Direct Link Networks - Encoding

Reading: Peterson and Davie, Chapter 2
Where are we?

Today

Application Layers

Transport

Network

Data Link

Physical

BitTorrent (P2P)

HTTP (Web)

Skype (VOIP)

IPTV (streaming media)

TCP

UDP

IP

Ethernet

4G

DSL

WiFi
Direct Link Networks

- All hosts are directly connected by a physical medium

Key points
- Encoding and Modulation
- Framing
- Error Detection
- Medium Access Control
Internet Protocols

Encoding

Framing, error detection, medium access control

Application

Presentation

Session

Transport

Network

Data Link

Physical

User-level software

Kernel software (device driver)

Hardware (network adapter)
Direct Link Networks - Outline

- Hardware building blocks
- Encoding
- Framing
- Error detection
- Multiple access media (MAC examples)
- Network adapters
Hardware Building Blocks

- Nodes
 - Hosts: general purpose computers
 - Switches: typically special purpose hardware
 - Routers: varied
Nodes: Workstation Architecture

- Finite memory
 - Scarce resource
- Runs at memory speeds, NOT processor speeds
Hardware Building Blocks

- Links
 - Physical medium
 - Copper wire with electronic signaling
 - Glass fiber with optical signaling
 - Wireless with electromagnetic (radio, infrared, microwave) signaling
 - Two cups and a string
Links - Copper

- Copper-based Media
 - Category 5/6 Twisted Pair: 10-1Gbps, 100m
 - ThinNet Coaxial Cable: 10-100Mbps, 200m
 - ThickNet Coaxial Cable: 10-100Mbps, 500m

- More twists, less crosstalk, better signal over longer distances

- Twisted pair:
 - Copper core
 - Insulation
 - Braided outer conductor
 - Outer insulation

- Coaxial cable (coax):
 - More expensive than twisted pair
 - High bandwidth and excellent noise immunity
Links - Optical

- Optical Media
 - Multimode Fiber 100Gbps 2km
 - Single Mode Fiber 100-2400Mbps 40km

![Diagram of optical fiber structure](image)
Links - Optical

- **Single mode fiber**
 - Expensive to drive (Lasers)
 - Lower attenuation (longer distances) ≤ 0.5 dB/km
 - Lower dispersion (higher data rates)

- **Multimode fiber**
 - Cheap to drive (LED’s)
 - Higher attenuation
 - Easier to terminate

![Diagram of core thicknesses](image)

- Core of single mode fiber
 - $\text{~1 wavelength thick} = \text{~1 micron}$

- Core of multimode fiber (same frequency; colors for clarity)
 - $O(100 \text{ microns})$ thick
Advantages of optical communication

- Higher bandwidths
- Superior (lower) attenuation properties
- Immune from electromagnetic interference
- No crosstalk between fibers
- Thin, lightweight, and cheap (the fiber, not the optical-electrical interfaces)
Links - Wireless

- **Path loss**
 - Signal attenuation as a function of distance
 - Signal-to-noise ratio (SNR—Signal Power/Noise Power) decreases, make signal unrecoverable

- **Multipath propagation**
 - Signal reflects off surfaces, effectively causing self-interference

- **Internal interference (from other users)**
 - Hosts within range of each other collide with one another’s transmission

- **External interference**
 - Microwave is turned on and blocks your signal
Wireless Path Loss

- Signal power attenuates by about $\sim r^2$ factor for omni-directional antennas in free space
 - r is the distance between the sender and the receiver
- The exponent in the factor is different depending on placement of antennas
 - Less than 2 for directional antennas
 - Faster attenuation
 - Exponent > 2 when antennas are placed on the ground
 - Signal bounces off the ground and reduces the power of the signal
Wireless Multipath Effects

- Signals bounce off surfaces and interfere with one another
- What if signals are out of phase?
 - Orthogonal signals cancel each other and nothing is received!
What is a Wireless “Link”?
What is a Wireless “Link”?
Wireless Bit Errors

- The lower the SNR (Signal/Noise) the higher the Bit Error Rate (BER)
- How can we deal with this?
 - Make the signal stronger
- Why is this not always a good idea?
 - Increased signal strength requires more power
 - Increases the interference range of the sender, so you interfere with more nodes around you
- Error correction can correct some problems
Encoding

Problems with signal transmission

- Attenuation: Signal power absorbed by medium
- Dispersion: A discrete signal spreads in space
- Noise: Random background “signals”
How can two hosts communicate?

- Encode information on modulated “Carrier signal”
 - Phase, frequency, and/or amplitude modulation
 - Ethernet: self-clocking Manchester coding
 - Technologies: copper, optical, wireless

![Diagram showing data transmission](image-url)
Encoding

- **Goal**
 - Understand how to connect nodes in such a way that bits can be transmitted from one node to another

- **Idea**
 - The physical medium is used to propagate signals
 - Modulate electromagnetic waves
 - Vary voltage, frequency, wavelength
 - Data is encoded in the signal
Bauds and Bits

- Baud rate
 - Number of physical symbols transmitted per second

- Bit rate
 - Actual number of data bits transmitted per second

- Relationship
 - Depends on the number of bits encoded in each symbol
Analog vs. Digital Transmission

- **Analog** and **digital** correspond roughly to **continuous** and **discrete**

- **Data**: entities that convey meaning
 - **Analog**: continuously varying patterns of intensity (e.g., voice and video)
 - **Digital**: discrete values (e.g., integers, ASCII text)

- **Signals**: electric or electromagnetic encoding of data
 - **Analog**: continuously varying electromagnetic wave
 - May be propagated over a variety of media
 - **Digital**: sequence of voltage pulses
 - May be transmitted over a wire medium
Analog vs. Digital Transmission

- Advantages of digital transmission over analog
 - Cheaper
 - Simpler for multiplexing distinct data types (audio, video, e-mail, etc.)
 - Easier to encrypt

- Two examples based on modulator-demodulators (modems)
 - Electronic Industries Association (EIA) standard: RS-232
 - International Telecommunications Union (ITU) V.32 9600 bps modem standard
RS-232

- Communication between computer and modem
- Uses two voltage levels (+15V, -15V), a binary voltage encoding
- Data rate limited to 19.2 kbps (RS-232-C); raised to 115,200 kbps in later standards

Characteristics
- Serial
 - One signaling wire, one bit at a time
- Asynchronous
 - Line can be idle, clock generated from data
- Character-based
 - Send data in 7- or 8-bit characters
RS-232 Timing Diagram

One bit per clock tick

Voltage never returns to 0V

0V is a dead/disconnected line

-15V is both “idle” and “1”
RS-232

- Initiate send by
 - Push to 15V for one clock (start bit)
- Minimum delay between character transmissions
 - Idle for one clock at -15V (stop bit)
- One character
 - 0, 1 or 2 voltage transitions
- Total Bits
 - 9 bits for 7 bits of data (78% efficient)
- Start and stop bits also provide framing
RS-232 Timing Diagram

Time

Voltage

idle start 1 0 0 1 1 0 0 stop idle

+15 +

-15
Voltage Encoding

- Binary voltage encoding
 - Done with RS-232 example
 - Generalize before continuing with V.32 (not a binary voltage encoding)

- Common binary voltage encodings
 - Non-return to zero (NRZ)
 - NRZ inverted (NRZI)
 - Manchester (used by IEEE 802.3—10 Mbps Ethernet)
 - 4B/5B
Non-Return to Zero (NRZ)

- **Signal to Data**
 - High \mapsto 1
 - Low \mapsto 0

- **Comments**
 - Transitions maintain clock synchronization
 - Long strings of 0s confused with no signal
 - Long strings of 1s causes baseline wander
 - Both inhibit clock recovery

```
Bits: 0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 1 0
```

```
NRZ: 0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 1 0
```
Non-Return to Zero Inverted (NRZI)

- Signal to Data
 - Transition $\Rightarrow 1$
 - Maintain $\Rightarrow 0$

- Comments
 - Solves series of 1s, but not 0s

![NRZ to NRZI signal transition diagram]
Manchester Encoding

- **Signal to Data**
 - XOR NRZ data with clock
 - High to low transition $\Rightarrow 1$
 - Low to high transition $\Rightarrow 0$

- **Comments**
 - (used by IEEE 802.3—10 Mbps Ethernet)
 - Solves clock recovery problem
 - Only 50% efficient (1/2 bit per transition)
4B/5B

- **Signal to Data**
 - Encode every 4 consecutive bits as a 5 bit symbol

- **Symbols**
 - At most 1 leading 0
 - At most 2 trailing 0s
 - Never more than 3 consecutive 0s
 - Transmit with NRZI

- **Comments**
 - 16 of 32 possible codes used for data
 - At least two transitions for each code
 - 80% efficient
4B/5B – Data Symbols

At most 1 leading 0

0000	11110
0001	01001
0010	10100
0011	10101
0100	01010
0101	01011
0110	01110
0111	01111

At most 2 trailing 0s

1000	10010
1001	10011
1010	10110
1011	10111
1100	11010
1101	11011
1110	11100
1111	11101
4B/5B – Control Symbols

- 11111 ⇒ idle
- 11000 ⇒ start of stream 1
- 10001 ⇒ start of stream 2
- 01101 ⇒ end of stream 1
- 00111 ⇒ end of stream 2
- 00100 ⇒ transmit error
- Other ⇒ invalid
Binary Voltage Encodings

- Problem with binary voltage (square wave) encodings
 - Very wide (Infinite) frequency range required, implying
 - Significant dispersion
 - Uneven attenuation
 - Prefer to use a narrower frequency band

![Graph showing voltage levels and binary sequence]

<table>
<thead>
<tr>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>-30</td>
</tr>
<tr>
<td>-20</td>
</tr>
<tr>
<td>-10</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>20</td>
</tr>
</tbody>
</table>

Binary sequence: start 1 1 0 0 0 0 1 stop
Binary Voltage Encodings

- Problem with binary voltage (square wave) encodings
 - Very wide (Infinite) frequency range required, implying
 - Significant dispersion
 - Uneven attenuation
 - Prefer to use a narrower frequency band

- Types of modulation
 - Amplitude (AM)
 - Frequency (FM)
 - Phase/phase shift
 - Combinations of these
Example:
AM/FM for continuous signal

- Original signal
- Amplitude modulation
- Frequency modulation
Amplitude Modulation
Frequency Modulation

idle 1 0
Phase Modulation

idle 1 0
Phase Modulation

108° difference in phase

collapse for 108° shift
Phase Modulation Algorithm

- Send carrier frequency for one period
 - Perform phase shift
 - Shift value encodes symbol
 - Value in range \([0, 360^\circ)\)
 - Multiple values for multiple symbols
 - Represent as circle

8-symbol example
V.32 9600 bps

- Communication between modems
- Analog phone line
- Uses a combination of amplitude and phase modulation
 - Known as Quadrature Amplitude Modulation (QAM)
- Sends one of 16 signals each clock cycle
Constellation Pattern for V.32 QAM

- Same algorithm as phase modulation
- Can also change signal amplitude
- 2-dimensional representation
 - Angle is phase shift
 - Radial distance is new amplitude

16-symbol example
Example constellation
Comments on V.32

- V.32 transmits at 2400 baud
 - *i.e.*, 2,400 symbols per second
- Each symbol contains
 - \(\log_2 16 = 4 \text{ bits} \)
- Data rate
 - 4 x 2400 = 9600 bps
- Points in constellation diagram
 - Chosen to maximize error detection
 - Process called trellis coding
Modulation (Baud) Rate

A stream of binary 1s at 1 Mbps

NRZI

Manchester

What is a bit?

What is a signal element?

1 bit = 1 µsec
1 signal element = 1 µsec

1 bit = 1 µsec
1 signal element = 0.5 µsec

5 bits = 5 µsec
Modulation (Baud) Rate

A stream of binary 1s at 1 Mbps

NRZI

What is the data rate?

Data Rate (R) = bits/sec = 1 Mbps for both Manchester

What is the modulation rate?

Modulation Rate = Baud Rate = Rate at which signal elements are generated = R (NRZI) = 2R (Manchester)

5 bits = 5μsec

1 bit = 1μsec
1 signal element = 0.5μsec

1 bit = 1μsec
1 signal element = 1μsec
Sampling

Suppose you have the following 1Hz signal being received

How fast to sample, to capture the signal?
Sampling

- Sampling a 1 Hz signal at 2 Hz is enough
 - Captures every peak and trough
Sampling

- Sampling a 1 Hz signal at 3 Hz is also enough
 - In fact, more than enough samples to capture variation in signal
Sampling a 1 Hz signal at 1.5 Hz is not enough

- Why?
Sampling a 1 Hz signal at 1.5 Hz is not enough

- Can’t distinguish between multiple possible signals
- Problem known as aliasing
What about more complex signals?

- Fourier’s theorem
 - Any continuous signal can be decomposed into a sum of sines and cosines at different frequencies
- Example: Sum of 1 Hz, 2 Hz, and 3 Hz sines
 - How fast to sample?
What about more complex signals?

- Fourier’s theorem
 - Any continuous signal can be decomposed into a sum of sines and cosines at different frequencies
- Example: Sum of 1 Hz, 2 Hz, and 3 Hz sines
 - How fast to sample? --> **answer: 6 Hz**
Generalizing the Examples

- What limits baud rate?
- What data rate can a channel sustain?
- How is data rate related to bandwidth?
- How does noise affect these bounds?
- What else can limit maximum data rate?
What Limits Baud Rate?

- Baud rate
 - Typically limited by electrical signaling properties
- Changing voltages takes time
 - No matter how small the voltage or how short the wire
- Electronics
 - Slow compared to optics
- Baud rate
 - Can be as high as twice the bandwidth of communication
What Data Rate can a Channel Sustain? How is Data Rate Related to Bandwidth?

- Transmitting N distinct signals over a noiseless channel with bandwidth B, we can achieve at most a data rate of $2B \log_2 N$.

- Nyquist’s Sampling Theorem (H. Nyquist, 1920’s)

Number of signals per second $\rightarrow 2B \log_2 N \rightarrow$ Number of bits per signal
What Data Rate can a Channel Sustain? How is Data Rate Related to Bandwidth?

- Transmitting N distinct signals over a noiseless channel with bandwidth B, we can achieve at most a data rate of

Nyquist, 1920

| Baud rate | Number of physical symbols transmitted per second |
| Bit rate | Actual number of data bits transmitted per second |

Relationship

Depends on the number of bits encoded in each symbol
Noiseless Capacity

- Nyquist’s theorem: $2B \log_2 N$
- Example 1: sampling rate of a phone line
 - $B = 4000$ Hz
 - $2B = 8000$ samples/sec.
 - sample every 125 microseconds
Noiseless Capacity

- Nyquist’s theorem: $2B \log_2 N$
- Example 2: noiseless capacity
 - $B = 1200$ Hz
 - $N = \text{each pulse encodes 16 symbols}$
 - $C =$
Noiseless Capacity

- Nyquist’s theorem: $2B \log_2 N$
- Example 2: noiseless capacity
 - $B = 1200$ Hz
 - $N = \text{each pulse encodes 16 symbols}$
 - $C = 2B \log_2 (N) = D \times \log_2 (N)$
 - $= 2400 \times 4 = 9600$ bps
How does Noise affect these Bounds?

- **Noise**
 - Blurs the symbols, reducing the number of symbols that can be reliably distinguished

- **Claude Shannon (1948)**
 - Extended Nyquist’s work to channels with additive white Gaussian noise (a good model for thermal noise)

 channel capacity $C = B \log_2 (1 + S/N)$

where

- C is the maximum supportable bit rate
- B is the channel bandwidth
- S/N is the ratio between signal power and in-band noise power

This N is noise not number of symbols.
How does Noise affect these Bounds?

- **Noise**
 - Blurs the symbols, reducing the number of symbols that can be reliably distinguished

- **Claude Shannon (1948)**
 - Extended Nyquist’s work to channels with additive white Gaussian noise (a good model for thermal noise)

 \[
 \text{channel capacity } C = B \log_2 (1 + S/N)
 \]
 - Represents error free capacity
 - also used to calculate the noise that can be tolerated to achieve a certain rate through a channel
 - Result is based on many assumptions
 - Formula assumes white noise (thermal noise)
 - Impulse noise is not accounted for
 - Various types of distortion are also not accounted for
Noisy Capacity

- Telephone channel
 - 3400 Hz at 40 dB SNR

Decibels (dB) is a logarithmic unit of measurement that expresses the magnitude of a physical quantity (usually power or intensity) relative to a specified or implied reference level.
Decibels

- A ratio between signal powers is expressed in decibels
 \[\text{decibels (db)} = 10 \log_{10}(P_1 / P_2) \]

- Used in many contexts
 - The loss of a wireless channel
 - The gain of an amplifier

- Note that dB is a relative value
 - Can be made absolute by picking a reference point
 - Decibel-Watt – power relative to 1W
 - Decibel-milliwatt – power relative to 1 milliwatt
Signal-to-Noise Ratio

- **Signal-to-noise ratio (SNR, or S/N)**
 - Ratio of
 - the power in a signal
 - to
 - the power contained in the noise
 - Typically measured at a receiver

- **A high SNR**
 - High-quality signal

- **Low SNR**
 - May be hard to “extract” the signal from the noise

- **SNR sets upper bound on achievable data rate**

\[
\text{(SNR)}_{\text{dB}} = 10 \log_{10} \frac{\text{signal power}}{\text{noise power}}
\]
Noisy Capacity

- Telephone channel
 - 3400 Hz at 40 dB SNR
 - $C = B \log_2 (1+S/N)$ bits/s
 - SNR = 40 dB

 \[
 40 = 10 \log_{10} (S/N)
 \]

 $S/N = 10,000$
 - $C = 3400 \log_2 (10001) = 44.8$ kbps
More examples of Nyquist and Shannon Formulas

- Spectrum of a channel between 3 MHz and 4 MHz; SNR_{dB} = 24 dB

\[B = \]

\[\text{SNR} = \]

- Using Shannon’s formula

\[C = B \log_2 (1 + S/N) \]
More examples of Nyquist and Shannon Formulas

- Spectrum of a channel between 3 MHz and 4 MHz; \(\text{SNR}_{\text{dB}} = 24 \text{ dB} \)

\[
B = 4 \text{ MHz} - 3 \text{ MHz} = 1 \text{ MHz}
\]

\[
\text{SNR}_{\text{dB}} = 24 \text{ dB} = 10 \log_{10}(\text{SNR})
\]

\[
\text{SNR} = 251
\]

- Using Shannon’s formula

\[
C = B \log_2 \left(1 + \frac{S}{N}\right)
\]

\[
C = 10^6 \times \log_2 \left(1 + 251\right) \approx 10^6 \times 8 = 8 \text{ Mbps}
\]
More examples of Nyquist and Shannon Formulas

- How many signaling levels are required?

\[C = 2B \log_2 M \]
More examples of Nyquist and Shannon Formulas

- How many signaling levels are required?
 \[C = 2B \log_2 M \]
 \[8 \times 10^6 = 2 \times (10^6) \times \log_2 M \]
 \[4 = \log_2 M \]
 \[M = 16 \]

- Look out for: dB versus linear values, \(\log_2 \) versus \(\log_{10} \)
Summary of Encoding

- Problems: attenuation, dispersion, noise
- Digital transmission allows periodic regeneration
- Variety of binary voltage encodings
 - High frequency components limit to short range
 - More voltage levels provide higher data rate
- Modulation schemes
 - Amplitude, frequency, phase, and combinations
 - Quadrature amplitude modulation: amplitude and phase, many signals
- Nyquist (noiseless) and Shannon (noisy) limits on data rates