Lecture 7: Switches

CS/ECE 438: Communication Networks
Prof. Matthew Caesar
Feb 26, 2010

Where are we?

- Understand
- Different ways to move through a network (forwarding)
- Read signs at each switch (datagram)
- Follow a known path (virtual circuit)
- Carry instructions (source routing)
- Bridge approach to extending LAN concept
- Next: how switches are built and contention within switches

Switch Design

Switch Design

Contention Output Port Buffering

- Problem
- Some packets may be destined for the same output port
- Solutions
- One packet gets sent first
- Other packets get delayed or dropped
- Delaying packets requires buffering
- Buffers are finite, so we may still have to drop
- Buffering at input ports
- Increases, adds false contention
- Sometimes necessary
- Buffering at output ports
- Buffering inside switch

Switch Design

Switch Design

Switch design:

Head of Line Blocking

Two packets with same output port \rightarrow contention

Contention - Back Pressure

- Let the receiver tell the sender to slow down
- Propagation delay requires that the receiver react before the buffer is full
- Typically used in networks with small propagation delay

Contention - Back Pressure

- NOTE
- Propagation delay requires that switch 2 exert backpressure at high-water mark rather when buffer completely full. Backpressure is thus typically only used in networks with small propagation delays (e.g., switch fabrics).

Discard: 9

Switch Design Goals

- High throughput
- Number of packets a switch can forward per second
- High scalability
- How many input/output ports can it connect
- Low cost
- Per port monetary costs

Special Purpose Switches

- Problem
- Connect N inputs to M outputs
- NxM ("N by M") switch
- Often $\mathrm{N}=\mathrm{M}$
- Goals
- High throughput
- Best is MIN(sum of inputs, sum of olinput Porit

- Avoid contention
- Good scalability
- Linear size/cost growth

Switch Design

- Ports handle complexity
- Forwarding decisions
- Buffering
- Simple fabric

- May have a small amount of internal buffering

Switch Design Goals

- Throughput
- Main problem is contention
- Need a good traffic model
- Arrival time
- Destination port
- Packet length
- Telephony modeling is well understood
- Until faxes and modems
- Data traffic has different properties
- E.g., phone call arrivals are "Poisson", but packet arrivals are "heavy-tailed"

Switch Design Goals

- Contention
- Avoid contention through intelligent buffering
- Use output buffering when possible
- Apply back pressure through switch fabric
- Improve input buffering through non-FIFO buffers
- Reduces head-of-line blocking
- Drop packets if input buffers overflow

Switch Design Goals

- Scalability
- O(N) ports
- Port design complexity $\mathrm{O}(\mathrm{N})$ gives $\mathrm{O}\left(\mathrm{N}^{2}\right)$ for entire switch
- Port design complexity of $\mathrm{O}(1)$ gives $\mathrm{O}(\mathrm{N})$ for entire switch

Switch Design

- Crossbar Switches
- Banyan Networks
- Batcher Networks
- Sunshine Switch

Crossbar Switch

- Every input port is connected to every output port
- NxN
- Output ports
- Complexity scales as $\mathrm{O}\left(\mathrm{N}^{2}\right)$

Crossbar Switch

Knockout Switch

- Full crossbar requires each output port to handle up to N input packets
- N simultaneous inputs for the same output is unlikely, especially in a large switch
- Instead, let's implement each port to handle $\mathrm{L}<\mathrm{N}$ packets at the same time
- Hard issue: what value of L to use?

Knockout switch

- Components:
- Packet filters (recognize packets destined for this output port)
- Concentrator (selects subset of L packets, "knocks out" others)
- A queue with capacity L packets

Knockout switch

- Want some fairness: no single input should have its packets always "knocked out"
- Essentially a "knock out" tennis tournament with each game of 2 players (packets) chosen randomly
- Overall winner is selected by playing log N rounds, and keeping the winner

Knockout switch

- Pick L from N packets at a port
- Output port maintains L cyclic buffers
- Shifter places up to L packets in one cycle
- Each buffer gets only one packet
- Output port uses round-robin between buffers
- Arrival order is maintained
- Output ports scale as $\mathrm{O}(\mathrm{N})$

Knockout Switch

Self-Routing Fabrics

- Idea
- Use source routing on "network" in switch
- Input port attaches output port number as header
- Fabric routes packet based on output port
- Types
- Banyan Network
- Batcher-Banyan Network
- Sunshine Switch

Banyan Network

- A network of 2×2 switches
- Each element routes to output 0 or 1 based on packet header
- A switching element at stage i looks at bit i in the header

0000

Banyan Network

Banyan Network

Banyan Network

- Perfect Shuffle
- N inputs requires $\log _{2} \mathrm{~N}$ stages of $\mathrm{N} / 2$ switching elements
- Complexity on order of $\mathrm{N} \log _{2} \mathrm{~N}$
- Collisions
- If two packets arrive at the same switch destined for the same output port, a collision will occur
- If all packets are sorted in ascending order upon arrival to a banyan network, no collisions will occur!

Collision in a Banyan Network

Batcher Network

- Performs merge sort
- A network of 2×2 switches
- Each element routes to output 0 or 1 based on packet header
- A switch at stage i looks at the whole header
- Two types of switches
- Up switch
- Sends higher number to top output (0)
- Down switch
- Sends higher number to bottom output (1)

Batcher Network

Batcher Network

Sort inputs 4-7 in descending order

Batcher Network

- How it really works
- Merger is presented with a pair of sorted lists, one in ascending order, one in descending order
- First stage of merger sends packets to the correct half of the network
- Second stage sends them to the correct quarter
- Size
- N/2 switches per stage
$-\log _{2} \mathrm{~N} \times\left(1+\log _{2} \mathrm{~N}\right) / 2$ stages
- Complexity $=\mathrm{N} \log _{2}{ }^{2} \mathrm{~N}$

Batcher-Banyan Network

- Idea
- Attach a batcher network back-to-back with a banyan network
- Arbitrary unique permutations can be routed without contention
- Sunshine Switch
- Like a knockout switch
- Can handle up to L packets per output port
- Recirculates overflow packets
- If more than L packets arrive for any output port in one cycle

Sunshine Switch

- Elements
- Multiple Banyan networks
- Enables multiple packets per output port
- Delay Box
- Excess (K) packets are recirculated and resubmitted to the switch
- Batcher network
- N new packets
- K delayed packets
- Trap
- Identifies packets destined for banyan
- Identifies excess packets
- Selector
- Routes multiple packets for same output on separate banyans

Sunshine Switch

Sunshine Switch

- Can packets circulate for ever?
- Priority bit is used to favor older packets
- Priority bit also ensure packet order is preserved through the switch

