Lecture 7: Switches

CS/ECE 438: Communication Networks Prof. Matthew Caesar Feb 26, 2010

Where are we?

- Understand
 - Different ways to move through a network (forwarding)
 - Read signs at each switch (datagram)
 - Follow a known path (virtual circuit)
 - Carry instructions (source routing)
 - Bridge approach to extending LAN concept
- Next: how switches are built and contention within switches

Switch Design

Switch Design

Contention – Output Port Buffering

- Problem
 - Some packets may be destined for the same output port
- Solutions
 - One packet gets sent first
 - Other packets get delayed or dropped
- Delaying packets requires buffering
 - Buffers are finite, so we may still have to drop
 - Buffering at input ports
 - Increases, adds false contention
 - Sometimes necessary
 - Buffering at output ports
 - Buffering inside switch

Switch Design

Switch Design

Contention – Back Pressure

- Let the receiver tell the sender to slow down
 - Propagation delay requires that the receiver react before the buffer is full
 - Typically used in networks with small propagation delay

Contention – Back Pressure

- NOTE
 - Propagation delay requires that switch 2 exert backpressure at high-water mark rather when buffer completely full. Backpressure is thus typically only used in networks with small propagation delays (e.g., switch fabrics).

- High throughput
 - Number of packets a switch can forward per second
- High scalability
 - How many input/output ports can it connect
- Low cost
 - Per port monetary costs

Special Purpose Switches

- Problem
 - Connect N inputs to M outputs
 - NxM ("N by M") switch
 - Often N = M
- Goals
 - High throughput
 - Best is MIN(sum of inputs, sum of ou Input Port
 - Avoid contention
 - Good scalability
 - Linear size/cost growth

Switch Design

- Ports handle complexity
 - Forwarding decisions
 - Buffering
- Simple fabric
 - Move packets from inputs to o
 - May have a small amount of internal buffering

- Throughput
 - Main problem is contention
 - Need a good traffic model
 - Arrival time
 - Destination port
 - Packet length
 - Telephony modeling is well understood
 - Until faxes and modems
 - Data traffic has different properties
 - E.g., phone call arrivals are "Poisson", but packet arrivals are "heavy-tailed"

- Contention
 - Avoid contention through intelligent buffering
 - Use output buffering when possible
 - Apply back pressure through switch fabric
 - Improve input buffering through non-FIFO buffers
 - Reduces head-of-line blocking
 - Drop packets if input buffers overflow

- Scalability
 - O(N) ports
 - Port design complexity O(N) gives O(N²) for entire switch
 - Port design complexity of O(1) gives O(N) for entire switch

Switch Design

- Crossbar Switches
- Banyan Networks
- Batcher Networks
- Sunshine Switch

Crossbar Switch

- Every input port is connected to every output port
 - -NxN
- Output ports
 - Complexity scales as $O(N^2)$

Crossbar Switch

Knockout Switch

- Full crossbar requires each output port to handle up to N input packets
- N simultaneous inputs for the same output is unlikely, especially in a large switch
- Instead, let's implement each port to handle L<N packets at the same time
- Hard issue: what value of L to use?

Knockout switch

- Components:
 - Packet filters (recognize packets destined for this output port)
 - Concentrator (selects subset of L packets, "knocks out" others)
 - A queue with capacity L packets

Knockout switch

- Want some fairness: no single input should have its packets always "knocked out"
- Essentially a "knock out" tennis tournament with each game of 2 players (packets) chosen randomly
- Overall winner is selected by playing log N rounds, and keeping the winner

Knockout switch

- Pick L from N packets at a port
 - Output port maintains L cyclic buffers
 - Shifter places up to L packets in one cycle
 - Each buffer gets only one packet
 - Output port uses round-robin between buffers
 - Arrival order is maintained
- Output ports scale as O(N)

Knockout Switch

Self-Routing Fabrics

- Idea
 - Use source routing on "network" in switch
 - Input port attaches output port number as header
 - Fabric routes packet based on output port
- Types
 - Banyan Network
 - Batcher-Banyan Network
 - Sunshine Switch

- A network of 2x2 switches
 - Each element routes to output 0 or 1 based on packet header
 - A switching element at stage i looks at bit i in the header

- Perfect Shuffle
 - N inputs requires log₂N stages of N/2 switching elements
 - Complexity on order of N log_2N
- Collisions
 - If two packets arrive at the same switch destined for the same output port, a collision will occur
 - If all packets are sorted in ascending order upon arrival to a banyan network, no collisions will occur!

Collision in a Banyan Network

- Performs merge sort
- A network of 2x2 switches
 - Each element routes to output 0 or 1 based on packet header
 - A switch at stage i looks at the whole header
 - Two types of switches
 - Up switch
 - Sends higher number to top output (0)
 - Down switch
 - Sends higher number to bottom output (1)

- How it really works
 - Merger is presented with a pair of sorted lists, one in ascending order, one in descending order
 - First stage of merger sends packets to the correct half of the network
 - Second stage sends them to the correct quarter
- Size
 - N/2 switches per stage
 - $-\log_2 N \times (1 + \log_2 N)/2$ stages
 - Complexity = $N \log_2^2 N$

Batcher-Banyan Network

- Idea
 - Attach a batcher network back-to-back with a banyan network
 - Arbitrary unique permutations can be routed without contention
- Sunshine Switch
 - Like a knockout switch
 - Can handle up to L packets per output port
 - Recirculates overflow packets
 - If more than L packets arrive for any output port in one cycle

Sunshine Switch

- Elements
 - Multiple Banyan networks
 - Enables multiple packets per output port
 - Delay Box
 - Excess (K) packets are recirculated and resubmitted to the switch
 - Batcher network
 - N new packets
 - K delayed packets
 - Trap
 - Identifies packets destined for banyan
 - Identifies excess packets
 - Selector
 - Routes multiple packets for same output on separate banyans

Sunshine Switch

Sunshine Switch

- Can packets circulate for ever?
 - Priority bit is used to favor older packets
 - Priority bit also ensure packet order is preserved through the switch