The Big Picture

you are here

00010001
11001001
00011101
Topics

• Overview of the Internet
 – Message formats, topology, history, interconnection

• Internet Routing
 – Delivery models: Unicast, Multicast, Anycast
 – Forwarding (MTU, tunneling/VPNs), ICMP
 – Network management (TE)

• Internet Addressing/Naming
 – DNS, NAT; ARP, DHCP; Mobility
Overview of the Internet
What is the Internet?

- 30,925 ISPs, 2,600,000 routers, 289,989 subnets, 625,226,456 hosts
- Rich array of systems and protocols
- ISPs compete for business, hide private information, end-hosts misbehave, complex failure modes, cross-dependencies and oscillations
- Yet everyone must cooperate to ensure reachability
 - Relies on complex interactions across multiple systems and protocols
Internetworking

• You currently understand
 – How to build a network on one physical medium
 – How to connect networks (except routing)

• You have experimented with
 – Construct a reliable byte stream
 – Deal with
 • Finite frame length
 • Corrupt frames
 • Frame loss

• Now: Internetworking
 – Address heterogeneity of networks
 – Address rapid growth of Internet (scalability issues)
Internetworking

- Dealing with simple heterogeneity issues
 - Defining a service model
 - Defining a global namespace
 - Structuring the namespace to simplify forwarding
 - Building forwarding information (routing)
 - Translating between global and local (physical) names
 - Hiding variations in frame size limits

- Dealing with global scale
- Moving forward with IP
Internetworks

reading: Peterson and Davie, Ch. 4 + Sect. 9.1

• Basics of internetworking (heterogeneity)
 – The IP protocol, address resolution, and control messages

• Routing

• Global internets (scale)
 – Address assignment and translation
 – Hierarchical routing
 – Name translation and lookup
 – Multicast traffic

• Future internetworking: IPv6
Basics of Internetworking

• What is an internetwork
 – Illusion of a single (direct link) network
 – Built on a set of distributed heterogeneous networks
 – Abstraction typically supported by software

• Properties
 – Supports heterogeneity
 • Hardware, OS, network type, and topology independent
 – Scales to global connectivity

• The Internet is the specific global internetwork that grew out of ARPANET
Internetworking

ATM

Ethernet

FDDI

ATM

Ethernet

FDDI
Internet Protocol (IP)

- Network-level protocol for the Internet
- Operates on all hosts and routers
 - Routers are nodes connecting distinct networks to the Internet
Message Transmission

Alice

Ethernet (ETH)

FDDI

ATM

Bob
1. Alice/application finds Bob’s IP address, sends packet
2. Alice/IP forwards packet to Router
3. Alice/IP looks up Router’s Ethernet address and sends
4. Router/IP forwards packet to Bob
5. Router/IP looks up Bob’s FDDI address and sends
Internet Protocol Service Model

• Service provided to transport layer (TCP, UDP)
 – Global name space
 – Host-to-host connectivity (connectionless)
 – Best-effort packet delivery

• Not in IP service model
 – Delivery guarantees on bandwidth, delay or loss

• Delivery failure modes
 – Packet delayed for a very long time
 – Packet loss
 – Packet delivered more than once
 – Packets delivered out of order
Simple Internetworking with IPv4

- Host addressing
- Forwarding
- Fragmentation and reassembly
- Error reporting/control messages
Overview of packet forwarding

- Hosts assigned topology-dependent addresses
- Routers advertise address blocks ("prefixes")
- Routers compute "shortest" paths to prefixes
- Map IP addresses to names with DNS
- More on "Routing" and "Naming" later
Routing and Forwarding
• IP Forwarding
 – Fragmentation and reassembly, ICMP, VPNs
 – Delivery models

• IP Routing
 – Routing across ISPs
 – How inter- and intra-domain routing work together
 – How Ethernet and intra-domain routing work together
Datagram Forwarding with IP

- Hosts and routers maintain forwarding tables
 - List of \(<\text{prefix}, \text{next hop}>\) pairs
 - Often contains a default route
 - Pass unknown destination to provider ISP
 - Simple and static on hosts, edge routers
 - Complex and dynamic on core routers

- Packet forwarding
 - Compare network portion of address with \(<\text{network/host}, \text{next hop}>\) pairs in table
 - Send directly to host on same network
 - Send to indirectly (via router on same network) to host on different network
 - Use ARP to get hardware address of host/router
IP Packet Size

• Problem
 – Different physical layers provide different limits on frame length
 • Maximum transmission unit (MTU)
 – Source host does not know minimum value
 • Especially along dynamic routes
IP Fragmentation and Reassembly

- **Solution**
 - When necessary, split IP packet into acceptably sized packets prior to sending over physical link

- **Questions**
 - Where should reassembly occur?
 - What happens when a fragment is damaged/lost?
IP Fragmentation and Reassembly

- Fragments: self-contained IP datagrams
- Reassemble at destination
 - Minimizes refragmentation
- If one or more fragments are lost
 - Drop all fragments in packet
- Avoid fragmentation at source host
 - Transport layer should send packets small enough to fit into one MTU of local physical network
 - Must consider IP header
IP Packet Format

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-3 version</td>
<td>4-bit version of the packet (IPv4 = 4, IPv6 = 6)</td>
</tr>
<tr>
<td>4-7 HLen</td>
<td>4-bit IP header length, counted in 32-bit words, minimum value is 5</td>
</tr>
<tr>
<td>8-15 TOS</td>
<td>8-bit type of service field (TOS) - Specifies priorities: priority level, minimize delay, maximize throughput, maximize reliability, minimize monetary cost, etc. Mostly unused.</td>
</tr>
<tr>
<td>16-19 ident</td>
<td>16-bit packet ID (Fragmentation support) - All fragments from the same packet have the same ID. Sender must make sure ID is unique for that (src, dest) pair, for the time the datagram will be active in the Internet.</td>
</tr>
<tr>
<td>16-19 flags</td>
<td>3-bit flags - R = Reserved (unused), DF = Don’t fragment (if set, router returns ICMP if MTU too small), MF = More fragments (1 indicates datagram has additional fragments on the way, 0 indicates this is the last fragment).</td>
</tr>
<tr>
<td>16-19 offset</td>
<td>13-bit fragment offset into packet (Fragmentation) - Indicates where in packet this fragment belongs (first fragment has offset zero, fragment starting at byte X has offset of X/8) Counted in 8-byte words.</td>
</tr>
<tr>
<td>16-19 TTL</td>
<td>8-bit time-to-live field (TTL) - Initial value: 128 (Windows), 64 (Linux) - Hop count decremented at each router, Packet is discarded if TTL = 0.</td>
</tr>
<tr>
<td>16-19 protocol</td>
<td>8-bit protocol field (specifies encapsulated protocol) - TCP = 6, UDP = 17.</td>
</tr>
<tr>
<td>16-19 checksum</td>
<td>16-bit IP checksum on header - Since some header fields change at each router, this is recomputed at each router.</td>
</tr>
<tr>
<td>16-19 SourceAddr</td>
<td>32-bit source IP address</td>
</tr>
<tr>
<td>16-19 Dest Addr</td>
<td>32-bit destination IP address</td>
</tr>
<tr>
<td>16-31 options</td>
<td>Options (variable) - Since some header fields change at each router, this is recomputed at each router.</td>
</tr>
<tr>
<td>16-31 Pad</td>
<td>Pad (variable)</td>
</tr>
<tr>
<td>32 Data</td>
<td>Data</td>
</tr>
</tbody>
</table>

Diagram:

[Diagram showing IP packet format]

- 32-bit destination IP address
- Since some header fields change at each router, this is recomputed at each router.
- Packet is discarded if TTL = 0.
- Counted in 8-byte words (last fragment).
Path MTU discovery

• Set “don’t fragment” bit in IP header, size is MTU of first hop
• Interface with too-small MTU responds back with “ICMP” message
 – Unfortunately, many networks drop ICMP traffic
• Reduce packet size, repeat until discover smallest MTU on path
• Binary search
 – Better yet: note there are small number of MTUs in the Internet
IP Fragmentation and Reassembly

<table>
<thead>
<tr>
<th>H1</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>H2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETH (MTU=1500)</td>
<td>FDDI (MTU=4500)</td>
<td>PPP (MTU=535)</td>
<td>ETH (MTU=1500)</td>
<td></td>
</tr>
</tbody>
</table>

ETH IP (1480)

FDDI IP (1480)

PPP IP (512)

PPP IP (512)

PPP IP (456)

Start of header

Ident = x 0 Offset 0
Rest of header
1400 data bytes

Start of header

Ident = x 1 Offset 0
Rest of header
512 data bytes

Start of header

Ident = x 1 Offset 512
Rest of header
512 data bytes

Start of header

Ident = x 0 Offset 1024
Rest of header
456 data bytes
Internet Control Message Protocol (ICMP)

- IP companion protocol
 - Handles error and control messages
 - Used for troubleshooting and measurement
ICMP

• Used for pings (probing remote hosts), traceroutes (learning set of routers along a path), etc.

• Error Messages
 – Host unreachable, fragmentation failed, TTL exceeded, invalid header

• Control Messages
 – Echo/ping request and reply, timestamps, route redirect
Virtual Private Networks

• Goals
 – Controlled connectivity
 • Restrict forwarding to authorized hosts
 – Controlled capacity
 • Change router drop and priority policies
 • provide guarantees on bandwidth, delay, etc.

• Virtual Private Network
 – A group of connected subnets
 – Connections may be over shared network
 – Similar to VLANs, but over IP allowing the use of heterogeneous networks
Virtual Private Networks
Tunneling

- **IP Tunnel**
 - Virtual point-to-point link between an arbitrarily connected pair of nodes

![Diagram showing IP Tunnel setup]

- IP Dest = 2.x
- IP Payload

- IP Dest = 10.0.0.1

- IP Dest = 2.x
- IP Payload

- 10.0.0.1

- Network 1
- R1

- Internetwork

- R2
- Network 2
Tunneling

• Advantages
 – Transparent transmission of packets over a heterogeneous network
 – Only need to change relevant routers

• Disadvantages
 – Increases packet size
 – Processing time needed to encapsulate and unencapsulate packets
 – Management at tunnel-aware routers
Delivery models

- **Unicast**
 - One source, one destination
 - Widely used (web, p2p, streaming, many other protocols)

- **Broadcast**
- **Multicast**
- **Anycast**
Delivery models

- Unicast
- Broadcast
 - One source, all destinations
 - Used to disseminate control information, perform service discovery

- Multicast
- Anycast
Delivery models

- Unicast
- Broadcast
- Multicast
 - One source, several (prespecified) destinations
 - Used within some ISP infrastructures for content delivery, overlay networks
- Anycast
Delivery models

- Unicast
- Broadcast
- Multicast
- Anycast
 - One source, route to "best" destination
 - Used in DNS, content distribution
Internet Multicast

- Motivation and challenges
- Support strategy
- IP multicast service model
- Multicast in the Internet
- Multicast routing protocols
- Limitations
Multicast: motivating example

- Example: Live 8 concert
 - Send ~300 Kbps video streams
 - Peak usage > 100,000 simultaneous users
 - Consumes > 30 Gbps

- If 1000 people in UIUC, and if the concert is broadcast from a single location, then 1000 unicast streams are sent from that location to UIUC
Problem: this approach does not scale
Alternative: build trees

Copy data at routers, at most one copy of a data packet per link

“Group members” kept track of by routers in real time, tree updated to reflect membership changes

LANs locally link-layer multicast by broadcasting
Multicast routing approaches

• Kinds of trees
 – Source-specific trees vs. Shared tree

• Layer
 – Data-link, network, application

• Tree computation methods
 – Link state vs. Distance vector
Source-specific trees

- Each source is the root of its own tree
- One tree per source
- Tree consists of shortest paths to each receiver

Member of multicast group
Sender to multicast group
Source-specific trees

- Each source is the root of its own tree
- One tree per source
- Tree consists of shortest paths to each receiver
Shared Tree

- One tree used by all members of a group
- Rooted at “rendezvous point” (RP)
- Less state to maintain, but hard to pick a tree that’s “good” for everybody!
Shared Tree

- Ideally, find a "Steiner tree" minimum-weighted tree connecting only the multicast members
 - Unfortunately, this is NP-hard
- Instead, use heuristics
 - E.g., find a minimum spanning tree (much easier)
Multicast service model

- Unicast: packets are delivered to one host
- Broadcast: packets are delivered to all hosts
- Multicast: packets are delivered to all hosts that have joined the multicast group
 - Multicast group identified by a multicast address
Concepts

- **Reverse-path forwarding**
 - Regular routing protocols compute shortest path tree, so forward multicast packets along “reverse” of this tree

- **Truncated reverse-path forwarding**
 - Routers inform upstreams whether the upstream is on the router’s shortest path, to eliminate unnecessary broadcasting

- **Flood-and-prune**
 - Hosts must explicitly ask to not be part of multicast tree
 - Alternative: host explicitly sends “join” request to add self to tree
Reverse-path forwarding

- Extension to DV routing
- Packet forwarding
 - If incoming link is shortest path to source
 - Send on all links except incoming
 - Packets always take shortest path
 - Assuming delay is symmetric
- Issues
 - Routers/LANs may receive multiple copies
Truncated reverse-path forwarding

- Eliminate unnecessary forwarding
 - Routers inform upstreams if used on shortest path
 - Explicit group joining per-LAN

- Packet forwarding
 - If not a leaf router, or have members
 - Then send out all links except incoming

L – leaf node
NL – Non-leaf node
Core-based trees

- Pick a rendezvous point for each group (called the “core”)
- Unicast packet to core and bounce back to multicast groups
- Reduces routing table state
 - By how much?
 - $O(S \times G)$ to $O(G)$
- Finding optimal core location is hard (use heuristics)
Other IP Multicast protocols

• Three ways for senders and receivers to “meet”:
 – Broadcast membership advertisement from each receiver to entire network
 • example: MOSPF
 – Broadcast initial packets from each source to entire network; non-members prune
 • examples: DVMRP, PIM-DM
 – Specify “meeting place” to which sources send initial packets, and receivers join; requires mapping between multicast group address and “meeting place”
 • examples: PIM-SM

• What are some problems with IP-layer Multicast?
Problems with Network Layer Multicast

- Scales poorly with number of groups
 - Routers must maintain state for every group
 - Many groups traverse core routers
- Higher-layer functionality is difficult
 - NLM: **best-effort** delivery
 - Reliability, congestion control, transcoding for NLM complicated
- Deployment is difficult and slow
 - ISPs reluctant to turn on NLM
Problems with Network Layer Multicast

• Inconsistent with ISP charging model
 – Charging today is based on send rate of customer
 – But one multicast packet at ingress may cause millions to be sent on egress

• Troublesome security model
 – Anyone can send to group
 – Denial of service attacks on groups
Alternative: Application-layer Multicast

• Let hosts do all packet copying, tree construction
 – Only require unicast from network
 – Hosts construct unicast channels between themselves to form tree

• Benefits
 – No need to change IP, or for ISP cooperation
 – End hosts can prevent untrusted hosts from sending
 – Easy to implement reliability (per-hop retransmissions)

• Downsides
 – Stretch penalty (latency), Stress penalty (multiple retransmissions over same physical link)
Example of Application-level Multicast

"Overlay" Tree
IPv6: proposed next generation of IP

- Problems with IPv4
 - Running out of address space
 - Projected depletion 2015-2032
 - Forwarding complicated by fragmentation, checksum computation, many unused fields
- IPv6 adopted by IETF in 1994
- IPv6 deployed incrementally, runs in parallel with IPv4
 - Routers distinguish packets based on version number
IPv6: Features

→ Larger address space

- 2^{128} (340,282,366,920,938,000,000,000,000,000,000,000,000,000,000,000) addresses
- 2^{95} addresses for every person alive, 2^{52} addresses for every observable star in the universe
- But goal is to simplify addressing, not geographic saturation of devices
 - More hierarchical, systematic approach to allocation
 - Avoids need for splitting up prefixes, renumbering networks
IPv6: Features

→ Automatic host configuration

- IPv6 hosts probe network to discover gateway, acquire IPv6 address
- “Stateless”: upstream router stores no per-host information
- Steps:
 - Host locally derives IP address from its MAC address
 - Broadcasts to make sure that IP address is not in use on the network
 - Contacts gateway router to get other configuration information
 - Host assigns itself IP address determined above
IPv6: Other features

- Simplified packet processing
 - Removed rarely used fields
 - Hosts must perform MTU discovery, fragmentation disallowed
 - IPv6 header has no checksum (integrity assumed to be assured by transport level)
- Mobile IPv6 simplifies mobility
 - Maintains connectivity while end host moves
- Improved security
 - IPSec support is mandatory in IPv6

- What are the downsides of IPv6?
IPv6 Deployment challenges

• Requires infrastructure changes
 – What kind of changes?
 – Hardware: forwarding engines
 – Software: routing protocols

• However, certain strategies simplify deployment
 – Dual stack: routers run IPv4 and IPv6
 – IPv4 addresses can be mapped to IPv6 addresses
 • First 80 bits set to 0, next 16 set to one, final 32 are IPv4 address
 – Tunneling: IPv6 packets encapsulated in IPv4 packets
IPv6: Do we really need it?

• Larger address space
 – NAT reduces severity of address space depletion
 – Could just extend address sizes (IPv4+4)

• Simplified processing
 – Routers can do checksum processing in hardware at line speeds

• End host configuration, mobility, security
 – This functionality has been back-ported to IPv4
 – DHCP, IPSec, Mobile IP
Current state of IPv6

- *Prefix allocations* growing rapidly, but *traffic* showing no substantial growth
 - 500 allocations in 2004, 1200 allocations in 2009
 - Currently less than 1% of internet traffic is IPv6 (0.45% in USA, 0.24% in China)

- Possible reasons for slow growth
 - Lack of incentives (low demand from customers)
 - Not clear benefits are worth deployment efforts
Roadmap

• IP Forwarding
 – Fragmentation and reassembly, ICMP, VPNs
 – Delivery models

• IP Routing
 – Routing across ISPs
 – How inter- and intra-domain routing work together
 – How Ethernet and intra-domain routing work together
Internet routing architecture

• Divided into ~30,000 *Autonomous Systems*
 – Distinct regions of administrative control
 – Routers/links managed by single “institution”
 – ISP, company, university

• Hierarchy of Autonomous Systems
 – Large, tier-1 providers with nationwide backbone
 – Medium-sized regional provider with smaller backbone
 – Small network run by company or university

• Interaction between Autonomous Systems
 – Internal topology is not shared between ASes
 – But, neighboring ASes interact to coordinate routing
Interdomain routing

Path: 6, 5, 4, 3, 2, 1

Client Web server

1

2

3

4

5

6

7

Web server

Client
Interdomain routing: the Border Gateway Protocol (BGP)

- ASes exchange information about which IP prefixes they can reach using *path vector*
 - Propagate (IP prefix, AS-path) pairs
- Policies configured by AS’s operator
 - Path selection: which of paths to use?
 - Path export: which neighbors to tell about path?

![Diagram showing data traffic and BGP paths]
Types of AS relationships

Provider-customer: customer pays provider money to transit traffic

Peer link: ISPs form link out of mutual benefit, typically no money is exchanged
Policies between ISPs

- Example policies: peer, provider/customer
- Also trust issues, security, scalability, traffic engineering
Types of ASes

- **Stub**: ISP with no customers
- **Multihomed**: ISP with more than one provider
- **Tier-1**: ISP with no providers (core of Internet is clique of tier-1s)
- **Transit**: ISP that forward traffic between other ISPs
Intra- vs. Inter-domain routing

- Run “Interior Gateway Protocol” (IGP) within ISPs
 - OSPF, IS-IS, RIP
- Use “Border Gateway Protocol” (BGP) to connect ISPs
 - To reduce costs, peer at exchange points (AMS-IX, MAE-EAST)
How inter- and intra-domain routing work together

1. Provide internal reachability (IGP)
2. Learn routes to external destinations (eBGP)
3. Distribute externally learned routes internally (iBGP)
4. Select closest egress (IGP)
How Ethernet and Intra-domain routing work together

IP subnet == Ethernet broadcast domain (LAN or VLAN)

Current practice: a hybrid architecture comprised of small Ethernet-based IP subnets connected by routers
"Costing out" of equipment

- Increase cost of link to high value
 - Triggers immediate flooding of LSAs
- Leads to new shortest paths avoiding the link
 - While the link still exists to forward during convergence
- Then, can safely disconnect the link
 - New flooding of LSAs, but no influence on forwarding
Naming and Addressing
Roadmap

• Addresses
 – Assignment: CIDR, DHCP
 – Translation: ARP, NAT
 – Host mobility

• Names
 – Translation to addresses
Scenario: Sending a Letter

Address:

Name: B

Postal Service

45 Lincoln Ave.

25 Spring St.

67 Northside Dr.

Urbana, IL 61801
Scenario: Access Control

Postal Service

25 Spring St.

67 Northside Dr.

"Inspect mail to 25 Spring St."

Name: C

Address: 67 Northside Dr.
 Urbana, IL 61801

45 Lincoln Ave..

Name: C

Address: 45 Lincoln Ave.
 Urbana, IL 61801

Name: C

Address: 67 Northside Dr.
 Urbana, IL 61801
How Routing Works Today

- Each node has an address
- Goal: find path to destination
Scaling Requires Aggregation

- Pick addresses that depend on location
- Aggregation provides excellent scaling properties
- Key is **topology-dependent** addressing!
IPv4 Address Model

- **Properties**
 - 32 bits, often written in dotted decimal notation (e.g. 72.14.205.147)
 - Maps to logically unique network adaptor
 - Exceptions: NAT, load balancing servers
 - Assigned based on position in topology
 - Simplifies routing

- **Routers advertise** *IP prefixes*
 - Aggregated blocks of IP addresses
 - Used to reduce router state requirements
 - Written in form *network/subnet* (e.g. 72.14.0.0/16) or with *number/mask* (e.g. 72.14.0.0/255.255.0.0)
Assigning IPv4 addresses

- Allocation: IANA → regional registries (eg. ARIN) → ISPs → ISP’s customers (eg. ISPs or enterprises)
- Pre-1993: Classful addressing

Class A: 0 Network (7 bits) Host (24 bits)
Class B: 1 0 Network (14 bits) Host (16 bits)
Class C: 1 1 0 Network (21 bits) Host (8 bits)

- Downside of classful addressing:
 - Wasted address space
 - Renumbering is time consuming and can interrupt service
CIDR

- Current approach: Classless Inter-Domain Routing (CIDR)
 - Allows variable-length classes
 - When two alternatives, route to longer prefix match
- Subnetting
 - Share one address (network number) across multiple physical networks
- Supernetting/Aggregation
 - Aggregate multiple addresses (network numbers) for one physical network
- Downsides:
 - Supernetting often disabled to avoid unintended side effects, bloating routing tables
 - Multihomed sites don’t benefit from supernetting
Longest prefix match forwarding

- Multiple prefixes may “cover” the packet’s destination
 - Used for load-balancing, failover
 - Router identifies longest-matching prefix, sends to corresponding interface

<table>
<thead>
<tr>
<th>Destination</th>
<th>Outgoing Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.34.158.5</td>
<td>Serial0/0.1</td>
</tr>
</tbody>
</table>

- Forwarding Table:
 - 4.0.0.0/8
 - 4.83.128.0/17
 - 12.0.0.0/8
 - 12.34.158.0/24
 - 126.255.103.0/24
CIDR

• Allows hierarchical development
 – Assign a block of addresses to a regional provider
 • Ex: 128.0.0.0/9 to BARRNET
 – Regional provider subdivides address and hands out block to sub-regional providers
 • Ex: 128.132.0.0/16 to Berkeley
 – Sub-regional providers can divide further for smaller organizations
 • Ex: 128.132.32.0/1 to Berkeley Computer Science Department
Subnetting

- **Simple IP**
 - All hosts on the same network must have the same *network* number

- **Assumptions**
 - Subnets are close together
 - Look like one network to distant routers

- **Idea**
 - Take a single IP network number
 - Allocate the IP addresses to several physical networks (subnets)

- **Subnetting**
 - All hosts on the same network must have the same *subnet* number
Subnet Example

- **Solution**
 - Partition the 65,536 address in the class B network
 - 256 subnets each with 256 addresses
 - Subnet mask: 255.255.255.0
 - If 135.104.5.{1,2,3} are all on the same physical network reachable from router 135.105.4.1
 - There only needs to be one routing entry for 135.104.5.* pointing to 135.105.4.1 as next hop
IPv4 Address Translation support

- IP addresses to LAN physical addresses
- Problem
 - An IP route can pass through many physical networks
 - Data must be delivered to destination’s physical network
 - Hosts only listen for packets marked with physical interface names
 - Each hop along route
 - Destination host
IP to Physical Address Translation

- **Hard-coded**
 - Encode physical address in IP address
 - Ex: Make IP address equal to lower 32 bits of Ethernet address.
 - Problems:
 - Uniqueness, hard to associate address with topology

- **Fixed table**
 - Maintain a central repository and distribute to hosts.
 - Problems:
 - Bottleneck for queries and updates

- **Solution: Automatically generated table**
 - Use ARP to build table at each host
 - Use timeouts to clean up table
ARP:
Address Resolution Protocol

- Check ARP table for physical address
- If address not present
 - Broadcast an ARP query, include querying host’s translation
 - Wait for an ARP response
- Upon receipt of ARP query/response
 - Targeted host responds with address translation
 - If address already present
 - Refresh entry and reset timeout
 - If address not present
 - Add entry for requesting host
 - Ignore for other hosts
- Timeout and discard entries after $O(10)$ minutes
• ARP: determine mapping from IP to MAC address
• What if IP address not on subnet?
 – Each host configured with “default gateway”, use ARP to resolve its IP address
• Gratuitous ARP: tell network your IP to MAC mapping
 – Used to detect IP conflicts, IP address changes; update other machines’ ARP tables, update bridges’ learned information
Host Configuration

• Plug new host into network
 – Host needs an IP address
 – Host must also
 • Send packets out of physical (direct) network
 • Thus needs physical address of “gateway” router
Dynamic Host Configuration Protocol (DHCP)

- A simple way to automate host configuration
 - Network administrator does not need to enter host IP address by hand
 - Good for large and/or dynamic networks
- New machine sends request to DHCP server for assignment and information
Dynamic Host Configuration Protocol (DHCP)

- Server receives
 - Directly if new machine given server’s IP address
 - Through broadcast if on same physical network
 - Or via DHCP relay nodes
 - Forward requests onto the server’s physical network
- Server assigns IP address and provides other info
- Can be made secure
 - Present signed request or just a “valid” physical address
- Remaining challenge: configuring DHCP servers
 - Need to ensure consistency across servers, between servers and network, address assignment across routers
 - But simpler than directly managing end hosts
Host A broadcasts DHCPDISCOVER message. DHCP Server responds with host’s IP address.
DNS

- A system to resolve from human readable names to IP addresses
 - E.g., www.yahoo.com → 209.191.93.52
- Namespace (set of possible names)
 - Host names, domain names
- History: pre-1983, hosts used to retrieve HOSTS.TXT from computer at SRI
 - What’s wrong with this?
Comparison of domain names and IP addresses

- Internet domain names
 - Human readable
 - Variable length
 - Hierarchy used to ease administrative effort in allocating names

- IP Addresses
 - Easily handled by routers
 - Fixed length
 - Hierarchy used to reduce routing table size
DNS – Name Space

- Domain name hierarchy
 - Structure
 - Period separated identifiers
 - Host name first
 - Each subsequent component is a larger group
DNS – Name Space

- Implementation
 - Each identifier (after host name) denotes a zone
 - Translation for each zone supported by 2+ name servers
DNS - Bindings

• Name servers maintain
 – Collection of resource records (5-tuples)
 • (name, value, type, class, TTL)
• Type is how name/value should be interpreted
 – type=A:
 • name=full domain name; value=IP addr
 • Implements name-to-address mapping
 – type=NS:
 • name=zone name; value=zone name server’s domain name
 • Value is nameserver that can resolve this particular zone
 • Root nameserver has an NS record for each TLD
 – type=CNAME:
 – type=MX:
DNS - Bindings

- Name servers maintain
 - Collection of resource records (5-tuples)
 - (name, value, type, class, TTL)
- Type is how name/value should be interpreted
 - type=A:
 - type=NS:
 - type=CNAME:
 - name=domain name alias; value=canonical domain name for host
 - Can create multiple aliases for a single physical host
 - E.g., ftp.cs.uiuc.edu, www.cs.uiuc.edu point to different ports on srv1.cs.uiuc.edu
 - type=MX:
 - name=zone name; value=maildrop host’s full domain name
 - Value field gives the domain name for a host that is running a mail server for the specified domain
DNS - Bindings

- Resource Record
 - Class
 - Generally set to IN (= Internet)
 - Allows use of DNS for other purposes
 - Rarely used
 - TTL
 - How long resource is valid (in seconds)
 - Used for caching, eviction after TTL expiry
DNS - Bindings

- Example resource records at a root name server

 < arizona.edu, telcom.arizona.edu, NS, IN >
 < telcom.arizona.edu, 128.196.128.233, A, IN >
 < bellcore.com, thumper.bellcore.com, NS, IN >
 < thumper.bellcore.com, 128.96.32.20, A, IN >
DNS - Bindings

• Examples of resource records at Arizona’s name server

< cs.arizona.edu, optima.cs.arizona.edu, NS, IN >
< optima.cs.arizona.edu, 192.12.69.5, A, IN >
< ece.arizona.edu, helios.ece.arizona.edu, NS, IN >
< helios.ece.arizona.edu, 128.196.28.166, A, IN >
< jupiter.physics.arizona.edu, 128.196.4.1, A, IN >
< saturn.physics.arizona.edu, 128.196.4.2, A, IN >
DNS - Bindings

• Examples of resource records at Arizona’s CS name server
 < cs.arizona.edu, optima.cs.arizona.edu, MX, IN >
 < cheltenham.cs.arizona.edu, 192.12.69.60, A, IN >
 < che.cs.arizona.edu, cheltenham.cs.arizona.edu, CNAME, IN >
 < optima.cs.arizona.edu, 192.12.69.5, A, IN >
 < opt.cs.arizona.edu, optima.cs.arizona.edu, CNAME, IN >
DNS – Name Server

- Name Resolution
 - Strategies
 - Iterative
 - Recursive
 - Local Server
 - Need to know root at only one place
 - Site-wide cache
DNS: Domain Name System

• Internet hosts
 – IP address (32 bit)
 • Used for addressing datagrams
 – Host name (e.g., www.yahoo.com)
 • Used by humans

• DNS: provides translation between host name and IP address
 – Distributed database implemented in hierarchy of many name servers
 – Distributed for scalability & reliability
DNS

- DNS services
 - Hostname to IP address translation
 - Host aliasing
 - Canonical, alias names
 - Mail server aliasing
 - Load distribution
 - Replicated Web servers: set of IP addresses for one canonical name

- Why not centralize DNS?
 - Single point of failure
 - Traffic volume
 - Distant centralized database
 - Maintenance

- Doesn’t scale!
Client wants IP for www.amazon.com
- Client queries a root server to find com DNS server
- Client queries com DNS server to get amazon.com DNS server
- Client queries amazon.com DNS server to get IP address for www.amazon.com
DNS: Root Name Servers

- Contacted by local name server that can not resolve name, Contacts/redirects to authoritative name server if mapping not known
- Only 2% of queries reaching root are legitimate (incorrect caching is 75%, 7% were lookups for IPs as domain names, 12.5% were for unknown TLDs)

13 root name servers worldwide
TLD and Authoritative Servers

- **Top-level domain (TLD) servers**
 - Responsible for com, org, net, edu, etc, and all top-level country domains uk, fr, ca, jp.
 - Network Solutions maintains servers for com TLD
 - Educause for edu TLD

- **Authoritative DNS servers**
 - Organization’s DNS servers
 - Provide authoritative hostname to IP mappings for organization’s servers (e.g., Web, mail).
 - Can be maintained by organization or service provider
Local Name Server

- When host makes DNS query, query is sent to its local DNS server
 - Acts as proxy, forwards query into hierarchy
 - Uses caching to reduce lookup latency for commonly searched hostnames
• Host at cs.uiuc.edu wants IP address for gaia.cs.umass.edu

• Iterated query
 – Contacted server replies with name of server to contact
 – “I don’t know this name, but ask this server”
 – Alternative: recursive queries (typically used only for local DNS, as requires state to be stored)
DNS: Caching

• Once (any) name server learns mapping, it caches mapping
 – Cache entries timeout (disappear) after some time
 – TLD servers typically cached in local name servers
• Thus root name servers not often visited
Domain Name Service (DNS)

• Large scale dynamic, distributed application
 – Replaced Network Information Center (NIC)
• RFC 1034 and 1035
• Outline
 – Comparison of domain names and addresses
 – Domain name hierarchy
 – Implementation of hierarchy
 – Name resolution
Network Address Translation (NAT)

- Deals with problem of limited address space
 - Use locally unique addresses inside an organization
 - For communication outside the organization, use a NAT box
 - Translate from locally unique address to globally unique NAT address
 - Saves addresses if only a few hosts are ever communicating outside the organization

- Problem
 - Breaks IP service model
 - Lots of debate over whether this is a “permanent” or “temporary” solution
• Change IP Headers
 – IP addresses (and possibly port numbers) of IP datagrams are replaced at the boundary of a private network
 – Enables hosts on private networks to communicate with hosts on the Internet
 – Run on routers that connect private networks to the public Internet
NAT: Network Address Translation

- **Outgoing packet**
 - Source IP address (private IP) is replaced by one of the global IP addresses maintained by the NAT router

- **Incoming packet**
 - Destination IP address (global IP of the NAT router) is replaced by the appropriate private IP address
NAT: Network Address Translation

rest of Internet

local network (e.g., home network) 10.0.0.*

138.76.29.7

10.0.0.4

10.0.0.1

10.0.0.2

10.0.0.3

All datagrams leaving local network have same single source NAT IP address: 138.76.29.7, different source port numbers

Datagrams with source or destination in this network have 10.0.0. address for source, destination (as usual)*
NAT: Network Address Translation

- Motivation: local network uses just one IP address as far as outside world is concerned
 - No need to be allocated range of addresses from ISP
 - Just one IP address is used for all devices
 - Can change addresses of devices in local network without notifying outside world
 - Can change ISP without changing addresses of devices in local network
 - Devices inside local net not explicitly addressable, visible by outside world (a security plus).
NAT: Network Address Translation

- **Outgoing datagrams**
 - replace (source IP address, port #) of every outgoing datagram with (NAT IP address, new port #)
 - Remote clients/servers respond using (NAT IP address, new port #) as destination addr

- **Cache (in NAT translation table)**
 - Every (source IP address, port #) to (NAT IP address, new port #) translation pair

- **Incoming datagrams**
 - Replace (NAT IP address, new port #) in dest fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table
NAT: Network Address Translation

2: NAT router changes datagram source addr from 10.0.0.1, 3345 to 138.76.29.7, 5001, updates table

<table>
<thead>
<tr>
<th>NAT translation table</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAN side addr</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>138.76.29.7, 5001</td>
</tr>
<tr>
<td>……</td>
</tr>
</tbody>
</table>

3: Reply arrives dest. address: 138.76.29.7, 5001

4: NAT router changes datagram dest addr from 138.76.29.7, 5001 to 10.0.0.1, 3345

1: host 10.0.0.1 sends datagram to 128.119.40, 80
NAT: Network Address Translation

- **Address Pooling**
 - Corporate network has many hosts
 - Only a small number of public IP addresses

- **NAT solution**
 - Manage corporate network with a private address space
 - NAT, at boundary between corporate network and public Internet, manages a pool of public IP addresses
 - When a host from corporate network sends an IP datagram to a host in public Internet, NAT picks a public IP address from the address pool, and binds this address to the private address of the host
NAT: Network Address Translation

• IP masquerading
 – Single public IP address is mapped to multiple hosts in a private network

• NAT solution
 – Assign private addresses to the hosts of the corporate network
 – NAT device modifies the port numbers for outgoing traffic
 – Modifying the IP header by changing the IP address requires that NAT boxes recalculate the IP header checksum
 – Modifying port number requires that NAT boxes recalculate TCP checksum
NAT: Network Address Translation

• Load balancing
 – Balance the load on a set of identical servers, which are accessible from a single IP address

• NAT solution
 – Servers are assigned private addresses
 – NAT acts as a proxy for requests to the server from the public network
 – NAT changes the destination IP address of arriving packets to one of the private addresses for a server
 – Balances load on the servers by assigning addresses in a round-robin fashion
NAT: Network Address Translation

- **16-bit port-number field**
 - 60,000 simultaneous connections with a single LAN-side address!

- **End-to-end connectivity**
 - NAT destroys universal end-to-end reachability of hosts on the Internet
 - A host in the public Internet often cannot initiate communication to a host in a private network
 - The problem is worse, when two hosts that are in different private networks need to communicate with each other
NAT: Network Address Translation

- IP address in application data
 - Applications often carry IP addresses in the payload of the application data
 - No longer work across a private-public network boundary
 - Hack: Some NAT devices inspect the payload of widely used application layer protocols and, if an IP address is detected in the application-layer header or the application payload, translate the address according to the address translation table
Roadmap

• Addresses
 – Assignment: CIDR, DHCP
 – Translation: ARP, NAT

• Names
 – Translation to addresses
Routing For Mobile Hosts

- **Scenarios**
 - Mobile hosts, fixed infrastructure
 - Cellular networks
 - 802.11 enterprise networks
 - Mobile hosts, dynamic infrastructure
 - Ad hoc networks

- **Problem**
 - How can mobility be supported in view of the fact that a portion of an IP address is a network address?
 - Solution: Mobile IP
IP Address Problem

- Internet hosts/interfaces are identified by IP address
 - Domain name service translates host name to IP address
 - IP address identifies host/interface and locates its network
 - Mixes naming and location
- Moving to another network requires different network address
 - But this would change the host’s identity
 - How can we still reach that host?
Routing for Mobile Hosts with Mobile IP

Sending Host

Mobile Host Addr=A

Home Agent

Foreign Agent

Mobile Host Addr=B
Why Mobile IP?

• Goal
 – IP-based protocol which allows network connectivity across host movement

• Features
 – Doesn’t require global changes to deployed router software, etc.
 – Compatible with large installed base of IPv4 networks/hosts
 – Confines changes to mobile hosts and a few support hosts which enable mobility
Basic Mobile IP

• Features
 – Transparent routing of packets to a mobile host
 – No modification of existing routers or non-mobility supporting hosts

• Problem
 – Indirect routing places unnecessary burden on the internet and significant increases latency
Components

- **Mobile Host (MH):**
 - Assigned a unique home address within its home network
- **Corresponding Hosts (CH):**
 - Other hosts communicating with the MH
 - Always use MH’s home address
Routing for Mobile Hosts

• Home Agent (HA):
 – An agent on the MH’s home network
 – Maintains registry of MH’s current location
 – Mobility binding is the connection between the MH’s home address and care-of-address (MH’s remote address)
 – Each time the MH establishes a new care-of-address, it must register with its HA

• Foreign Agent (FA):
 – An agent on the MH’s local network
 – Maintains a mapping from the MH’s home address to its care-of-address
Issues

• Scenario
 – CH sends packet to home network

• Challenges
 – How does the MH get a local IP address?
 – How can a mobile host tell where it is?
 – How does the HA intercept a packet that is destined for the MH?
 – How does the HA then deliver the packet to the FA?
 – How does the FA deliver the packet to the MH?
Basic Mobile IP

MH: Mobile host
CH: Correspondent Host
HA: Home Agent
FA: Foreign Agent
CoA: Care-of-Address
Basic Mobile IP

- Agent Discovery
- Assignment of CoA
- CoA Registration
- Packet Tunneling
Addressing

How does the mobile host get a remote IP address?
- Listen for router advertisements
- Use DHCP
- Manual assignment

Assigning care-of-address
- MH discovers foreign agent (FA) using an agent discovery protocol
- MH registers with FA and FA’s address becomes MH’s care-of-address
- MH obtains a temporary IP address from FA or via DHCP-like procedures
Location

• How can a mobile host tell where it is?
 – Am I at home?
 – Am I visiting a foreign network?
 – Have I moved?
 – Again, listen for router advertisements
 – Put network interface into promiscuous mode and watch traffic
Agent Discovery

- How can a mobile host tell where it is?
 - Extension of ICMP protocol
 - Allows MH to detect when it has moved from one network to another, or to home
 - FA Periodically broadcasts agent advertisement message
Agent Discovery

- MH determines a suitable FA (or its HA) with which to register
- If MA has not received a broadcast for a period of time, it can send an agent solicitation message
Packet Delivery

- How does the HA intercept a packet that is destined for the MH?
- While MH in foreign location
 - HA intercepts all packets for MH
 - Using proxy ARP
 - HA tunnels all packets to FA
 - IPIP - “IP within IP”
 - Upon receipt of an IP datagram
 - Packet is encapsulated in an IP packet of type IPPROTO_IPIP and sent to FA
 - FA strips IPIP header and sends packet to MH using local IP address
 - FA strips packet and forwards to MH
Registration

- MA must register with FA and tell HA its new care-of-address
 - MH sends registration request message to FA
 - FA forwards request to HA
 - HA returns registration reply message to FA
 - FA forwards reply to MH
- Registration may have a set lifetime
Care-of-Address Registration

MH
128.174.5.58
171.64.14.14

Registration Request

FA
171.64.14.x

Request Relay

Registration Reply

HA
128.174.5.x

Reply Relay

Registration Reply

128.174.5.58
171.64.14.14

Timeout
Network Layer

• IPIP - “IP within IP”
 – Tunnel IP datagrams from one subnet to another
 – Upon receipt of an IP datagram
 • Packet is encapsulated in an IP packet of type IPPROTO_IPIP and sent to remote MSS
 • Remote MSS strips IPIP header and sends packet to MH using “real” IP address
Tunneling
Tunneling Using IP-in-IP Encapsulation

<table>
<thead>
<tr>
<th></th>
<th>Vers</th>
<th>IHL</th>
<th>TOS</th>
<th>Total Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP Identification</td>
<td>Flags</td>
<td>Fragment Offset</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTL</td>
<td>IP in IP</td>
<td>IP Header Checksum</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tunnel Source IP Address</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Care-of-Address</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Vers</th>
<th>IHL</th>
<th>TOS</th>
<th>Total Length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP Identification</td>
<td>Flags</td>
<td>Fragment Offset</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTL</td>
<td>Orig. Protocol</td>
<td>IP Header Checksum</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Original Source IP Address</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IP Address of Mobile Host</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TCP/UDP/etc</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tunneling Using Minimal Tunneling Protocol

<table>
<thead>
<tr>
<th>Field</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version (Vers)</td>
<td>0-3</td>
</tr>
<tr>
<td>Internet Header Length (IHL)</td>
<td>4-7</td>
</tr>
<tr>
<td>Type of Service (TOS)</td>
<td>8-11</td>
</tr>
<tr>
<td>Total Length</td>
<td>12-15</td>
</tr>
<tr>
<td>Source IP Identification</td>
<td>16-19</td>
</tr>
<tr>
<td>Flags</td>
<td>20-23</td>
</tr>
<tr>
<td>Fragment Offset</td>
<td>24-27</td>
</tr>
<tr>
<td>Time to Live (TTL)</td>
<td>28-31</td>
</tr>
<tr>
<td>Minimum Encapsulation (Min Encap)</td>
<td>32-35</td>
</tr>
<tr>
<td>IP Header Checksum</td>
<td>36-41</td>
</tr>
<tr>
<td>Tunnel Source IP Address</td>
<td>42-56</td>
</tr>
<tr>
<td>Care-of-Address</td>
<td>57-71</td>
</tr>
<tr>
<td>Original Protocol (Orig. Protocol)</td>
<td>72-75</td>
</tr>
<tr>
<td>Source IP Address (S)</td>
<td>76-90</td>
</tr>
<tr>
<td>Tunnel Header Checksum</td>
<td>91-106</td>
</tr>
<tr>
<td>IP Address of Mobile Host</td>
<td>107-121</td>
</tr>
<tr>
<td>Original Source IP Address</td>
<td>122-136</td>
</tr>
<tr>
<td>(only present if S is set)</td>
<td></td>
</tr>
<tr>
<td>TCP/UDP/etc</td>
<td></td>
</tr>
</tbody>
</table>

The table above illustrates the structure of the minimal tunneling protocol header. Each field is labeled with its corresponding position in the header's byte structure.
Triangle Routing Problem

- Routing through HA increases latency
Route Optimization

- Basic Mobile IP routes all packets for a MH through its home network and HA
 - Limits performance
 - Potential bottleneck
 - Not scalable

- Solution
 - Cache MH location and care-of address
Location Caching

- **Binding Cache**
 - Maintains location information about MHs
 - Binding cache entry
 - Packet is tunneled directly to MH’s care-of-address
 - No binding cache entry
 - Packet is sent to MH’s HA
 - HA sends new entry
 - Can support networks with no Mobile IP by putting binding cache in router
Binding Cache

128.174.5.58
...

FA
171.64.14.x

128.174.5.58
128.174.5.58
...

MH
128.174.5.58
171.64.14.14

171.64.14.14
...

CH
128.174.5.58
171.64.14.14
Timeout

128.174.5.58

HA
128.174.5.x

171.64.14.14
Binding update

128.174.5.58
...
Ad Hoc Networks

Based on a Tutorial by
Nitin Vaidya
Routing in Ad Hoc Networks

- Ad hoc network
 - A collection of mobile nodes with wireless interfaces that form a temporary network without the aid of any established or centralized administration

Client Server Network: fixed infrastructure

Ad Hoc Network: no servers or access points
Mobile Ad Hoc Networks

• Formed by wireless hosts which may be mobile
• Without (necessarily) using a pre-existing infrastructure
• Routes between nodes may potentially contain multiple hops
Multi-Hop Wireless

• May need to traverse multiple links to reach a destination
Multi-Hop Wireless

- Mobility
 - Mobile Ad Hoc Networks (MANET)
 - Mobility causes route changes
Why Ad Hoc Networks?

- Ease of deployment
- Speed of deployment
- Decreased dependence on infrastructure
Challenges

- Limited wireless transmission range
- Broadcast nature of the wireless medium
 - Hidden terminal problem
- Packet losses due to transmission errors
- Mobility-induced route changes
- Mobility-induced packet losses
- Battery constraints
- Potentially frequent network partitions
- Ease of snooping on wireless transmissions
Why is Routing in MANET different?

• Host mobility
 – Link failure/repair due to mobility may have different characteristics than those due to other causes

• Rate of link failure/repair may be high when nodes move fast

• New performance criteria may be used
 – Route stability despite mobility
 – Energy consumption
Routing in Ad Hoc Networks

• Periodic Protocols:
 – Driven by timer based mechanisms
 – Distance-Vector and Link-State protocols send periodic routing advertisements
 – Link status detection is beacon-based

• Concerns:
 – Periodic updates waste bandwidth and power (especially if nothing changes)
 – Topology changes may be too dynamic to be captured by periodic updates
 – Routes may not work (some links may be unidirectional)
 – Shortest path may not be best path (signal strength, energy consumption)
Routing Protocols

- **Proactive protocols**
 - Determine routes independent of traffic pattern
 - Traditional link-state and distance-vector routing protocols are proactive

- **Reactive (on-demand) protocols**
 - Maintain routes only if needed
Routing in Ad Hoc Networks

• On-demand Protocols:
 – Actions driven by data packets requiring delivery
 – Obtain a route only when needed
 – Link status detection performed only when forwarding data
 – Allow new metrics
 – Ex:
 • Dynamic Source Routing Protocol (DSR)
 • Ad Hoc On-Demand Distance Vector Protocol (AODV)
Routing in Ad Hoc Networks

- **On-demand Protocols**
 - Path/Route discovery
 - used to set up forward and reverse paths
 - Route table management
 - Route tables are soft-state

- **Performance Concerns**
 - Latency to set up route
 - Overhead for route maintenance
Trade-Off

• Latency of route discovery
 – Proactive protocols
 • May have lower latency since routes are maintained at all times
 – Reactive protocols
 • May have higher latency because a route from X to Y will be found only when X attempts to send to Y
Trade-Off

- Overhead of route discovery/maintenance
 - Reactive protocols
 - May have lower overhead since routes are determined only if needed
 - Proactive protocols
 - Can (but not necessarily) result in higher overhead due to continuous route updating

- Which approach achieves a better trade-off depends on the traffic and mobility patterns