CS/ECE 438: Communication Networks

Prof. Robin Kravets
Copyright notice

- Copyright 2018 by University of Illinois
- All rights reserved. Permission to reproduce this and all ECE/CS 438 course materials in whole or part for not-for-profit educational purposes is hereby granted. This document may not be reproduced for commercial purposes without the express written consent of the author.
- Includes content by Brighten Godfrey, Matthew Caesar, Robin Kravets, Steve Lumetta, Bruce Hajek, Nitin Vaidya, Larry Peterson, Jennifer Rexford, Ion Stoica, and others
Course Information

- Instructor
 - Prof. Robin Kravets
 3114 SC
 217-244-6026
 rhk@illinois.edu

- TAs
 - Yuanshan Zhang, Andrew Ou, Amod Agrawal

- Class Webpage
 - http://courses. engr. illinois. edu/cs438/
Course Information

- Use Piazza for all class related communication
 - Announcements and discussions
 - http://www.piazza.com/illinois/cs438
 - All class questions
 - This is your one-stop help-line!
 - Will get answer < 24 hours
 - For personal communications, do not send email
 - Use the private message function on Piazza
Course Information

- Text book

- Supplemental Text books
 - UNIX Network Programming, by Stevens
Prerequisites

- Operating Systems Concepts
 - CS 241 or ECE 391 or equivalent
 - Threads, memory management, sockets

- C or C++ Programming
 - Preferably Unix

- Probability and Statistics
Grading Policy

- Homework 14%
 - 7 homework assignments
- Programming Projects 46%
 - MP0 3%, MP1 11%, MP2 16%, MP3 16%
- Midterm Exam 15%
 - March 6, 7 - 9PM
- Final Exam 25%
 - TBA
Homework and Projects

- **Homework**
 - 7 homeworks each worth 2%
 - Due Wednesdays at start of class.
 - General extension to Fridays start of class (hard deadline).
 - Solutions handed out in class on Fridays
 - No questions to Professor, TAs or on Piazza after class on Wednesday.

- **Projects**
 - Late policy for projects - 2% off per hour late
 - MP0 and MP1 are solo
 - MP2 and MP3 are 2 person teams
Regrades

- Within one week of posting of grades for a homework, MP or exam
- Regrades must be submitted in writing on a separate piece of paper
 - Please do not write on your homework, MP or Exam
Academic Honesty

- Your work in this class **must** be your own.
- If students are found to have cheated (e.g., by copying or sharing answers during an examination or sharing code for a project), **all** involved will at a minimum receive grades of 0 for the first infraction.
 - We will run a similarity-checking system on code and binaries
- Further infractions will result in failure in the course and/or recommendation for dismissal from the university.
- Department honor code:
 https://wiki.engr.illinois.edu/display/undergradProg/Honor+Code
What is cheating in a programming class?

- At a minimum
 - Copying code
 - Copying pseudo-code
 - Copying flow charts

- Consider
 - Did someone else tell you how to do it?

- Does this mean I can’t help my friend?
 - No, but don’t solve their problems for them
Graduate Students

- Graduate students MAY take an extra one hour project in conjunction with this class
 - Graduate students
 - Write a survey paper in a networking research area of your choice
 - Project proposal with list of 10+ academic references (no URL’s) due February 22nd
 - Paper due last day of class
 - Undergraduates may not take this project course
 - However, if you are interested in networking research, please contact me
Goal: foundational view of computer networks

- Fundamental challenges of computer networking
- Design principles of computer networks
- From principles to practical protocols
- Build real network applications
Course Contents

- Introduction to UNIX Network Programming
- Direct Link Networks
- Packet Switched Networks
- Routing
- Internetworking
- End-to-End Protocols
- Congestion Control
- Mobile Networks
- Network Security
- … more if there is time
Complete Schedule

- See class webpage
 - http://www.cs.illinois.edu/class/cs438
 - Schedule is dynamic
 - Check regularly for updates

- Content
 - Slides will be posted by the night before class
 - Some class material may not be in slides
 - Examples may be worked out in class
What do these two things have in common?

- First printing press
- The Internet

Both lowered the cost of distributing information and changed human society
A Brief History of the Internet
Visionaries

- Vannevar Bush, “As we may think” (1945):
 - memex - an adjustable microfilm viewer

- J. C. R. Licklider (1962): “Galactic Network”
 - Concept of a global network of computers connecting people with data and programs
 - First head of DARPA computer research, October 1962
 - Funded Arpanet
Circuit switching

1920s

1967
1961-64: Packet switching

- Leonard Kleinrock

- Paul Baran (RAND), Donald Davies
 - Concurrent work from (National Physical Laboratories, UK)

Circuit switching

Packet switching
1961-64: Packet switching

<table>
<thead>
<tr>
<th>Circuit Switching</th>
<th>Datagram packet switching</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1961-64: Packet switching

<table>
<thead>
<tr>
<th>Circuit Switching</th>
<th>Datagram packet switching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical channel carrying stream of data from source to destination</td>
<td></td>
</tr>
<tr>
<td>Three phase: setup, data transfer, tear-down</td>
<td></td>
</tr>
<tr>
<td>Data transfer involves no routing</td>
<td></td>
</tr>
</tbody>
</table>
1961-64: Packet switching

<table>
<thead>
<tr>
<th>Circuit Switching</th>
<th>Datagram packet switching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical channel carrying stream of data from source to destination</td>
<td>Message broken into short packets, each handled separately</td>
</tr>
<tr>
<td>Three phase: setup, data transfer, tear-down</td>
<td>One operation: send packet</td>
</tr>
<tr>
<td>Data transfer involves no routing</td>
<td>Packets stored (queued) in each router, forwarded to appropriate neighbor</td>
</tr>
</tbody>
</table>
1965: First computer network

- Lawrence Roberts and Thomas Merrill connect a TX-2 at MIT to a Q-32 in Santa Monica, CA
- ARPA-funded project
- Connected with telephone line – it works, but it’s inefficient and expensive – confirming motivation for packet switching

Roberts
The ARPANET begins

- Roberts joins DARPA (1966), publishes plan for the ARPANET computer network (1967)
- December 1968: Bolt, Beranek, and Newman (BBN) wins bid to build packet switch, the Interface Message Processor (IMP)
- September 1969: BBN delivers first IMP to Kleinrock’s lab at UCLA

An older Kleinrock with the first IMP
ARPANET comes alive

UCLA
ARPANET grows

- Dec 1970: ARPANET Network Control Protocol (NCP)
- 1971: Telnet, FTP
- 1972: Email (Ray Tomlinson, BBN)
- 1979: USENET

ARPANET, April 1971
And grows ...

77 nodes

How many do we have today?
Meanwhile, other networks such as PRnet, SATNET developed

May 1973: Vinton G. Cerf and Robert E. Kahn present first paper on interconnecting networks

Concept of connecting diverse networks, unreliable datagrams, global addressing, ...

Became TCP/IP

2004 Turing Award!
TCP/IP deployment

- TCP/IP implemented on mainframes by groups at Stanford, BBN, UCL
- David Clark implements it on Xerox Alto and IBM PC
 - Design by committee didn’t win out
- January 1, 1983: “Flag Day” NCP to TCP/IP transition on ARPANET
OSI Protocol Stack

- **Application**: Application specific protocols
- **Presentation**: Format of exchanged data
- **Session**: Name space for connection mgmt
- **Transport**: Process-to-process channel
- **Network**: Host-to-host packet delivery
- **Data Link**: Framing of data bits
- **Physical**: Transmission of raw bits
Growth from Ethernet

- Ethernet
 - R. Metcalfe and D. Boggs, July 1976

- Spanning Tree protocol
 - Radia Perlman, 1985

- Made local area networking easy

Spring 2018

Copyright ©: CS 438 Staff, University of Illinois
Growth spurs organic change

- Early 1980s
 - Many new networks: CSNET, BITNET, MFENet, SPAN (NASA), ...

- Nov 1983
 - DNS developed by Jon Postel, Paul Mockapetris (USC/ISI), Craig Partridge (BBN)

- 1984
 - Hierarchical routing: EGP and IGP (later to become eBGP and iBGP)
NSFNET

1984: NSFNET for US higher education
 - Serve many users, not just one field
 - Encourage development of private infrastructure (e.g., initially, backbone required to be used for Research and Education)
 - Stimulated investment in commercial long-haul networks

1990: ARPANET ends

1995: NSFNET decommissioned
Explosive growth!

In users

<table>
<thead>
<tr>
<th>World Regions</th>
<th>Population (2017 Est.)</th>
<th>Population % of World</th>
<th>Internet Users 30 June 2017</th>
<th>Penetration Rate (% Pop.)</th>
<th>Growth 2000-2017</th>
<th>Internet Users %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa</td>
<td>1,246,504,865</td>
<td>16.6 %</td>
<td>388,376,491</td>
<td>31.2 %</td>
<td>8,503.1%</td>
<td>10.0 %</td>
</tr>
<tr>
<td>Asia</td>
<td>4,148,177,672</td>
<td>55.2 %</td>
<td>1,938,075,631</td>
<td>46.7 %</td>
<td>1,595.5%</td>
<td>49.7 %</td>
</tr>
<tr>
<td>Europe</td>
<td>822,710,362</td>
<td>10.9 %</td>
<td>659,634,487</td>
<td>80.2 %</td>
<td>527.6%</td>
<td>17.0 %</td>
</tr>
<tr>
<td>Latin America / Caribbean</td>
<td>647,604,645</td>
<td>8.6 %</td>
<td>404,269,163</td>
<td>62.4 %</td>
<td>2,137.4%</td>
<td>10.4 %</td>
</tr>
<tr>
<td>Middle East</td>
<td>250,327,574</td>
<td>3.3 %</td>
<td>146,972,123</td>
<td>58.7 %</td>
<td>4,374.3%</td>
<td>3.8 %</td>
</tr>
<tr>
<td>North America</td>
<td>363,224,006</td>
<td>4.8 %</td>
<td>320,059,368</td>
<td>88.1 %</td>
<td>196.1%</td>
<td>8.2 %</td>
</tr>
<tr>
<td>Oceania / Australia</td>
<td>40,479,846</td>
<td>0.5 %</td>
<td>28,180,356</td>
<td>69.6 %</td>
<td>269.8%</td>
<td>0.7 %</td>
</tr>
<tr>
<td>WORLD TOTAL</td>
<td>7,519,028,970</td>
<td>100.0 %</td>
<td>3,885,567,619</td>
<td>51.7 %</td>
<td>976.4%</td>
<td>100.0 %</td>
</tr>
</tbody>
</table>
Explosive growth!

In users

<table>
<thead>
<tr>
<th>World Regions</th>
<th>Population (2017 Est.)</th>
<th>Population % of World</th>
<th>Internet Users 30 June 2017</th>
<th>Penetration Rate (% Pop.)</th>
<th>Growth 2000-2017</th>
<th>Internet Users %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa</td>
<td>1,246,504,865</td>
<td>16.6 %</td>
<td>388,376,491</td>
<td>31.2 %</td>
<td>8,503.1%</td>
<td>10.0 %</td>
</tr>
<tr>
<td>Asia</td>
<td>4,148,177,672</td>
<td>55.2 %</td>
<td>1,938,075,631</td>
<td>46.7 %</td>
<td>1,595.5%</td>
<td>49.7 %</td>
</tr>
<tr>
<td>Europe</td>
<td>822,710,362</td>
<td>10.9 %</td>
<td>659,634,487</td>
<td>80.2 %</td>
<td>527.6%</td>
<td>17.0 %</td>
</tr>
<tr>
<td>Latin America / Caribbean</td>
<td>647,604,645</td>
<td>8.6 %</td>
<td>404,269,163</td>
<td>62.4 %</td>
<td>2,137.4%</td>
<td>10.4 %</td>
</tr>
<tr>
<td>Middle East</td>
<td>250,327,574</td>
<td>3.3 %</td>
<td>146,972,123</td>
<td>58.7 %</td>
<td>4,374.3%</td>
<td>3.8 %</td>
</tr>
<tr>
<td>North America</td>
<td>363,224,006</td>
<td>4.8 %</td>
<td>320,059,368</td>
<td>88.1 %</td>
<td>196.1%</td>
<td>8.2 %</td>
</tr>
<tr>
<td>Oceania / Australia</td>
<td>40,479,846</td>
<td>0.5 %</td>
<td>28,180,356</td>
<td>69.6 %</td>
<td>269.8%</td>
<td>0.7 %</td>
</tr>
<tr>
<td>WORLD TOTAL</td>
<td>7,519,028,970</td>
<td>100.0 %</td>
<td>3,885,567,619</td>
<td>51.7 %</td>
<td>976.4%</td>
<td>100.0 %</td>
</tr>
</tbody>
</table>
Explosive growth!

In hosts

Juniper estimates 38 Billion Devices in 2020!
Explosive growth!

In networks

![Graph showing exponential growth over time]
Explosive growth!

In complexity

Autonomous System

BGP router

IP router

Routing protocols

eBGP, iBGP

MPLS, CSPF, OSPF, RIP, ...

spanning tree + learning broadcast
Explosive growth!

- In technologies
 - Link speeds 200,000x faster
 - NATs and firewalls
 - Wireless everywhere
 - Mobile everywhere
 - Tiny devices (smart phones)
 - Giant devices (data centers)

- In applications
 - Morris Internet Worm (1988)
 - World wide web (1989)
 - MOSAIC browser (1992)
 - Search engines
 - Peer-to-peer
 - Voice
 - Radio
 - Botnets
 - Social networking
 - Streaming video
 - Data centers
 - Cloud computing
 - IoT
Explosive growth!
Top 30 inventions of the last 30 years

Compiled by the Wharton School @ U Penn, 2009

1. Internet/Broadband/World Wide Web
2. PC/Laptop Computers
3. Mobile Phones
4. E-Mail
5. DNA Testing and Sequencing/Human Genome Mapping
6. Magnetic Resonance Imaging (MRI)
7. Microprocessors
8. Fiber Optics
9. Office Software
10. Non-Invasive Laser/Robotic Surgery
11. Open Source Software and Services
12. Light Emitting Diodes (LEDs)
13. Liquid Crystal Displays (LCDs)
14. GPS
15. Online Shopping/E-Commerce/Auctions
16. Media File Compression
17. Microfinance
18. Photovoltaic Solar Energy
19. Large Scale Wind Turbines
20. Social Networking via Internet
21. Graphic User Interface (GUI)
22. Digital Photography/Videography
23. RFID
24. Genetically Modified Plants
25. Biofuels
26. Bar Codes and Scanners
27. ATMs
28. Stents
29. SRAM/Flash Memory
30. Anti-Retroviral Treatment for AIDS
Top 30 inventions of the last 30 years

Compiled by the Wharton School @ U Penn, 2009

1. Internet/Broadband/World Wide Web
2. PC/Laptop Computers
3. Mobile Phones
4. E-Mail
5. DNA Testing and Sequencing/Human Genome Mapping
6. Magnetic Resonance Imaging (MRI)
7. Microprocessors
8. Fiber Optics
9. Office Software
10. Non-Invasive Laser/Robotic Surgery
11. Open Source Software and Services
12. Light Emitting Diodes (LEDs)
13. Liquid Crystal Displays (LCDs)
14. GPS
15. Online Shopping/E-Commerce/Auctions
16. Media File Compression
17. Microfinance
18. Photovoltaic Solar Energy
19. Large Scale Wind Turbines
20. Social Networking via Internet
21. Graphic User Interface (GUI)
22. Digital Photography/Videography
23. RFID
24. Genetically Modified Plants
25. Biofuels
26. Bar Codes and Scanners
27. ATMs
28. Stents
29. SRAM/Flash Memory
30. Anti-Retroviral Treatment for AIDS
Why is Networking Challenging

That’s it! …right?
Fundamental Challenge: Speed of Light

- How long does it take light to travel from UIUC to Mountain View, CA (Google Headquarters)?

 Answer:
 - Distance UIUC → Mountain View is 2,935 km
 - Traveling 300,000 km/s: 9.78ms

- **Note: Dependent on transmission medium**
 - 3.0×10^8 meters/second in a vacuum
 - 2.3×10^8 meters/second in a cable
 - 2.0×10^8 meters/second in a fiber
Fundamental Challenge: Speed of Light

How long does it take an Internet “packet” to travel from UIUC to Mountain View?

Answer:

- For sure ≥ 9.78ms
- But also depends on:
 - The route the packet takes (could be circuitous!)
 - The propagation speed of the links the packet traverses
 - e.g. in optical fiber light propagates only at $\frac{2}{3} C$
 - The transmission rate (bandwidth) of the links (bits/sec)
 - And also the size of the packet
 - Number of hops traversed (“store and forward” delay)
 - The “competition” for bandwidth the packet encounters (congestion). It may have to wait in router queues.
- In practice this boils down to ≥ 40ms (and likely more)
 - With variance (can be hard to predict!)
Performance

- **Bandwidth/throughput**
 - Data transmitted per unit time
 - Example: 10 Mbps
 - Link bandwidth vs. end-to-end bandwidth

- **Latency/delay**
 - Time from A to B
 - Example: 30 msec
 - Many applications depend on round-trip time (RTT)

- **Notation**
 - KB = 2^{10} bytes
 - Mbps = 10^6 bits per second

Why?
You will mess this up at least once on a HW or exam!
Delay x Bandwidth Product

- Amount of data in “pipe”
 - channel = pipe
 - delay = length
 - bandwidth = area of a cross section
 - bandwidth x delay product = volume
Delay x Bandwidth Product

Bandwidth x delay product

- How many bits the sender must transmit before the first bit arrives at the receiver if the sender keeps the pipe full
- Takes another one-way latency to receive a response from the receiver
Delay x Bandwidth Product

- Bandwidth x delay product
 - How many bits the sender must transmit before the first bit arrives at the receiver if the sender keeps the pipe full
 - Takes another one-way latency to receive a response from the receiver
Delay x Bandwidth Product

- Bandwidth x delay product
 - How many bits the sender must transmit before the first bit arrives at the receiver if the sender keeps the pipe full
 - Takes another one-way latency to receive a response from the receiver
Delay x Bandwidth Product

- Bandwidth x delay product
 - How many bits the sender must transmit before the first bit arrives at the receiver if the sender keeps the pipe full
 - Takes another one-way latency to receive a response from the receiver
Delay x Bandwidth Product

- Bandwidth x delay product
 - How many bits the sender must transmit before the first bit arrives at the receiver if the sender keeps the pipe full
 - Takes another one-way latency to receive a response from the receiver
Delay x Bandwidth Product

- Bandwidth x delay product
 - How many bits the sender must transmit before the first bit arrives at the receiver if the sender keeps the pipe full
 - Takes another one-way latency to receive a response from the receiver
Delay x Bandwidth Product

- Bandwidth x delay product
 - How many bits the sender must transmit before the first bit arrives at the receiver if the sender keeps the pipe full
 - Takes another one-way latency to receive a response from the receiver

A

13 12 11 10 9 8 7 6 5 4 3

B

1 2
Delay x Bandwidth Product

- Bandwidth x delay product
 - How many bits the sender must transmit before the first bit arrives at the receiver if the sender keeps the pipe full
 - Takes another one-way latency to receive a response from the receiver (round trip BxD)
Example: Transcontinental Channel

- BW = 45 Mbps
- delay = 50ms
- bandwidth x delay product

 \[
 = (50 \times 10^{-3} \text{ sec}) \times (45 \times 10^6 \text{ bits/sec})
 \]

 = 2.25 \times 10^6 \text{ bits}
Bandwidth vs. Latency

- **Relative importance**
 - 1-byte: Latency bound
 - 1ms vs 100ms latency dominates 1Mbps vs 100Mbps BW
 - 25MB: Bandwidth bound
 - 1Mbps vs 100Mbps BW dominates 1ms vs 100ms latency
Bandwidth vs. Latency

- Infinite bandwidth
 - RTT dominates
 - Throughput = TransferSize / TransferTime
 - TransferTime = RTT + 1/Bandwidth x TransferSize

- It's all relative
 - 1-MB file on a 1-Gbps link looks like a 1-KB packet on a 1-Mbps link
Fundamental Challenge: Speed of Light

- How many cycles does your PC execute before it can possibly get a reply to a message it sent to a Mountain View web server?

Answer
- Round trip takes ≥ 80 ms
- PC runs at (say) 3 GHz
- $3,000,000,000$ cycles/sec $\times 0.08$ sec = $240,000,000$ cycles

Thus
- Communication feedback is always dated
- Communication fundamentally asynchronous
Fundamental Challenge: Speed of Light

- What about machines directly connected (via a local area network or LAN)?

Answer:

```bash
% ping www.cs.uiuc.edu
PING dcs-www.cs.uiuc.edu (128.174.252.83) 56(84) bytes of data.
64 bytes from 128.174.252.83: icmp_seq=1 ttl=63 time=0.263 ms
64 bytes from 128.174.252.83: icmp_seq=2 ttl=63 time=0.595 ms
64 bytes from 128.174.252.83: icmp_seq=3 ttl=63 time=0.588 ms
64 bytes from 128.174.252.83: icmp_seq=4 ttl=63 time=0.554 ms
...```

- 500us = 1,500,000 cycles
  - Still a looooooong time...
Fundamental Challenge: Shared infrastructure

- Different parties must work together
  - Multiple parties with different agendas must agree how to divide the task between them

- Working together requires
  - Protocols (defining who does what)
    - These generally need to be standardized
  - Agreements regarding how different types of activity are treated (policy)

- Different parties very well might try to “game” the network’s mechanisms to their advantage
Fundamental Challenge: Shared infrastructure

- Physical links and switches must be shared among many users

- Common multiplexing strategies
  - (Synchronous) time-division multiplexing (TDM)
  - Frequency-division multiplexing (FDM)
Fundamental Challenge: Shared infrastructure

- **Statistical Multiplexing (SM)**
  - On-demand time-division multiplexing
  - Scheduled on a per-packet basis
  - Packets from different sources are interleaved
  - Uses upper bounds to limit transmission
    - Queue size determines capacity per source
Fundamental Challenge: Shared infrastructure

- Packets buffered in switch until forwarded
- Selection of next packet depends on policy
  - How do we make these decisions in a fair manner? Round Robin? FIFO?
  - How should the switch handle congestion?
Fundamental Challenge: Things break

- Communication involves a chain of interfaces, links, routers, and switches...
...stitched together with many layers of software...
...all of which must function correctly!
Fundamental Challenge: Things break

- Suppose a communication involves 50 components that work correctly (independently) 99% of the time.
- What’s the likelihood the communication fails at a given point in time?
  - Answer: success requires that they all function, so failure probability = $1 - 0.99^{50} = 39.5\%$
- So we have a lot of components, which tend to fail…
  - … and we may not find out for a loooong time
Fundamental Challenge: Enormous dynamic range

- Challenge: enormous dynamic range
  - Round trip times (latency) 10 us’s to sec’s ($10^5$)
  - Data rates (bandwidth) kbps to 10 Gbps ($10^7$)
  - Queuing delays in the network 0 to sec’s
  - Packet loss 0 to 90+% 
  - End system (host) capabilities cell phones to clusters
  - Application needs: size of transfers, bidirectionality, reliability, tolerance of jitter
Fundamental Challenge: Enormous dynamic range

- Challenge: enormous dynamic range

- Related challenge: very often, there is no such thing as “typical”
  - Beware of your “mental models”!
  - Must think in terms of design ranges, not points
  - Mechanisms need to be adaptive
Fundamental Challenge: Constantly Changing

- Incessant rapid growth
  - Decades of exponential growth
  - Data centers contain hundreds of thousands of hosts, Internet contains billions of hosts, millions of routers
  - Microsoft’s data center in Chicago: 500k servers
  - Bandwidth 10x cheaper in 4 years
  - (commercial CDN prices)

- Adds another dimension of dynamic range…
  - and quite a number of ad hoc artifacts…
Fundamental Challenge: Security

- Challenge: there are Bad Guys out there!
- Early days
  - Vandals
  - Hackers
  - Crazies
  - Researchers
- As network population grows, it becomes more and more attractive to crooks
- As size of and dependence on the network grows, becomes more attractive to spies, governments, and militaries
Fundamental Challenge: Security

- Attackers seek ways to misuse the network towards their gain
  - Carefully crafted “bogus” traffic to manipulate the network’s operation
  - Torrents of traffic to overwhelm a service (denial-of-service) for purposes of extortion/competition
  - Passively recording network traffic in transit (sniffing)
  - Exploit flaws in clients and servers using the network to trick into executing the attacker’s code (compromise)

- They all do this energetically because there is significant $$$ to be made
The Ultimate Challenge

- Cannot reboot the Internet
  - Everyone depends on the Internet
    - Businesses
    - Hospitals
    - Education institutions
    - Financial sector
    - ...

- Fixing the Internet akin to changing the engine while you are flying the plane!
Why Networking is Challenging

- Tubes: not entirely wrong, but simplistic
- How do we build a communication infrastructure for all of humanity?
- Must design for extreme heterogeneity across technology, applications, users
What’s next

- MP 0
  - Available Friday
  - Sockets refresher

- HW 1
  - Available Friday

- Next topic
  - UNIX network programming

- Next week
  - Technical overview of Internet architecture
  - Data link technologies