshold

 Continuously monitor network for signs of

congestion

Spring 2020 © CS 438 Staff - University of Illinois 49

Detecting Congestion

◼ How can a TCP sender determine that the network

is under stress?

◼ Network could tell it (ICMP Source Quench)

 Risky, because during times of overload the signal itself

could be dropped (and add to congestion)!

◼ Packet delays go up (knee of load-delay curve)

 Tricky: noisy signal (delay often varies considerably)

◼ Packet loss

 Fail-safe signal that TCP already has to detect

 Complication: non-congestive loss (checksum errors)

Spring 2020 © CS 438 Staff - University of Illinois 50

TCP Congestion Control

◼ Idea

 Assumes best-effort network

◼ FIFO or FQ

 Each source determines network capacity for itself

 Implicit feedback

 ACKs pace transmission (self-clocking)

◼ Challenge

 Determining initial available capacity

 Adjusting to changes in capacity in a timely manner

Spring 2020 © CS 438 Staff - University of Illinois 51

TCP Congestion Control

◼ Basic idea

 Add notion of congestion window

 Effective window is smaller of

◼ Advertised window (flow control)

◼ Congestion window (congestion control)

 Changes in congestion window size

◼ Slow increases to absorb new bandwidth

◼ Quick decreases to eliminate congestion

Spring 2020 © CS 438 Staff - University of Illinois 52

Spring 2020 © CS 438 Staff - University of Illinois 53

TCP Congestion Control

◼ Specific strategy
 Self-clocking

◼ Send data only when outstanding data ACK’d

◼ Equivalent to send window limitation mentioned

receiversender

Spring 2020 © CS 438 Staff - University of Illinois 54

TCP Congestion Control

◼ Specific strategy
 Self-clocking

◼ Send data only when outstanding data ACK’d

◼ Equivalent to send window limitation mentioned

 Growth
◼ Add one maximum segment size (MSS) per

congestion window of data ACK’d

◼ It’s really done this way, at least in Linux:

 see tcp_cong_avoid in tcp_input.c.

 Actually, every ack for new data is treated as an MSS
ACK’d

◼ Known as additive increase

Spring 2020 © CS 438 Staff - University of Illinois 55

TCP Congestion Control

◼ Specific strategy (continued)

 Decrease

◼ Cut window in half when timeout occurs

◼ In practice, set window = window /2

◼ Known as multiplicative decrease

 Additive increase, multiplicative decrease

(AIMD)

Additive Increase/

Multiplicative Decrease

◼ Objective

 Adjust to changes in available capacity

◼ Basic idea

 Consequences of over-sized window much worse than

having an under-sized window

◼ Over-sized window: packets dropped and retransmitted

◼ Under-sized window: somewhat lower throughput

Spring 2020 © CS 438 Staff - University of Illinois 56

Additive Increase/

Multiplicative Decrease

◼ Tools

 React to observance of congestion

 Probe channel to detect more resources

◼ Observation

 On notice of congestion

◼ Decreasing too slowly will not be reactive enough

 On probe of network

◼ Increasing too quickly will overshoot limits

Spring 2020 © CS 438 Staff - University of Illinois 57

Spring 2020 © CS 438 Staff - University of Illinois 58

Additive Increase/

Multiplicative Decrease

◼ New TCP state variable
 CongestionWindow

◼ Similar to AdvertisedWindow for flow control

 Limits how much data source can have in transit
◼ MaxWin = MIN(CongestionWindow,

AdvertisedWindow)

◼ EffWin = MaxWin - (LastByteSent -
LastByteAcked)

◼ TCP can send no faster then the slowest component,
network or destination

◼ Idea
 Increase CongestionWindow when congestion goes

down

 Decrease CongestionWindow when congestion goes up

Spring 2020 © CS 438 Staff - University of Illinois 59

Additive Increase/

Multiplicative Decrease

◼ Question

 How does the source determine whether or not

the network is congested?

◼ Answer

 Timeout signals packet loss

 Packet loss is rarely due to transmission error

(on wired lines)

 Lost packet implies congestion!

Spring 2020 © CS 438 Staff - University of Illinois 60

Additive Increase/

Multiplicative Decrease

◼ Algorithm

 Increment CongestionWindow by one

packet per RTT

◼ Linear increase

 Divide CongestionWindow by two

whenever a timeout occurs

◼ Multiplicative decrease

◼ In practice

 increment a little for each ACK

Inc = MSS * MSS/CongestionWindow

CongestionWindow += Inc

Source Destination

…

AIMD – Sawtooth Trace

◼ Packet loss is seen as sign of congestion and

results in a multiplicative rate decrease

 Factor of 2

◼ TCP periodically probes for available bandwidth by

increasing its rate

Spring 2020 © CS 438 Staff - University of Illinois 61

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

K
B

Time (seconds)

70

30

40

50

10

10.0

Loss

halved

Additive Increase/Decrease

◼ Both increase/ decrease by the same amount

Spring 2020 © CS 438 Staff - University of Illinois 63

User 1’s Allocation

User 2’s

Allocation

Overload

Underutilization

T0

T1

 Additive increase

improves fairness

 Additive decrease

reduces fairness

Muliplicative

Increase/Decrease

◼ Both increase/ decrease by the same amount

Spring 2020 © CS 438 Staff - University of Illinois 64

User 1’s Allocation

User 2’s

Allocation

Overload

Underutilization

 Additive increase

improves fairness

 Additive decrease

reduces fairness

T0

T1

Spring 2020 © CS 438 Staff - University of Illinois 65

Why is AIMD Fair?

◼ Additive increase gives slope of 1, as throughout increases

◼ Multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

User 1’s Allocation

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

AIMD Sharing Dynamics

◼ No congestion → rate increases by one

packet/RTT every RTT

◼ Congestion → decrease rate by factor 2

Spring 2020 © CS 438 Staff - University of Illinois 66

A Bx1

D E
x2

AIMD Sharing Dynamics

Spring 2020 © CS 438 Staff - University of Illinois 67

A Bx1

D E
x2

0

10

20

30

40

50

60

1

2
8

5
5

8
2

1
0
9

1
3
6

1
6
3

1
9
0

2
1
7

2
4
4

2
7
1

2
9
8

3
2
5

3
5
2

3
7
9

4
0
6

4
3
3

4
6
0

4
8
7

Rates equalize → fair share

Spring 2020 © CS 438 Staff - University of Illinois 68

TCP Start Up Behavior

◼ How should TCP start sending data?

 AIMD is good for channels operating at capacity

 AIMD can take a long time to ramp up to full

capacity from scratch

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

K
B

Time (seconds)

70

30

40

50

10

10.0

It could take a long time

to get started!

Spring 2020 © CS 438 Staff - University of Illinois 69

TCP Start Up Behavior

◼ How should TCP start sending data?

 AIMD is good for channels operating at capacity

 AIMD can take a long time to ramp up to full

capacity from scratch

 Use Slow Start to increase window rapidly from

a cold start

TCP Start Up Behavior: Slow

Start

◼ Initialization of the congestion window

 Congestion window should start small

◼ Avoid congestion due to new connections

 Start at 1 MSS,

◼ Initially, CWND is 1 MSS

◼ Initial sending rate is MSS/RTT

 Reset to 1 MSS with each timeout

◼ timeouts are coarse-grained, ~1/2 sec

Spring 2020 © CS 438 Staff - University of Illinois 70

TCP Start Up Behavior: Slow

Start

◼ Growth of the congestion window

◼ Linear growth could be pretty wasteful

 Might be much less than the actual bandwidth

 Linear increase takes a long time to accelerate

◼ Start slow but then grow fast

 Sender starts at a slow rate

 Increase the rate exponentially

 Until the first loss event

Spring 2020 © CS 438 Staff - University of Illinois 71

Spring 2020 © CS 438 Staff - University of Illinois 72

Slow Start

◼ Objective
 Determine initial available capacity

◼ Idea
 Begin with CongestionWindow = 1

packet

 Double CongestionWindow each RTT
◼ Increment by 1 packet for each ACK

 Continue increasing until loss

Source Destination

…

Slow Start Example

Spring 2020 © CS 438 Staff - University of Illinois 73

1

one pkt time

0R

2

1R

3

4

2R

5

6

7

8

3R

9

10

11

12

13

14

15

1

2 3

4 5 6 7

Another Slow Start Example

Spring 2020 © CS 438 Staff - University of Illinois 74

D A D D A A D D

Src

Dest

D D

1 2 43

A A A A

8CWD size:

Slow Start

◼ Used

 When first starting connection

 When connection times out

◼ Why is it called slow-start?

 Because TCP originally had no congestion

control mechanism

 The source would just start by sending a whole

window’s worth of data

Spring 2020 © CS 438 Staff - University of Illinois 75

TCP Congestion Control

◼ Maintain threshold window size

 Threshold value

◼ Initially set to maximum window size

◼ Set to 1/2 of current window on timeout

 Use multiplicative increase

◼ When congestion window smaller than threshold

◼ Double window for each window ACK’d

◼ In practice

 Increase congestion window by one MSS for each ACK of

new data (or N bytes for N bytes)

Spring 2020 © CS 438 Staff - University of Illinois 76

Spring 2020 © CS 438 Staff - University of Illinois 77

Slow Start

◼ How long should the exponential

increase from slow start

continue?

 Use CongestionThreshold

as target window size

 Estimates network capacity

 When CongestionWindow

reaches

CongestionThreshold switch

to additive increase

Exponential

“slow start”

Linear

probing

Spring 2020 © CS 438 Staff - University of Illinois 78

Slow Start

◼ Initial values

 CongestionThreshold = 8

 CongestionWindow = 1

◼ Loss after transmission 7

 CongestionWindow currently 12

 Set Congestionthreshold =

CongestionWindow/2

 Set CongestionWindow = 1

Spring 2020 © CS 438 Staff - University of Illinois 79

Slow Start

◼ Example trace of CongestionWindow

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

K
B

70

30

40

50

10

◼ Problem

◼ Have to wait for timeout

◼ Can lose half CongestionWindow of data

CW flattens out due to loss

Slow start until CW = CT

Linear increase

Timeout: CT = CT/2 = 11 CW = 1

Spring 2020 © CS 438 Staff - University of Illinois 80

Fast Retransmit and Fast

Recovery

◼ Problem

 Coarse-grain TCP

timeouts lead to

idle periods

◼ Solution

 Fast retransmit: use

duplicate ACKs to

trigger

retransmission

Packet 1

Packet 2

Packet 3

Packet 4

Packet 5

Packet 6

Retransmit
packet 3

ACK 1

ACK 2

ACK 2

ACK 2

ACK 6

ACK 2

Sender Receiver

Spring 2020 © CS 438 Staff - University of Illinois 81

Fast Retransmit and Fast

Recovery

◼ Send ACK for each segment received

◼ When duplicate ACK’s received
 Resend lost segment immediately

 Do not wait for timeout

 In practice, retransmit on 3rd duplicate

◼ Fast recovery
 When fast retransmission occurs, skip slow start

 Congestion window becomes 1/2 previous

 Start additive increase immediately

Spring 2020 © CS 438 Staff - University of Illinois 82

Fast Retransmit and Fast

Recovery

◼ Results

◼ Fast Recovery

◼ Bypass slow start phase

◼ Increase immediately to one half last successful
CongestionWindow (ssthresh)

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0

K
B

70

30

40

50

10

Spring 2020 © CS 438 Staff - University of Illinois 83

TCP Congestion Window

Trace

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

Time

C
o

n
g

e
s
ti

o
n

 W
in

d
o

w

threshold

congestion
windowtimeouts

slow start period

additive increase

fast retransmission

