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Congestion Control

Overview

Queueing Disciplines

TCP Congestion Control

Congestion Avoidance Mechanisms

Quality of Service
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Congestion Control

reading: Peterson and Davie, Ch. 6

◼ Basics: 
 Problem, terminology, approaches, metrics

◼ Solutions
 Router-based: queueing disciplines

 Host-based: TCP congestion control

◼ Congestion avoidance
 DECbit

 RED gateways

◼ Quality of service
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Congestion Control Basics

◼ Problem

 Demand for network resources can grow beyond 

the resources available

 Want to provide “fair” amount to each user

◼ Examples

 Bandwidth between Chicago and San Francisco

 Bandwidth in a network link

 Buffers in a queue



Congestion Collapse

◼ Definition

 Increase in network load results in decrease of useful work 

done

◼ Many possible causes

 Spurious retransmissions of packets still in flight

◼ Classical congestion collapse

◼ Solution: better timers and TCP congestion control

 Undelivered packets

◼ Packets consume resources and are dropped elsewhere in 

network

◼ Solution: congestion control for ALL traffic
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Dealing with Congestion

◼ Range of solutions 

 Congestion control

◼ Cure congestion when it happens

 Congestion avoidance

◼ Predict when congestion might occur and avoid causing it

 Resource allocation

◼ Prevent congestion from occurring

◼ Model of network

 Packet-switched internetwork (or network)

 Connectionless flows (logical channels/connections) 

between hosts
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Congestion Control

◼ Goal

 Effective and fair allocation of resources among 

a collection of competing users

 Learning when to say no and to whom

◼ Resources

 Bandwidth

 Buffers

◼ Problem

 Contention at routers causes packet loss
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Flow Control vs. Congestion 

Control

◼ Flow control

 Preventing one sender from overrunning 

the capacity of a slow receiver

◼ Congestion control

 Preventing a set of senders from 

overloading the network!



Congestion is Natural

◼ Because Internet traffic is bursty!

◼ If two packets arrive at the same time

 The node can only transmit one

 … and either buffers or drops the other
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Congestion is Natural

◼ Because Internet traffic is bursty!

◼ If two packets arrive at the same time

 The node can only transmit one

 … and either buffers or drops the other

◼ If many packets arrive in a short period of time

 The node cannot keep up with the arriving traffic

 Causes delays, and the buffer may eventually overflow
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Load and Delay
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Average

Packet delay

Load

Typical behavior of queueing

systems with bursty arrivals:

Power

Load

Load
Power

Delay
=

“optimal

load”

Ideal: low delays and high utilization

Reality: must balance the two

Maximizing “power” is an example
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Basic Design Choices

◼ Prevention or Cure?
 Pre-allocate resources to avoid congestion

 Send data and control congestion if and when it 
occurs

◼ Possible implementation points
 Hosts at the edge of the network 

◼ Transport protocol

 Routers inside the network
◼ Queueing disciplines

◼ Underlying service model
 Best effort vs. quality of service (QoS)
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Flows

◼ Sequence of packets sent between 
source/destination pair
 Similar to end-to-end abstraction of channel, but seen at 

routers

◼ Maintain per-flow soft state at the routers

Router

Router

Router

Source 1

Source 2

Source 3

Destination 1

Destination 2



Router State

◼ Soft state: 

 Information about flows

 Helps control congestion

 Not necessary for correct 

routing

◼ Hard state:

 state used to support 

routing
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Router

Router

Router

Source 1

Source 2

Source 3

Destination 1

Destination 2
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Congestion Control

◼ Router role
 Controls forwarding and dropping policies

 Can send feedback to source

◼ Host role
 Monitors network conditions

 Adjusts accordingly

◼ Routing vs. congestion
 Effective adaptive routing schemes

can sometimes help congestion

 But not always
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Congestion Control Taxonomy

feedback-based

reservation-based,

implemented by routers,

controlled by rate,

a.k.a. quality of service/QoS

explicit feedback,

implemented by routers,

but not per flow…why?

implicit feedback,

implemented by hosts,

controlled by window

abstraction,

a.k.a. best effort

congestion control



Router-Centric vs. Host-

Centric Flow Control

◼ Router-centric

 Each router takes 

responsibility for 

deciding 

◼ When packets are 

forwarded

◼ Which packets are 

to be dropped

◼ Informing hosts of 

sending limitations

◼ Host-centric

 Hosts observe 

network conditions 

and adjust their 

behavior 

accordingly
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Reservation-Based vs. 

Feedback-Based Flow Control

◼ Reservation-based

 End host asks network 

for capacity at flow 

establishment time

 Routers along flow’s 

route allocate 

appropriate resources

 If resources are not 

available, flow is 

rejected

 Implies the use of 

router-centric 

mechanisms

◼ Feedback-based

 End host begins 

sending without asking 

for capacity

 End host adjusts 

sending rate according 

to feedback

◼ Explicit vs. implicit 

feedback mechanisms

 May use router-centric 

(explicit) or host-centric 

(implicit) mechanisms
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Per-flow Congestion Feedback 

◼ Question

 Why is explicit per-flow congestion 

feedback from routers rarely used in 

practice?
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Per-flow Congestion Feedback 

◼ Problem

 Too many sources to track

◼ Millions of flows may fan in to one router

◼ Can’t send feedback to all of them

 Adds complexity to router

◼ Need to track more state

◼ Certainly can’t track state for all sources

 Wastes bandwidth: network already congested,

not the time to generate more traffic

 Can’t force the sources (hosts) to use feedback
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Window-based vs. Rate-based 

Flow Control

◼ Remember

 Given a RTT and window size W, long term throughput 

rate is 

◼ Rate = min(link speed, W/RTT)

◼ Since rate can be controlled by the window size, is 

there really any difference between controlling the 

window size and controlling the rate?

Rate

W
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Rate Control

◼ Question

 Why consider rate control?

◼ Problems

 Buffer space (window size) is
an intrinsic physical quantity

 Can provide rate control with 
window control

 Only need estimate of RTT

time

0 2 RTT1 RTT

window-controlled

transmissions

rate-controlled

transmissions

Answer

Want rate control 

when granularity of 

averaging must be 

smaller than RTT
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Criticisms of Resource 

Allocation

◼ Example

 Divide 10 Gbps bandwidth out of UIUC

◼ Case 1: reserve whatever you want

 Users’ line of thought

◼ On average, I don’t need much bandwidth, but when 

my personal Web crawler goes to work, I need at least 

100 Mbps, so I’ll reserve that much.

 Result

◼ 100 users consume all bandwidth, all others get 0
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Criticisms of Resource 

Allocation

◼ Example

 Divide 10 Gbps bandwidth out of UIUC

◼ Case 2: fair/equitable reservations

 35,000 students + 5,000 faculty and staff

 Each user gets 250 kbps, almost 5x a modem!



Spring 2020 © CS 438 Staff - University of Illinois 24

Resource Allocation

◼ Back to the air travel analogy

 Daily Chicago to San Francisco flight, 198 seats

 Case 1: reserve whatever you want

◼ 198 of us get seats.  I’m Gold...are you?

 Case 2: fair/equitable reservations

◼ 2,000,000 possible customers

◼ 0.000099 seats per customer per flight

◼ Disclaimer: 

the passenger assumes all risks and damages

related to unsuccessful reassembly in Chicago
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Window Size

Source Destination
C

For non-random network with bottleneck capacity C:

Rate = Throughput

W

C

Delay

W
RTT/2

Power = throughput/delay

W

RTT*C



Fairness

◼ Goals

 Allocate resources “fairly”

 Isolate ill-behaved users

 Still achieve statistical multiplexing
◼ One flow can fill entire pipe if no contenders

◼ Work conserving → scheduler never idles link if it has a 

packet

◼ At what granularity?

 Flows, connections, domains?
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What’s Fair?

Flow A

Flow B Flow C Flow D

This is the so-

called “max-min 

fair” rate 

allocation.  The 

minimum rate is 

maximized.

Which is more fair:

Globally Fair: Fa = Capacity/4, Fb = Fc = Fd = 

3Capacity/4

or

Locally Fair: Fa = Fb = Fc = Fd = Capacity/2
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Max-Min Fairness

Flow A

Flow B Flow C Flow D

1. No user receives more than requested bandwidth

2. No other scheme with 1 has higher min bandwidth

3. 2 remains true recursively on removing minimal 

user I = MIN(fair, i)



Max-Min Fairness: Example

◼ Capacity(C) = 10

 3 Flows:    r1 = 8, r2 = 6, r3 = 2

◼ C/3 = 3.33 →

 Can service all of r3

 Remove r3 from the accounting: C = C – r3 = 8; N = 2

◼ C/2 = 4 →

 Can’t service all of r1 or r2

 So hold them to the remaining fair share: f = 4
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Queueing Disciplines

◼ Goal

 Decide how packets are buffered while waiting 

to be transmitted

 Provide protection from ill-behaved flows

 Each router MUST implement some queuing 

discipline regardless of what the resource 

allocation mechanism is

◼ Impact

 Directly impacts buffer space usage

 Indirectly impacts flow control
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Queueing Disciplines

◼ Allocate bandwidth

 Which packets get transmitted

◼ Allocate buffer space

 Which packets get discarded

◼ Affect packet latency

 When packets get transmitted
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Scheduling Policies

◼ FIFO (First In First Out) a.k.a. FCFS (First Come 
First Serve)
 Service

◼ In order of arrival to the queue

 Management

◼ Packets that arrive to a full buffer are discarded

◼ Another option: discard policy determines which packet to 
discard (new arrival or something already queued)
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Scheduling Policies

◼ FIFO (First In First Out)

 Problem 1: send more packets, get more service

◼ Selfish senders trying to grab as much as they can

◼ Malicious senders trying to deny service to others

 Problem 2: not all packets should be equal
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Scheduling Policies

◼ FIFO
 Does not discriminate between traffic sources

 Congestion control left to the sources

 Tail drop dropping policy

 Fairness for latency

 Minimizes per-packet delay

 Bandwidth not considered (not good for congestion)
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Scheduling Policies

◼ Priority Queuing
 Classes have different priorities

◼ May depend on explicit marking or other header info

 e.g., IP source or destination, TCP Port numbers, etc.

 Service

◼ Transmit packet from highest priority class with a non-empty 

queue
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Scheduling Policies

◼ Priority Queuing

 Isolation for the high-priority traffic

◼ Almost like it has a dedicated link

◼ Except for the (small) delay for packet transmission

 High-priority packet arrives during transmission of low-priority

 Router completes sending the low-priority traffic first
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Scheduling Policies

◼ Priority Queueing Versions

 Preemptive

◼ Postpone low-priority processing if high-priority packet 

arrives

 Non-preemptive

◼ Any packet that starts getting processed finishes 

before moving on

◼ Limitation

 May starve lower priority flows



Spring 2020 © CS 438 Staff - University of Illinois 39

Scheduling Policies

◼ Round Robin

 Each flow gets its own queue

 Circulate through queues, process one packet (if 

queue non-empty), then move to next queue
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Scheduling Policies

◼ Fair Queueing (FQ)

 Explicitly segregates 

traffic based on flows

 Ensures no flow 

captures more than its 

share of the capacity

 Fairness for 

bandwidth

 Delay not considered

Flow 1

Flow 2

Flow 3

Flow 4

Round-

Robin 

service

Each flow is guaranteed ¼ 

of capacity
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Fair Queueing with Variable 

Packet Length

◼ How should we implement FQ if packets are not all 

the same length?

 Bit-by-bit round-robin

◼ Not feasible to implement, must use packet scheduling

◼ Solution: approximate

4 8

6 10

44 4 5

?
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Fair Queueing with Variable 

Packet Length

◼ Idea
 Let Si = amount of service flow i has received so far

 Always serve a flow with minimum value of Si

◼ Can also use minimum (Si + next packet length)

 Upon serving a packet of length P from flow i, update:

◼ Si = Si + P

◼ Never leave the link idle if there is a packet to send
 Work conserving

◼ A source will gets its fair share of the bandwidth

◼ Unused bandwidth will be evenly divided between other 
sources
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Fair Queueing with Variable 

Packet Length

◼ Problem
 A flow resumes sending packets after being quiet for a 

long time

◼ Effect
 Such a flow could be considered to have “saved up 

credit”

 Can lock out all other flows until credits are level again

◼ Solution 
 Enforce “use it or lose it policy”

◼ Compute Smin = min(Si such that queue i is not empty)

◼ If queue j is empty, set Sj = Smin
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Fair Queueing with Variable 

Packet Length

◼ Problem
 A flow resumes sending packets after being quite for a 

long time

◼ Effect
 Such a flow could be considered to have “saved up 

credit”

 Can lock out all other flows until credits are level again

◼ Solution 
 Enforce “use it or lose it policy”

◼ Compute Smin = min(Si such that queue i is not empty)

◼ If queue j is empty, set Sj = Smin

Note:
The text book computes

F = MAX(Fi-1, Ai) = Pi

And then for multiple flows
• Calculate Fi for each packet 

that arrives on each flow

• Treat all Fi as timestamps

• Next packet to transmit is one 

with lowest timestamp
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Extension: Weighted Fair 

Queueing

◼ Extend fair queueing 

 Notion of importance for each flow

◼ Suppose flow i has weight wi

 Example: wi could be the fraction of total 

service that flow i is targeted for

◼ Need only change basic update to 

 Si = Si + P/wi



Fair Queuing Tradeoffs

◼ FQ can control congestion by monitoring flows

 Non-adaptive flows can still be a problem – why?

◼ Complex state

 Must keep queue per flow

◼ Hard in routers with many flows (e.g., backbone routers)

◼ Flow aggregation is a possibility (e.g. do fairness per 

domain)

◼ Complex computation

 Classification into flows may be hard

 Must keep queues sorted by finish times

 Changes whenever the flow count changes
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Fair Queueing

◼ Question
 What makes up a flow for fair queueing in the 

Internet?

◼ Considerations

 Too many resources to have separate 

queues/variables for host-to-host flows

 Scale down number of flows

 Typically just based on inputs

◼ e.g., share outgoing STS-12 between incoming ISP’s
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TCP Congestion Control



Host Solutions

◼ Host has very little information

 Assumes  best-effort network

 Acts independently of other hosts

◼ Host actions

 Reduce transmission rate below 

congestion threshold

 Continuously monitor network for signs of 

congestion
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Detecting Congestion

◼ How can a TCP sender determine that the network 

is under stress? 

◼ Network could tell it (ICMP Source Quench)

 Risky, because during times of overload the signal itself 

could be dropped (and add to congestion)!

◼ Packet delays go up (knee of load-delay curve)

 Tricky: noisy signal (delay often varies considerably) 

◼ Packet loss

 Fail-safe signal that TCP already has to detect

 Complication: non-congestive loss (checksum errors)
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TCP Congestion Control

◼ Idea

 Assumes best-effort network 

◼ FIFO or FQ

 Each source determines network capacity for itself

 Implicit feedback

 ACKs pace transmission (self-clocking)

◼ Challenge

 Determining initial available capacity

 Adjusting to changes in capacity in a timely manner
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TCP Congestion Control

◼ Basic idea

 Add notion of congestion window

 Effective window is smaller of

◼ Advertised window (flow control)

◼ Congestion window (congestion control)

 Changes in congestion window size

◼ Slow increases to absorb new bandwidth

◼ Quick decreases to eliminate congestion
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TCP Congestion Control

◼ Specific strategy
 Self-clocking

◼ Send data only when outstanding data ACK’d

◼ Equivalent to send window limitation mentioned

receiversender
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TCP Congestion Control

◼ Specific strategy
 Self-clocking

◼ Send data only when outstanding data ACK’d

◼ Equivalent to send window limitation mentioned

 Growth
◼ Add one maximum segment size (MSS) per 

congestion window of data ACK’d

◼ It’s really done this way, at least in Linux:

 see tcp_cong_avoid in tcp_input.c.  

 Actually, every ack for new data is treated as an MSS 
ACK’d

◼ Known as additive increase
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TCP Congestion Control

◼ Specific strategy (continued)

 Decrease

◼ Cut window in half when timeout occurs

◼ In practice, set window = window /2 

◼ Known as multiplicative decrease

 Additive increase, multiplicative decrease 

(AIMD)



Additive Increase/ 

Multiplicative Decrease

◼ Objective

 Adjust to changes in available capacity

◼ Basic idea

 Consequences of over-sized window much worse than 

having an under-sized window

◼ Over-sized window: packets dropped and retransmitted

◼ Under-sized window: somewhat lower throughput
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Additive Increase/ 

Multiplicative Decrease

◼ Tools

 React to observance of congestion

 Probe channel to detect more resources

◼ Observation

 On notice of congestion

◼ Decreasing too slowly will not be reactive enough

 On probe of network

◼ Increasing too quickly will overshoot limits
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Additive Increase/ 

Multiplicative Decrease

◼ New TCP state variable
 CongestionWindow

◼ Similar to AdvertisedWindow for flow control

 Limits how much data source can have in transit
◼ MaxWin = MIN(CongestionWindow, 

AdvertisedWindow)

◼ EffWin = MaxWin - (LastByteSent -
LastByteAcked)

◼ TCP can send no faster then the slowest component, 
network or destination

◼ Idea
 Increase CongestionWindow when congestion goes 

down

 Decrease CongestionWindow when congestion goes up
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Additive Increase/ 

Multiplicative Decrease

◼ Question

 How does the source determine whether or not 

the network is congested?

◼ Answer

 Timeout signals packet loss

 Packet loss is rarely due to transmission error 

(on wired lines)

 Lost packet implies congestion!
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Additive Increase/ 

Multiplicative Decrease

◼ Algorithm

 Increment CongestionWindow by one 

packet per RTT 

◼ Linear increase

 Divide CongestionWindow by two 

whenever a timeout occurs

◼ Multiplicative decrease

◼ In practice

 increment a little for each ACK

Inc = MSS * MSS/CongestionWindow

CongestionWindow += Inc

Source Destination

…



AIMD – Sawtooth Trace

◼ Packet loss is seen as sign of congestion and 

results in a multiplicative rate decrease 

 Factor of 2

◼ TCP periodically probes for available bandwidth by 

increasing its rate
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Additive Increase/Decrease

◼ Both increase/ decrease by the same amount
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User 1’s Allocation

User 2’s 

Allocation

Overload

Underutilization

T0

T1

 Additive increase 

improves fairness

 Additive decrease 

reduces fairness



Muliplicative 

Increase/Decrease

◼ Both increase/ decrease by the same amount
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User 1’s Allocation

User 2’s 

Allocation

Overload

Underutilization

 Additive increase 

improves fairness

 Additive decrease 

reduces fairness

T0

T1
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Why is AIMD Fair?

◼ Additive increase gives slope of 1, as throughout increases

◼ Multiplicative decrease decreases throughput proportionally 

R

R

equal bandwidth share

User 1’s Allocation

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2



AIMD Sharing Dynamics

◼ No congestion → rate increases by one 

packet/RTT every RTT

◼ Congestion → decrease rate by factor 2
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AIMD Sharing Dynamics
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TCP Start Up Behavior

◼ How should TCP start sending data?

 AIMD is good for channels operating at capacity

 AIMD can take a long time to ramp up to full 

capacity from scratch

60
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It could take a long time 

to get started!
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TCP Start Up Behavior

◼ How should TCP start sending data?

 AIMD is good for channels operating at capacity

 AIMD can take a long time to ramp up to full 

capacity from scratch

 Use Slow Start to increase window rapidly from 

a cold start



TCP Start Up Behavior: Slow 

Start

◼ Initialization of the congestion window

 Congestion  window should start small

◼ Avoid congestion due to new connections

 Start at 1 MSS, 

◼ Initially, CWND is 1 MSS

◼ Initial sending rate is MSS/RTT

 Reset to 1 MSS with each timeout 

◼ timeouts are coarse-grained, ~1/2 sec
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TCP Start Up Behavior: Slow 

Start

◼ Growth of the congestion window

◼ Linear growth could be pretty wasteful

 Might be much less than the actual bandwidth

 Linear increase takes a long time to accelerate

◼ Start slow but then grow fast

 Sender starts at a slow rate

 Increase the rate exponentially

 Until the first loss event
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Slow Start

◼ Objective
 Determine initial available capacity

◼ Idea
 Begin with CongestionWindow = 1 

packet

 Double CongestionWindow each RTT
◼ Increment by 1 packet for each ACK

 Continue increasing until loss

Source Destination

…



Slow Start Example
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Another Slow Start Example
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D A D D A A D D

Src

Dest

D D

1 2 43

A A A A

8CWD size:



Slow Start

◼ Used

 When first starting connection

 When connection times out

◼ Why is it called slow-start? 

 Because TCP originally had no congestion 

control mechanism

 The source would just start by sending a whole 

window’s worth of data
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TCP Congestion Control

◼ Maintain threshold window size

 Threshold value

◼ Initially set to maximum window size

◼ Set to 1/2 of current window on timeout

 Use multiplicative increase

◼ When congestion window smaller than threshold

◼ Double window for each window ACK’d

◼ In practice

 Increase congestion window by one MSS for each ACK of 

new data (or N bytes for N bytes)
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Slow Start

◼ How long should the exponential 

increase from slow start 

continue?

 Use CongestionThreshold 

as target window size

 Estimates network capacity

 When CongestionWindow 

reaches

CongestionThreshold switch 

to additive increase

Exponential

“slow start”

Linear 

probing
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Slow Start

◼ Initial values

 CongestionThreshold = 8

 CongestionWindow = 1

◼ Loss after transmission 7

 CongestionWindow currently 12

 Set Congestionthreshold = 

CongestionWindow/2

 Set CongestionWindow = 1
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Slow Start

◼ Example trace of CongestionWindow
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◼ Problem

◼ Have to wait for timeout

◼ Can lose half CongestionWindow of data

CW flattens out due to loss

Slow start until CW = CT

Linear increase

Timeout: CT = CT/2 = 11 CW = 1
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Fast Retransmit and Fast 

Recovery

◼ Problem

 Coarse-grain TCP 

timeouts lead to 

idle periods

◼ Solution

 Fast retransmit: use 

duplicate ACKs to 

trigger 

retransmission

Packet 1

Packet 2

Packet 3

Packet 4

Packet 5

Packet 6

Retransmit
packet 3

ACK 1

ACK 2

ACK 2

ACK 2

ACK 6

ACK 2

Sender Receiver
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Fast Retransmit and Fast 

Recovery

◼ Send ACK for each segment received

◼ When duplicate ACK’s received
 Resend lost segment immediately

 Do not wait for timeout

 In practice, retransmit on 3rd duplicate

◼ Fast recovery
 When fast retransmission occurs, skip slow start

 Congestion window becomes 1/2 previous

 Start additive increase immediately
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Fast Retransmit and Fast 

Recovery

◼ Results

◼ Fast Recovery

◼ Bypass slow start phase

◼ Increase immediately to one half last successful 
CongestionWindow (ssthresh)
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TCP Congestion Window 

Trace
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