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Direct Link Networks

Reading: Peterson and Davie, 

Chapter 2
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Direct Link Networks

 All hosts are directly connected by a physical 
medium 

 Key points
 Encoding and Modulation

 Framing

 Error Detection

 Reliable Transmission

 Medium Access Control 

…
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Internet Protocols

Physical

Data Link Hardware (network 

adapter)

Network

Transport
Kernel software 

(device driver)

Application

Presentation

Session

User-level software

Framing, error detection, 

medium access controlEncoding
Reliability



Direct Link Networks - Outline

 Hardware building blocks

 Encoding

 Framing

 Error detection

 Reliable transmission

 Multiple access media (MAC examples)

 Network adapters
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Hardware Building Blocks

 Nodes

 Hosts: general purpose computers

 Switches: typically special purpose 

hardware

 Routers: varied
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Nodes: Workstation 

Architecture

 Finite memory
 Scarce 

resource

 Generally 
limited by bus 
speeds, NOT 
processor 
speeds

Processor

Cache Memory

Network AdaptorNETWORK

memory bus (MBUS) input/output

bus

(I/O BUS)



Hardware Building Blocks

 Links

 Physical medium carrying

 Media 

 Copper wire with electronic signaling

 Glass fiber with optical signaling

 Wireless with electromagnetic (radio, 

infrared, microwave) signaling
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Links - Copper

 Copper-based Media
 Category 3 Twisted Pair up to 100 Mbps

 Category 5 Twisted Pair 10-100Mbps 100m

 ThinNet Coaxial Cable 10-100Mbps 200m

 ThickNet Coaxial Cable 10-100Mbps 500m

twisted pair

copper core

insulation

braided outer conductor

outer insulation

coaxial

cable

(coax)

more twists, less crosstalk, better 

signal over longer distances

More expensive than 

twisted pair

High bandwidth and 

excellent noise 

immunity
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Links - Optical

 Optical Media
 Multimode Fiber 100Mbps 2km

 Single Mode Fiber 100-2400Mbps 40km

glass core (the fiber)

glass cladding

plastic jacket

optical

fiber
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Links - Optical

O(100 microns) thick

core of multimode fiber (same frequency; colors for clarity)

~1 wavelength thick = 

~1 micron

core of single mode fiber

 Single mode fiber

 Expensive to drive (Lasers)

 Lower attenuation (longer 

distances) ≤ 0.5 dB/km 

 Lower dispersion (higher 

data rates)

 Multimode fiber

 Cheap to drive (LED‘s)

 Higher attenuation

 Easier to terminate



Links - Optical

 Advantages of optical communication

 Higher bandwidths

 Superior attenuation properties

 Immune from electromagnetic 

interference

 No crosstalk between fibers

 Thin, lightweight, and cheap (the fiber, 

not the optical-electrical interfaces)
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Leased Lines

 POTS 64Kbps

 ISDN 128Kbps

 ADSL 1.5-8Mbps/16-640Kbps

 Cable Modem 0.5-2Mbps

 DS1/T1 1.544Mbps

 DS3/T3 44.736Mbps

 STS-1 51.840Mbps

 STS-3 (ATM rate) 155.250Mbps (ATM)

 STS-12 (ATM rate) 622.080Mbps (ATM)

 OC-48 2.5 Gbps
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Wireless

 Cellular
 AMPS 13Kbps 3km

 PCS, GSM 300Kbps 3km

 Wireless Local Area Networks (WLAN)
 Infrared 4Mbps 10m

 900Mhz 2Mbps 150m

 2.4GHz 2Mbps 150m

 2.4Ghz 11Mbps 80m

 2.4Ghz 54Mbps 75m

 5Ghz 54Mbps 30m

 Bluetooth 700Kbps 10m

 Satellites
 Geosynchronous satellite 600-1000 Mbps continent

 Low Earth orbit (LEO) ~400 Mbps world
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Encoding

 Problems with signal transmission

 Attenuation: Signal power absorbed by medium

 Dispersion: A discrete signal spreads in space

 Noise: Random background ―signals‖

digital data

(a string of 

symbols)

digital data

(a string of 

symbols)
modulator demodulator

analog data 

(a string of signals)

modulator demodulator



Encoding

 Goal

 Understand how to connect nodes in such a way 

that bits can be transmitted from one node to 

another

 Idea

 The physical medium is used to propagate 

signals

 Modulate electromagnetic waves

 Vary voltage, frequency, wavelength

 Data is encoded in the signal
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Analog vs. Digital 

Transmission

 Analog and digital correspond roughly to continuous 

and discrete

 Data: entities that convey meaning

 Analog: continuously varying patterns of intensity (e.g., voice 

and video)

 Digital: discrete values (e.g., integers, ASCII text)

 Signals: electric or electromagnetic encoding of data

 Analog signal: continuously varying electromagnetic wave

 May be propagated over a variety of medium

 Digital signal:  sequence of voltage pulses

 May be transmitted over a wire medium
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Analog vs. Digital 

Transmission

 Advantages of digital transmission over analog

 Cheaper

 Suffers more attenuation

 But reasonably low-error rates over arbitrary distances

 Calculate/measure effects of transmission problems

 Periodically interpret and regenerate signal 

 Simpler for multiplexing distinct data types (audio, video, e-mail, 

etc.)

 Easier to encrypt

 Two examples based on modulator-demodulators (modems)

 Electronic Industries Association (EIA) standard: RS-232

 International Telecommunications Union (ITU) 

V.32 9600 bps modem standard
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Bauds and Bits

 Baud rate

 Number of symbols transmitted per second

 Bit rate

 Actual number of bits transmitted per second

 Relationship

 Depends on the number of bits encoded in each 

symbol
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RS-232

 Communication between computer and modem

 Uses two voltage levels (+15V, -15V), 

a binary voltage encoding

 Data rate limited to 19.2 kbps (RS-232-C); raised in later 

standards

 Characteristics

 Serial

 One signaling wire, one bit at a time

 Asynchronous

 Line can be idle, clock generated from data

 Character-based

 Send data in 7- or 8-bit characters
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RS-232 Timing Diagram

idle start 1 110 0 0 0 stop idle
-15

+

+15

Time

V
o

lt
a
g

e

One bit per clock tick

Voltage never returns to 0V

0V is a dead/disconnected line

-15V is both ―idle‖ and ―1‖



RS-232

 Initiate send by 

 Push to 15V for one clock (start bit)

 Minimum delay between character transmissions

 Idle for one clock at -15V (stop bit)

 One character 

 2+ voltage transitions

 Total Bits

 9 bits for 7 bits of data (78% efficient)

 Start and stop bits also provide framing
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RS-232 Timing Diagram

idle start 1 110 0 0 0 stop idle
-15

+

+15

Time

V
o
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a
g
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Voltage Encoding

 Binary voltage encoding

 Done with RS-232 example

 Generalize before continuing with V.32 (not a binary 

voltage encoding)

 Common binary voltage encodings

 Non-return to zero (NRZ)

 NRZ inverted (NRZI)

 Manchester (used by IEEE 802.3—10 Mbps Ethernet)

 4B/5B
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Non-Return to Zero (NRZ)

 Signal to Data
 High  1

 Low  0

 Comments
 Transitions maintain clock synchronization

 Long strings of 0s confused with no signal

 Long strings of 1s causes baseline wander

 Both inhibit clock recovery

Bits 0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 0

NRZ
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Non-Return to Zero Inverted 

(NRZI)

 Signal to Data
 Transition  1

 Maintain  0

 Comments
 Solves series of 1s, but not 0s

Bits 0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 0

NRZ

NRZI
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Manchester Encoding

 Signal to Data
 XOR NRZ data with clock

 High to low transition  1

 Low to high transition  0

 Comments

 (used by IEEE 802.3—10 Mbps Ethernet)
 Solves clock recovery problem

 Only 50% efficient ( ½ bit per transition)

Bits 0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 0

NRZ

Clock

Manchester



4B/5B

 Signal to Data

 Encode every 4 consecutive bits as a 5 bit symbol

 Symbols

 At most 1 leading 0

 At most 2 trailing 0s

 Never more than 3 consecutive 0s

 Transmit with NRZI

 Comments

 16 of 32 possible codes used for data

 At least two transitions for each code

 80% efficient
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4B/5B – Data Symbols

 0000  11110

 0001  01001

 0010  10100

 0011  10101

 0100  01010

 0101  01011

 0110  01110

 0111  01111

 1000  10010 

 1001  10011

 1010  10110

 1011  10111

 1100  11010

 1101  11011

 1110  11100

 1111  11101

At most 1 leading 0 At most 2 trailing 0s
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4B/5B – Control Symbols

 11111  idle

 11000  start of stream 1

 10001  start of stream 2

 01101  end of stream 1

 00111  end of stream 2

 00100  transmit error

 Other   invalid
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Binary Voltage Encodings

 Problem with binary voltage (square wave) 
encodings
 Wide frequency range required, implying

 Significant dispersion

 Uneven attenuation

 Prefer to use narrow frequency band (carrier frequency)

 Types of modulation
 Amplitude (AM)

 Frequency (FM)

 Phase/phase shift 

 Combinations of these
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Amplitude Modulation

1 0idle
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Frequency Modulation

1 0idle
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Phase Modulation

1 0idle
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Phase Modulation

108º difference in phase

collapse for 108º shift

phase shift

in carrier

frequency
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Phase Modulation Algorithm

 Send carrier frequency 

for one period

 Perform phase shift

 Shift value encodes 

symbol

 Value in range [0, 360º)

 Multiple values for 

multiple symbols

 Represent as circle

0º

45º

90º

315º

270º

135º

225º

180º

8-symbol

example



V.32 9600 bps 

 Communication between modems

 Analog phone line

 Uses a combination of amplitude and phase 

modulation

 Known as Quadrature Amplitude Modulation 

(QAM)

 Sends one of 16 signals each clock cycle

CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 36



CS/ECE 438 © Robin Kravets and Matt Caesar, UIUC - Spring 2009 37

Constellation Pattern for V.32 

QAM

45º

15º
For a given symbol: 

Perform phase shift and

change to new amplitude
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Quadrature Amplitude 

Modulation (QAM)

 Same algorithm as 

phase modulation

 Can also change signal 

amplitude

 2-dimensional 

representation

 Angle is phase shift

 Radial distance is new 

amplitude

45º

15º

16-symbol

example

(V.32)
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Comments on V.32

 V.32 transmits at 2400 baud

 i.e., 2,400 symbols per second

 Each symbol contains  log2 16 = 4 bits

 Data rate is thus 4 x 2400 = 9600 bps

 Points in constellation diagram

 Chosen to maximize error detection

 Process called trellis coding



Generalizing the Examples

 What limits baud rate?

 What data rate can a channel sustain?

 How is data rate related to bandwidth?

 How does noise affect these bounds?

 What else can limit maximum data 

rate?
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What Limits Baud Rate?

 Baud rate

 Typically limited by electrical signaling properties

 Changing voltages takes time 

 No matter how small the voltage or how short the wire

 Electronics

 Slow compared to optics

 Note 

 Baud rate can be as high as twice the frequency 

(bandwidth) of communication

 One cycle can contain two symbols
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Modulation Rate
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5 bits = 5sec

1 bit = 

1 signal element =

1sec

1 bit = 

1sec

1 signal element =

0.5sec

NRZI

Manchester

1 1 1 1 1

A stream of 

binary 1s at 1 

Mbps

Data Rate (R)

= bits/sec 

= 1 Mbps for both

Modulation Rate 

= Baud Rate 

= Rate at which 

signal elements 

are generated

= R (NRZI)

= 2R (Manchester)



What Data Rate can a Channel Sustain?

How is Data Rate Related to Bandwidth?

 Transmitting N distinct signals over a noiseless 

channel with bandwidth B, we can achieve at most 

a data rate of

2B log2 N

 Nyquist‘s Sampling Theorem (H. Nyquist, 1920‘s) 

 Sampling rate = 2B

 A higher sampling rate is pointless because higher 

frequency signals have been filtered out
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Noiseless Capacity

 Example 1:  sampling rate of a phone line

 B   =  4000 Hz

 2B =  8000 samples/sec.

 sample every 125 microseconds!!

 Example 2:  noiseless capacity

 D   =   2400 baud  {note D = 2H}

 V   =  each pulse encodes 16 levels

 C   =  2H log 2 (V) = D x log 2 (V)

=  2400 x 4  =  9600 bps.
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What else (Besides Noise) can 

Limit Maximum Data Rate?

 Transitions between symbols 

 Introduce high-frequency components into the transmitted 

signal

 Such components cannot be recovered (by Nyquist‘s 

Theorem), and some information is lost

 Examples

 Phase modulation

 Single frequency (with different phases) for each symbol

 Transitions can require very high frequencies
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How does Noise affect these 

Bounds?

 In-band (thermal, not high-frequency) noise 
 Blurs the symbols, reducing the number of symbols that 

can be reliably distinguished.

 Claude Shannon (1948)
 Extended Nyquist‘s work to channels with additive white 

Gaussian noise (a good model for thermal noise)

channel capacity C = B log2 (1 + S/N)

B is the channel bandwidth

S/N is the ratio between 

the average signal power and 

the average in-band noise power



Noisy Capacity

 Telephone channel 

 3400 Hz at 40 dB SNR

 C = B log 2 (1+S/N) b/s

 S/N = 40 dB

40 =10 log 10 (S/N) 

 4 = log 10 (S/N) 

S/N =10,000

 C = 3400 log 2 (10001)  = 44.8 kbps
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S/N (dB) =  10 log10 S/R



Summary of Encoding

 Problems

 Attenuation, dispersion, noise

 Digital transmission allows periodic regeneration

 Variety of binary voltage encodings

 High frequency components limit to short range

 More voltage levels provide higher data rate

 Carrier frequency and modulation

 Amplitude, frequency, phase, and combinations

 Quadrature amplitude modulation: amplitude and phase, many 

signals

 Nyquist (noiseless) and Shannon (noisy) limits on data rates
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Framing

 Encoding translates symbols to signals

 Framing demarcates units of transfer
 Separates continuous stream of bits into frames

 Marks start and end of each frame

digital data

(a string of 

symbols)

digital data

(a string of 

symbols)
modulator demodulator

a string

of signals



Framing

 Demarcates units of transfer

 Goal

 Enable nodes to exchange blocks of data

 Challenge

 How can we determine exactly what set of bits 

constitute a frame?

 How do we determine the beginning and end of 

a frame?
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Framing

 Synchronization recovery

 Breaks up continuous streams of unframed 

bytes

 Recall RS-232 start and stop bits

 Link multiplexing

 Multiple hosts on shared medium

 Simplifies multiplexing of logical channels

 Efficient error detection

 Per-frame error checking and recovery
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Framing

 Approaches

 Sentinel (like C strings)

 Length-based (like Pascal strings)

 Clock based

 Characteristics

 Bit- or byte-oriented

 Fixed or variable length

 Data-dependent or data-independent length



Sentinel-Based Framing

 End of Frame

 Marked with a special byte or bit pattern

 Frame length is data-dependent

 Challenge

 Frame marker may exist in data

 Requires stuffing

 Examples

 BISYNC, HDLC, PPP, IEEE 802.4 (token bus)
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ARPANET IMP-IMP

 Interface Message processors (IMPs)

 Packet switching nodes in the original ARPANET

 Byte oriented, Variable length, Data dependent

 Frame marker bytes

 STX/ETX start of text/end of text

 DLE data link escape

 Byte Stuffing

 DLE byte in data sent as two DLE bytes back-to-back
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STX DLE ETXBODYHEADER

DLE0x48 0x69 DLEDLE 0x690x48

DLE



BISYNC

 BInary SYNchronous Communication

 Developed by IBM in late 1960‘s

 Byte oriented, Variable length, Data dependent

 Frame marker bytes:

 STX/ETX start of text/end of text

 DLE data link escape

 Byte Stuffing

 ETX/DLE bytes in data prefixed with DLE‘s
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STX ETXBODYHEADER

ETX0x48 0x69 ETXDLE 0x690x48



High-Level Data Link Control 

Protocol (HDLC)

 Bit oriented, Variable length, Data-

dependent

 Frame Marker

 01111110

 Bit Stuffing

 Insert 0 after pattern 011111 in data

 Example

 01111110 end of frame

 01111111 error! lose one or two frames
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IEEE 802.4 (token bus)

 Alternative to Ethernet (802.3) with fairer arbitration

 End of frame marked by encoding violation,

 i.e., physical signal not used by valid data symbol

 Recall Manchester encoding

 low-high means ―0‖

 high-low means ―1‖

 low-low and high-high are invalid

 IEEE 802.4

 byte-oriented, variable-length, data-independent

 Another example

 Fiber Distributed Data Interface (FDDI) uses 4B/5B

 Technique also applicable to bit-oriented framing
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Length-Based Framing

 End of frame

 Calculated from length sent at start of frame

 Challenge

 Corrupt length markers

 Examples

 DECNET‘s DDCMP

 Byte-oriented, variable-length

 RS-232 framing

 Bit-oriented, implicit fixed-length
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LENGTH BODYHEADER



Clock-Based Framing

 Continuous stream of fixed-length frames

 Clocks must remain synchronized

 STS-1 frames - 125s long

 No bit or byte stuffing

 Example

 Synchronous Optical Network (SONET)

 Problems

 Frame synchronization

 Clock synchronization
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SONET

 Frames (all STS formats) are 125 μsec long

 Ex: STS-1 – 51.84 Mbps = 90 bytes

 Frame Synchronization

 2-byte synchronization pattern at start of each 

frame
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SONET: Challenges

 How to recover frame synchronization

 Synchronization pattern unlikely to occur in data

 Wait until pattern appears in same place repeatedly

 How to maintain clock synchronization

 NRZ encoding

 Data scrambled (XOR‘d) with 

127-bit pattern

 Creates transitions

 Also reduces chance of finding false sync. pattern
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SONET

 A single SONET frame may contain 

multiple smaller SONET frames

 Bytes from multiple SONET frames are 

interleaved to ensure pacing
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HDR HDR HDR

HDR

STS-1 STS-1 STS-1

STS-3



SONET

 STS-1 merged bytewise round-robin into STS-3

 Unmerged (single-source) format called STS-3c

 Problem: simultaneous synchronization of many 

distributed clocks
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not too difficult to 

synchronize clocks 

such that first byte of 

all incoming flows 

arrives just before 

sending first 3 bytes 

of outgoing flow

67B

249B

151B
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SONET

... but now try to 

synchronize this 

network‘s clocks
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SONET

One alternative to synchronization is to 

delay each frame by some fraction of a 125 

microsecond period at each switch (i.e., 

until the next outgoing frame starts).

Delays add up quickly...

Or, worse, a network with cycles.



SONET

 Problem

 Clock synchronization across multiple machines

 Solution

 Allow payload to float across frame boundaries

 Part of overhead specifies first byte of payload
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Error Detection

 Encoding translates symbols to signals

 Framing demarcates units of transfer

 Error detection validates correctness of 
each frame

digital data

(a string of 

symbols)

digital data

(a string of 

symbols)
modulator demodulator

a string

of signals



Error Detection

 Idea

 Add redundant information that can be used to determine 

if errors have been introduced, and potentially fix them

 Errors checked at many levels

 Demodulation of signals into symbols (analog)

 Bit error detection/correction (digital)—our main focus

 Within network adapter (CRC check)

 Within IP layer (IP checksum)

 Possibly within application as well
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Error Detection

 Analog Errors

 Example of signal distortion

 Hamming distance

 Parity and voting

 Hamming codes

 Error bits or error bursts?

 Digital error detection

 Two-dimensional parity 

 Checksums

 Cyclic Redundancy Check (CRC)
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Analog Errors

 Consider RS-232 encoding of character ‗Q‘

 Assume idle wire (-15V) before and after signal

 Calculate frequency distribution of signal A(f) using 

a Fourier transform:
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 Apply low-pass filter (drop high frequency components)

 Calculate signal using inverse Fourier transform above

dtt)]fπsin(2i)tfπ[cos(2x(t))A(f  




dft)]fπsin(2i)tfπ[cos(2A(f))x(t  
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RS-232 Encoding of 'Q'
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Limited-Frequency Signal Response

(bandwidth = baud rate)
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Limited-Frequency Signal Response

(bandwidth = baud rate/2)

1 1 1 stop0 0 0 0start
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Symbols

+15
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0

? (erasure)

possible binary voltage encoding 

symbol neighborhoods and erasure 

region

possible QAM symbol

neighborhoods in green; all

other space results in erasure



Symbols

 Inputs to digital level

 valid symbols

 erasures

 Hamming distance

 Definition 

 1-bit error-detection with parity

 1-bit error-correction with voting

 2-bit erasure-correction with voting

 Hamming codes (1-bit error correction)
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Hamming Distance

 The Hamming distance between two 

code words is the minimum number of 

bit flips to move from one to the other

 Example:

 00101 and 00010 

 Hamming distance of 3
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Parity

 1-bit error detection with parity

 Add an extra bit to a code to ensure an 

even (odd) number of 1s

 Every code word has an even (odd)  

number of 1s
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01 11

1000

Valid 

code 

words

110

000

011

101

010

100

111

001

Parity 

Encoding:

White – invalid 

(error)



Voting

 1-bit error correction with voting

 Every codeword is transmitted n times
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000

111

Voting:

White – correct to 1

Blue - correct to 0

110

011

101

010

100

001

0 1

Valid 

code 

words



2-bit Erasure Correction with 

Voting

 Every code word is copied 3 times
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2-erasure planes in green

remaining bit not 

ambiguous

cannot correct 1-error and 

1-erasure

0??

?0?

010 110

100000

011 111

101001

??0



Minimum Hamming Distance

 The minimum Hamming distance of a 

code is the minimum distance over all 

pairs of codewords

 Minimum Hamming Distance for parity

 2

 Minimum Hamming Distance for voting

 3
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Coverage

 N-bit error detection

 No code word changed into another code word

 Requires Hamming distance of N+1

 N-bit error correction

 N-bit neighborhood: all codewords within N bit 

flips

 No overlap between N-bit neighborhoods

 Requires hamming distance of 2N+1
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Hamming Codes

 Construction for 1-bit error-correcting codes

 Minimal number of check bits required

 Construction

 number bits from 1 upward

 powers of 2 are check bits

 all others are data bits

 Check bit j is XOR of all bits k such that

(j AND k) = j

 Example: 

 4 bits of data, 3 check bits
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Hamming Codes

C1 = D3 XOR D5 XOR D7

C2 = D3 XOR D6 XOR D7

C4 = D5 XOR D6 XOR D7

C1

1

C2

2

D3

3

C4

4

D5

5

D6

6

D7

7
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Hamming Codes

D3

D5

C1

D6

C2

C4

D7



Error Bits or Bursts?

 Common model of errors

 Probability of error per bit

 Error in each bit independent of others

 Value of incorrect bit independent of others

 Burst model

 Probability of back-to-back bit errors

 Error probability dependent on adjacent bits

 Value of errors may have structure

 Why assume bursts?

 Appropriate for some media (e.g., radio)

 Faster signaling rate enhances such phenomena
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Digital Error Detection 

Techniques

 Two-dimensional parity

 Detects up to 3-bit errors

 Good for burst errors

 IP checksum

 Simple addition

 Simple in software

 Used as backup to CRC

 Cyclic Redundancy Check (CRC)

 Powerful mathematics

 Tricky in software, simple in hardware

 Used in network adapter
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Two-Dimensional Parity

 Use 1-dimensional parity
 Add one bit to a 7-bit code to 

ensure an even/odd number of 1s

 Add 2nd dimension
 Add an extra byte to frame

 Bits are set to ensure even/odd 
number of 1s in that position 
across all bytes in frame

 Comments
 Catches all 1-, 2- and 3-bit and 

most 4-bit errors

1

0

1

1

1

0

Parity 

Bits

1111011 0Parity 

Byte

0101001

1101001

1011110

0001110

0110100

1011111

Data
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Two-Dimensional Parity

0 1 0 0 0 1 1 1 0

0 1 1 0 1 1 1 1 0

0 1 1 0 0 1 0 0 1

0 0 1 0 0 0 1 1 1

0 1 1 0 1 1 1 1 0

0 0

0

0

1

0



Internet Checksum

 Idea

 Add up all the words

 Transmit the sum

 Internet Checksum

 Use 1‘s complement addition on 16bit codewords

 Example

 Codewords: -5 -3

 1‘s complement binary: 1010 1100

 1‘s complement sum 1000

 Comments

 Small number of redundant bits

 Easy to implement

 Not very robust 
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IP Checksum

u_short cksum(u_short *buf, int count) {

register u_long sum = 0;

while (count--) {

sum += *buf++;

if (sum & 0xFFFF0000) {

/* carry occurred, so wrap around */

sum &= 0xFFFF;

sum++;

}

}

return ~(sum & 0xFFFF);

}



Cyclic Redundancy Check 

(CRC)

 Goal

 Maximize protection, Minimize extra bits

 Idea

 Add k bits of redundant data to an n-bit message

 N-bit message is represented as a n-degree polynomial 

with each bit in the message being the corresponding 

coefficient in the polynomial

 Example

 Message = 10011010

 Polynomial 

= 1 x7  0 x6  0 x5  1 x4  1 x3  0 x2  1 x  0

= x7  x4  x3  x
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CRC

 Select a divisor polynomial C(x) with 

degree k

 Example with k = 3: 

 C(x) = x3  x2  1

 Represented as 1101

 Transmit a polynomial P(x) that is 

evenly divisible by C(x)

 P(x) = M(x) + k bits



Properties of Polynomial 

Arithmetic

 Divisor

 Any polynomial B(x) can be divided by a polynomial C(x) if 

B(x) is of the same or higher degree than C(x)

 Remainder

 The remainder obtained when B(x) is divided by C(x) is 

obtained by subtracting C(x) from B(x)

 Subtraction

 To subtract C(x) from B(x), simply perform an XOR on 

each pair of matching coefficients
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CRC - Sender

 Given
 M(x) = 10011010 = x7  x4  x3  x

 C(x) = 1101 = x3  x2  1

 Steps
 T(x) = M(x) by xk (zero extending)

 Find remainder, R(x), from T(x)/C(x)

 P(x) = T(x) – R(x)  M(x) followed by R(x)

 Example
 T(x) = 10011010000

 R(x) = 101

 P(x) = 10011010101



CRC - Receiver

 Receive Polynomial P(x) + E(x)

 E(x) represents errors

 E(x) = 0, implies no errors

 Divide (P(x) + E(x)) by C(x)

 If result = 0, either

 No errors (E(x) = 0, and P(x) is evenly 

divisible by C(x))

 (P(x) + E(x)) is exactly divisible by C(x), error 

will not be detected
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CRC – Example Encoding

1001

1101

1000

1101

1011

1101

1100

1101

1000

1101

1101

k + 1 bit check 

sequence c, 

equivalent to a 

degree-k 

polynomial

101

1101Remainder

m mod c

10011010000 Message plus k 

zeros

Result:

Transmit message 

followed by 

remainder:

10011010101

C(x) = x3  x2  1 = 1101 Generator

M(x) = x7  x4  x3  x = 10011010 Message
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CRC – Example Decoding –

No Errors

1001

1101

1000

1101

1011

1101

1100

1101

1101

1101

1101

k + 1 bit check 

sequence c, 

equivalent to a 

degree-k 

polynomial

0

1101Remainder

m mod c

10011010101 Received 

message, no 

errors

Result:

CRC test is passed

C(x) = x3  x2  1 = 1101 Generator

P(x) = x10  x7  x6  x4  x2  1 = 10011010101 Received Message
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CRC – Example Decoding –

with Errors

1000

1101

1011

1101

1101

1101

1101

k + 1 bit check 

sequence c, 

equivalent to a 

degree-k 

polynomial

0101

1101

Remainder

m mod c

10010110101 Received 

message

Result:

CRC test failed

Two bit errors

C(x) = x3  x2  1 = 1101 Generator

P(x) = x10  x7  x5  x4  x2  1 = 10010110101 Received Message
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CRC Error Detection

 Properties

 Characterize error as E(x)

 Error detected unless C(x) divides E(x)

 (i.e., E(x) is a multiple of C(x))
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Example of Polynomial 

Multiplication

 Multiply 

 1101 by 10110

 x3  x2  1 by x4  x2  x

1011
10110

1101
1101

1101

00011111110

This is a multiple of c, 

so that if errors occur 

according to this 

sequence, the CRC test 

would be passed



On Polynomial Arithmetic

 Polynomial arithmetic 

 A fancy way to think about addition with no carries.  

 Helps in the determination of a good choice of C(x)

 A non-zero vector is not detected if and only if the error 

polynomial E(x) is a multiple of C(x)

 Implication

 Suppose C(x) has the property that C(1) = 0 (i.e. (x + 1) is 

a factor of C(x))

 If E(x) corresponds to an undetected error pattern, then it 

must be that E(1) = 0

 Therefore, any error pattern with an odd number of error 

bits is detected
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CRC Error Detection

 What errors can we detect?
 All single-bit errors, if xk and x0 have non-zero coefficients

 All double-bit errors, if C(x) has at least three terms

 All odd bit errors, if C(x) contains the factor (x + 1)

 Any bursts of length < k, if C(x) includes a constant term

 Most bursts of length  k
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Common Polynomials for C(x)

CRC C(x)

CRC-8 x8  x2  x1  1

CRC-10 x10  x9  x5  x4  x1  1

CRC-12 x12  x11  x3  x2  x1  1

CRC-16 x16  x15  x2  1

CRC-CCITT x16  x12  x5  1

CRC-32 x32  x26  x23  x22  x16  x12  x11  x10  x8  x7  x5 

x4  x2  x1  1



Error Detection vs. Error 

Correction

 Detection

 Pro: Overhead only on messages with errors

 Con: Cost in bandwidth and latency for retransmissions

 Correction

 Pro: Quick recovery

 Con: Overhead on all messages

 What should we use?

 Correction if retransmission is too expensive

 Correction if probability of errors is high
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