Network Adaptors

AKA Network Interface Cards (NIC)
Network Adaptors

- Components
- Options for Use
 - Data Motion
 - Event Notification
- Potential performance bottlenecks
- Programming device drivers
Network Adaptors

Processor

Cache

Memory

memory bus (MBUS)

Network Adaptor

input/output bus (I/O BUS)

NETWORK

Communication?
Network Adaptors

Adaptor Implements:
- Encoding
- Framing
- Error detection
- Medium access control

Data Motion
- Direct Memory Access (DMA)
- Programmed Input/Output (PIO)
Network Adaptor: DMA

Processor → Cache → Memory

Memory Bus (MBUS) → Input/Output Bus (I/O BUS) → Network Adaptor

NETWORK
Network Adaptor: PIO

Diagram showing the relationship between the processor, cache, memory, memory bus (MBUS), input/output bus (I/O BUS), network, and network adaptor.
Network Adaptor Use

- **Data Motion**
 - Direct Memory Access (DMA)
 - Processor free to do other things
 - Can be faster than memory copy through CPU
 - Start up cost
 - Programmed Input/Output (PIO)
 - Processor manages each access (loads/stores)
 - Faster than DMA for small amounts of data
Network Adaptor Use

- Event Notification
 - Hardware interrupts
 - Processor free to do other things
 - Events delivered immediately
 - State (register) save/restore expensive
 - Context switches more expensive
 - Event polling
 - Processor must periodically check
 - Events wait until next check
 - No extra state changes
Network Adaptor Performance

- Potential bottlenecks
 - Link capacity
 - I/O bus bandwidth
 - Memory bus bandwidth
 - Processor computing power
Programming Device Drivers

- Sample device driver in P&D
- Better examples in Linux
- Key Features
 - Memory-mapped control registers
 - Interrupt driven
 - Handler code must execute quickly
 - Logically concurrent with other processors
Direct Link Examples

- **Goal**
 - Explain real systems in terms of direct link topics

- TCP transport layer

- IP network layer

- Two examples of data link/physical layers
 - Ethernet
 - FDDI

- merely case studies—no need to memorize details
Example

- TCP transport layer (reliable transmission)
 - sliding window algorithm
 - adaptive window sizes
 - heuristics to address contention
 - aim at global optimum
 - see P&D 6.3 for details or wait until April

- IP network layer (error detection)
 - IP checksum
 - backs up stronger data link barriers (usually CRC)
Example

- 10 Mbps Ethernet (Xerox)
 - Encoding
 - Manchester
 - 10 Mbps, so transitions at 20 MHz
 - Error detection
 - Cyclic redundancy check (probably CRC-32)
 - Framing
 - Sentinel marks end-of-frame
 - Bit-oriented (similar to HDLC)
 - Variable length
 - Data-dependent length
 - Medium access control
 - CSMA/CD
10Mb Ethernet Frame Format

- Preamble
- Destination Address
- Source Address
- Type
- Body + Padding
- CRC
- End of Frame
Ethernet Frame Components

- Preamble + Start of Frame
 - 7 bytes of 10101010, 1 byte of 10101011
 - Encoded as 10Mhz square wave
 - Synchronize receiver’s clock

- Source and Destination Address
 - Unique unicast Ethernet addresses
 - 20 bit manufacturer prefix + 28 bit ID
 - Multicast address: MSB set (80:00:...
Ethernet Frame Components

- **Type**
 - 2 – bytes
 - Used to demultiplex higher layers

- **Body + Padding**
 - Minimum data size = 46 (minimum frame size = 64)
 - Data padded to minimum value
 - Maximum data size = 1500
Ethernet Frame Components

- CRC
 - 4 byte
- End of frame marker
 - 1 byte
- Total of 27 bytes header and trailer
- Xerox vs. 802.3
 - 802.3 replaces type with length
 - 802.3 drops EOF
IEEE 802.11 Frame Format

- **Types**
 - control frames, management frames, data frames

- **Sequence numbers**
 - important against duplicated frames due to lost ACKs

- **Addresses**
 - receiver, transmitter (physical), BSS identifier, sender (logical)

- **Miscellaneous**
 - sending time, checksum, frame control, data
IEEE 802.11 Data Frame Format

<table>
<thead>
<tr>
<th>Bytes</th>
<th>Frame Control</th>
<th>Duration/ID</th>
<th>Address 1</th>
<th>Address 2</th>
<th>Address 3</th>
<th>Sequence Control</th>
<th>Address 4</th>
<th>Data</th>
<th>CRC</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Bits</th>
<th>Protocol version</th>
<th>Type</th>
<th>Subtype</th>
<th>To DS</th>
<th>From DS</th>
<th>More Frag</th>
<th>Retry</th>
<th>Power Mgmt</th>
<th>More Data</th>
<th>WEP</th>
<th>Order</th>
</tr>
</thead>
</table>

- Protocol version: 2 bits
- Type: 2 bits
- Subtype: 4 bits
- To DS: 1 bit
- From DS: 1 bit
- More Frag: 1 bit
- Retry: 1 bit
- Power Mgmt: 1 bit
- More Data: 1 bit
- WEP: 1 bit
- Order: 1 bit

- Frame Control: 2 bytes
- Duration/ID: 2 bytes
- Address 1: 6 bytes
- Address 2: 6 bytes
- Address 3: 6 bytes
- Sequence Control: 2 bytes
- Address 4: 6 bytes
- Data: 0-2312 bytes
- CRC: 4 bytes
IEEE 802.11 Control Frame Format

- **Acknowledgement**
 - bytes 2 2 6 4
 - Frame Control | Duration | Receiver Address | CRC

- **Request To Send**
 - bytes 2 2 6 6 4
 - Frame Control | Duration | Receiver Address | Transmitter Address | CRC

- **Clear To Send**
 - bytes 2 2 6 4
 - Frame Control | Duration | Receiver Address | CRC