Direct Link Networks – Error Detection and Correction

Reading: Peterson and Davie, Chapter 2
Error Detection

- Encoding translates symbols to signals
- Framing demarcates units of transfer
- Error detection validates correctness of each frame
Error Detection

- Adds redundant information that checks for errors
 - And potentially fix them
 - If not, discard packet and resend

- Occurs at many levels
 - Demodulation of signals into symbols (analog)
 - Bit error detection/correction (digital)—our main focus
 - Within network adapter (CRC check)
 - Within IP layer (IP checksum)
 - Within some applications
Error Detection

- Analog Errors
 - Example of signal distortion
- Hamming distance
 - Parity and voting
 - Hamming codes
- Error bits or error bursts?
- Digital error detection
 - Two-dimensional parity
 - Checksums
 - Cyclic Redundancy Check (CRC)
Analog Errors

- Consider RS-232 encoding of character ‘Q’
- Assume idle wire (-15V) before and after signal
RS-232 Encoding of 'Q'

-20 -10 0 10 20
Voltage

start 1 1 0 0 0 0 0 1 stop
Encoding isn’t perfect

Example with bandwidth = baud rate

Voltage

start 1 1 0 0 0 0 0 1 stop
Encoding isn’t perfect

Example with bandwidth = baud rate/2

![Graph showing voltage levels with start and stop signals.](image)
Symbols

Possible binary voltage encoding:
- 0
- 1
- ? (erasure)

Possible QAM symbol neighborhoods in green; all other space results in erasure.

Possible symbol neighborhoods and erasure region:
- Voltage range from -15 to +15.
Digital error detection and correction

- **Input:** decoded symbols
 - Some correct
 - Some incorrect
 - Some erased

- **Output:**
 - Correct blocks (or codewords, or frames, or packets)
 - Erased blocks
Error Detection Probabilities

Definitions

- P_b: Probability of single bit error (BER)
- P_1: Probability that a frame arrives with no bit errors
- P_2: While using error detection, the probability that a frame arrives with one or more undetected errors
- P_3: While using error detection, the probability that a frame arrives with one or more detected bit errors but no undetected bit errors
Error Detection Probabilities

With no error detection

- No bit errors: \(P_1 = (1 - P_b)^F \)
- Undetected errors: \(P_2 = 1 - P_1 \)
- Detected errors: \(P_3 = 0 \)

- \(F = \) Number of bits per frame
Error Detection Process

- **Transmitter**
 - For a given frame, an error-detecting code (check bits) is calculated from data bits
 - Check bits are appended to data bits

- **Receiver**
 - Separates incoming frame into data bits and check bits
 - Calculates check bits from received data bits
 - Compares calculated check bits against received check bits
 - Detected error occurs if mismatch
Parity

- Parity bit appended to a block of data
- Even parity
 - Added bit ensures an even number of 1s
- Odd parity
 - Added bit ensures an odd number of 1s
- Example
 - 7-bit character 1110001
 - Even parity 1110001 0
 - Odd parity 1110001 1
Parity: Detecting Bit Flips

1-bit error detection with parity
- Add an extra bit to a code to ensure an even (odd) number of 1s
- Every code word has an even (odd) number of 1s
Voting: Correcting Bit Flips

- 1-bit error correction with voting
 - Every codeword is transmitted n times
 - Codeword is 3 bits long

<table>
<thead>
<tr>
<th>Valid code words</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
</table>

Voting:
- White – correct to 1
- Blue - correct to 0

000 010 100

001 011 110 111
Voting: 2-bit Erasure Correction

- Every code word is copied 3 times

2-erasure planes in green remaining bit not ambiguous

cannot correct 1-error and 1-erasure
Hamming Distance

- The Hamming distance between two code words is the minimum number of bit flips to move from one to the other.
 - Example:
 - 00101 and 00010
 - Hamming distance of 3
Minimum Hamming Distance

- The minimum Hamming distance of a code is the minimum distance over all pairs of codewords
 - Minimum Hamming Distance for parity
 - 2
 - Minimum Hamming Distance for voting
 - 3
Coverage

N-bit error detection
- No code word changed into another code word
- Requires Hamming distance of N+1

N-bit error correction
- N-bit neighborhood: all codewords within N bit flips
- No overlap between N-bit neighborhoods
- Requires hamming distance of 2N+1
Hamming Codes

- Linear error-correcting code
- Named after Richard Hamming
- Simple, commonly used in RAM (e.g., ECC-RAM)
- Can detect up to 2-bit errors
- Can correct up to 1-bit errors
Hamming Codes

- **Construction**
 - number bits from 1 upward
 - powers of 2 are check bits
 - all others are data bits
 - Check bit j: XOR of all k for which $(j \text{ AND } k) = j$

- **Example:**
 - 4 bits of data, 3 check bits

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>C</td>
<td>D</td>
<td>C</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
</tbody>
</table>

$C_1, C_2, D_3, C_4, D_5, D_6, D_7$
Hamming Codes

- Construction
 - number bits from 1 upward
 - powers of 2 are check bits
 - all others are data bits
 - Check bit \(j \): XOR of all \(k \) for which \((j \text{ AND } k) = j\)

- Example:
 - 4 bits of data, 3 check bits

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
C_1 & C_2 & D_3 & C_4 & D_5 & D_6 & D_7 \\
\end{array}
\]
Hamming Codes

- Construction
 - number bits from 1 upward
 - powers of 2 are check bits
 - all others are data bits
 - Check bit \(j \): XOR of all \(k \) for which \((j \text{ AND } k) = j\)

- Example:
 - 4 bits of data, 3 check bits
 - \(C_1 \) \(C_2 \) \(D_3 \) \(C_4 \) \(D_5 \) \(D_6 \) \(D_7 \)
Hamming Codes
What are we trying to handle?

- **Worst case errors**
 - We solved this for 1 bit error
 - Can generalize, but will get expensive for more bit errors

- **Probability of error per bit**
 - Flip each bit with some probability, independently of others

- **Burst model**
 - Probability of back-to-back bit errors
 - Error probability dependent on adjacent bits
 - Value of errors may have structure

- **Why assume bursts?**
 - Appropriate for some media (e.g., radio)
 - Faster signaling rate enhances such phenomena
Digital Error Detection Techniques

- **Two-dimensional parity**
 - Detects up to 3-bit errors
 - Good for burst errors

- **IP checksum**
 - Simple addition
 - Simple in software
 - Used as backup to CRC

- **Cyclic Redundancy Check (CRC)**
 - Powerful mathematics
 - Tricky in software, simple in hardware
 - Used in network adapter
Two-Dimensional Parity

- **Use 1-dimensional parity**
 - Add one bit to a 7-bit code to ensure an even/odd number of 1s

- **Add 2nd dimension**
 - Add an extra byte to frame
 - Bits are set to ensure even/odd number of 1s in that position across all bytes in frame

- **Comments**
 - Catches all 1-, 2- and 3-bit and most 4-bit errors
Two-Dimensional Parity

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- **0**
- **1**

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- **0**
- **1**

© CS 438 Staff, University of Illinois
What happens if…

Can detect exactly which bit flipped
Can also correct it!

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

0 0 1 0 0 0 1 1 1
What about 2-bit errors?

Can detect the two-bit error

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Can’t tell which bits are flipped, so can’t correct

Can’t detect a problem here

<table>
<thead>
<tr>
<th></th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Table values adjusted accordingly.
What about 2-bit errors?

Could be the dotted pair or the dashed pair. Can’t correct 2-bit error.

If these four parity bits don’t match, which bits could be in error?

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What about 3-bit errors?

Can detect the three-bit error

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

But you can’t correct (eg if dashed bits got flipped instead of the dotted ones)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
What about 4-bit errors?

Are there any 4-bit errors this scheme *can* detect?

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

0 0 1 0 0 0 1 1 1 1
What about 4-bit errors?

Can you think of a 4-bit error this scheme can’t detect?
Internet Checksum

- Idea
 - Add up all the words
 - Transmit the sum
 - Use 1’s complement addition on 16bit codewords
 - Example
 - Codewords: -5 -3
 - 1’s complement binary: 1010 1100
 - 1’s complement sum 1000

- Comments
 - Small number of redundant bits
 - Easy to implement
 - Not very robust
 - Eliminated in IPv6
IP Checksum

```c
u_short cksum(u_short *buf, int count) {
    register u_long sum = 0;
    while (count--) {
        sum += *buf++;
        if (sum & 0xFFFF0000) {
            /* carry occurred, so wrap around */
            sum &= 0xFFFF;
            sum++;
        }
    }
    return ~(sum & 0xFFFF);
}
```

What could cause this check to fail?
Main Goal: Check the Data!

n data bits

Hash function

k pseudorandom check bits
Main Goal: Check the Data!

- In any code, what fraction of codewords are valid?
 - $\frac{1}{2^k}$
- Ideal (random) hash function:
 - Any change in input produces an output that’s essentially random
 - So any error would be detected with probability $1 - 2^{-k}$
- Checksum: not close to ideal
- CRC: better

n data bits

Hash function

k pseudorandom check bits
Basic idea

- Both endpoints agree in advance on divisor value $C = 3$
- Sender wants to send message $M = 10$
- Sender computes X such that C divides $10M + X$
- Sender sends codeword $W = 10M + X$
- Receiver receives W' and checks whether C divides W'
 - If so, then probably no error
 - If not, then error
Simplified CRC-like protocol using regular integers

- Intuition
 - If C is large, it’s unlikely that bits are flipped exactly to land on another multiple of C.
 - CRC is vaguely like this, but uses polynomials instead of numbers.
Cyclic Redundancy Check (CRC)

- **Given**
 - Message $M = 10011010$
 - Represented as Polynomial $M(x)$
 $$
 = 1 \cdot x^7 + 0 \cdot x^6 + 0 \cdot x^5 + 1 \cdot x^4 + 1 \cdot x^3 + 0 \cdot x^2 + 1 \cdot x + 0
 = x^7 + x^4 + x^3 + x
 $$

- **Select a divisor polynomial $C(x)$ with degree k**
 - Example with $k = 3$:
 - $C(x) = x^3 + x^2 + 1$
 - Represented as 1101

- **Transmit a polynomial $P(x)$ that is evenly divisible by $C(x)$**
 - $P(x) = M(x) \cdot x^k + k$ check bits

How can we determine these k bits?
Properties of Polynomial Arithmetic

- Coefficients are modulo 2
 \[(x^3 + x) + (x^2 + x + 1) = \ldots\]
 \[\ldots x^3 + x^2 + 1\]
 \[(x^3 + x) - (x^2 + x + 1) = \ldots\]
 \[\ldots x^3 + x^2 + 1 \text{ also!}\]

- Addition and subtraction are both xor!

- Need to compute \(R\) such that \(C(x)\) divides \(P(x) = M(x) \cdot x^k + R(x)\)

- So \(R(x) = \text{remainder of } M(x) \cdot x^k \div C(x)\)
 - Will find this with polynomial long division
Polynomial arithmetic

- **Divisor**
 - Any polynomial \(B(x) \) can be divided by a polynomial \(C(x) \) if \(B(x) \) is of the same or higher degree than \(C(x) \)

- **Remainder**
 - The remainder obtained when \(B(x) \) is divided by \(C(x) \) is obtained by subtracting \(C(x) \) from \(B(x) \)

- **Subtraction**
 - To subtract \(C(x) \) from \(B(x) \), simply perform an XOR on each pair of matching coefficients

- For example: \((x^3+1)/(x^3+x^2+1) = \) ?
CRC - Sender

Given
- \(M(x) = 10011010 = x^7 + x^4 + x^3 + x \)
- \(C(x) = 1101 = x^3 + x^2 + 1 \)

Steps
- \(T(x) = M(x) \ast x^k \) (add zeros to increase deg. of \(M(x) \) by \(k \))
- Find remainder, \(R(x) \), from \(T(x)/C(x) \)
- \(P(x) = T(x) - R(x) \Rightarrow M(x) \) followed by \(R(x) \)

Example
- \(T(x) = 10011010000 \)
- \(R(x) = 101 \)
- \(P(x) = 10011010101 \)
CRC - Receiver

- Receive Polynomial $P(x) + E(x)$
 - $E(x)$ represents errors
 - $E(x) = 0$, implies no errors
- Divide $(P(x) + E(x))$ by $C(x)$
 - If result = 0, either
 - No errors ($E(x) = 0$, and $P(x)$ is evenly divisible by $C(x)$)
 - $(P(x) + E(x))$ is exactly divisible by $C(x)$, error will not be detected
 - If result = 1, errors.
CRC – Example Encoding

\[C(x) = x^3 + x^2 + 1 \]
\[M(x) = x^7 + x^4 + x^3 + x \]

\[= 1101 \]
\[= 10011010 \]

Generator Message

Result:

Transmit message followed by remainder:

\[10011010101 \]
CRC – Example Decoding – No Errors

\[C(x) = x^3 + x^2 + 1 \quad = 1101 \quad \text{Generator} \]
\[P(x) = x^{10} + x^7 + x^6 + x^4 + x^2 + 1 \quad = 10011010101 \quad \text{Received Message} \]

\[
\begin{array}{c}
1101 \\
10011010101 \\
1101
\end{array}
\]

\(k + 1 \) bit check sequence \(c \), equivalent to a degree-\(k \) polynomial

Result:
CRC test is passed

\[
\begin{array}{c}
1001 \\
1101 \\
1000 \\
1101 \\
1011 \\
1101 \\
1100 \\
1101
\end{array}
\]

Remainder
\(m \mod c \)

\[
\begin{array}{c}
1101 \\
1101 \\
0
\end{array}
\]

Received message, no errors
CRC – Example Decoding – with Errors

\[C(x) = x^3 + x^2 + 1 \]
\[P(x) = x^{10} + x^7 + x^5 + x^4 + x^2 + 1 \]

Result:
CRC test failed

Remainder \(m \mod c \)

k + 1 bit check sequence \(c \), equivalent to a degree-k polynomial

Received message

Two bit errors

Generator

Received Message

C(x) = 1101
P(x) = 10010110101

0101

10010110101

1101

1011

1101

1101

1101

1101
CRC Error Detection

- Properties
 - Characterize error as $E(x)$
 - Error detected unless $C(x)$ divides $E(x)$
 - (i.e., $E(x)$ is a multiple of $C(x)$)
Example of Polynomial Multiplication

- Multiply
 - 1101 by 10110
 - $x^3 + x^2 + 1$ by $x^4 + x^2 + x$

This is a multiple of c, so that if errors occur according to this sequence, the CRC test would be passed.
On Polynomial Arithmetic

- The use of polynomial arithmetic is a fancy way to think about addition with no carries. It also helps in the determination of a good choice of $C(x)$
 - A non-zero vector is not detected if and only if the error polynomial $E(x)$ is a multiple of $C(x)$

- Implication
 - Suppose $C(x)$ has the property that $C(1) = 0$ (i.e. $(x + 1)$ is a factor of $C(x)$)
 - If $E(x)$ corresponds to an undetected error pattern, then it must be that $E(1) = 0$
 - Therefore, any error pattern with an odd number of error bits is detected
CRC Error Detection

What errors can we detect?

- All single-bit errors, if x^k and x^0 have non-zero coefficients
- All double-bit errors, if $C(x)$ has at least three terms
- All odd bit errors, if $C(x)$ contains the factor $(x + 1)$
- Any bursts of length $< k$, if $C(x)$ includes a constant term
- Most bursts of length $\geq k$
Common Polynomials for C(x)

<table>
<thead>
<tr>
<th>CRC</th>
<th>C(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRC-8</td>
<td>$x^8 + x^2 + x^1 + 1$</td>
</tr>
<tr>
<td>CRC-10</td>
<td>$x^{10} + x^9 + x^5 + x^4 + x^1 + 1$</td>
</tr>
<tr>
<td>CRC-12</td>
<td>$x^{12} + x^{11} + x^3 + x^2 + x^1 + 1$</td>
</tr>
<tr>
<td>CRC-16</td>
<td>$x^{16} + x^{15} + x^2 + 1$</td>
</tr>
<tr>
<td>CRC-CCITT</td>
<td>$x^{16} + x^{12} + x^5 + 1$</td>
</tr>
<tr>
<td>CRC-32</td>
<td>$x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + 1$</td>
</tr>
</tbody>
</table>
Error Detection vs. Error Correction

- **Detection**
 - Pro: Overhead only on messages with errors
 - Con: Cost in bandwidth and latency for retransmissions

- **Correction**
 - Pro: Quick recovery
 - Con: Overhead on all messages

- **What should we use?**
 - Correction if retransmission is too expensive
 - Correction if probability of errors is high
 - Detection when retransmission is easy and probability of errors is low