## Direct Link Networks

## Reading: Peterson and Davie, Chapter 2

## Direct Link Networks

- All hosts are directly connected by a physical medium
- Key points
- Encoding and Modulation
- Framing
- Error Detection
- Reliable Transmission
- Medium Access Control



## Internet Protocols

Encoding
Framing, error detection, medium access control

Reliability


## Direct Link Networks - Outline

- Hardware building blocks
- Encoding
- Framing
- Error detection
- Reliable transmission
- Multiple access media (MAC examples)
- Network adapters


## Hardware Building Blocks

- Nodes
- Hosts: general purpose computers
- Switches: typically special purpose hardware
- Routers: varied


## Nodes: Workstation Architecture

- Finite memory
- Scarce resource
Generally limited by bus
 speeds, NOT processor speeds


## Hardware Building Blocks

- Links
- Physical medium carrying
- Media
- Copper wire with electronic signaling
- Glass fiber with optical signaling
- Wireless with electromagnetic (radio, infrared, microwave) signaling


## Links - Copper

- Copper-based Media
more twists, less crosstalk, better signal over longer distances
- Category 3 Twisted Pair
- Category 5 Twisted Pair
- ThinNet Coaxial Cable
- ThickNet Coaxial Cable
twisted pair


More expensive than twisted pair
High bandwidth and excellent noise immunity

## Links - Optical

- Optical Media

Multimode Fib

- Single Mode Fiber

100Mbps
100-2400Mbps

2km
40km


## Links - Optical

- Single mode fiber
- Expensive to drive (Lasers)
- Lower attenuation (longer distances) $\leq 0.5 \mathrm{~dB} / \mathrm{km}$
- Lower dispersion (higher data rates)
core of single mode fiber



## Multimode fiber

- Cheap to drive (LED's)

Higher attenuation
Easier to terminate
$\sim 1$ wavelength thick =
$\sim 1$ micron
core of multimode fiber (same frequency; colors for clarity)


O(100 microns) thick

## Links - Optical

- Advantages of optical communication
- Higher bandwidths
- Superior attenuation properties
- Immune from electromagnetic interference
- No crosstalk between fibers
- Thin, lightweight, and cheap (the fiber, not the optical-electrical interfaces)


## Leased Lines

- POTS
- ISDN
- ADSL
- Cable Modem
- DS1/T1
- DS3/T3
- STS-1
- STS-3 (ATM rate)
- STS-12 (ATM rate)
- OC-48

64Kbps
128Kbps
$1.5-8 \mathrm{Mbps} / 16-640 \mathrm{Kbps}$
$0.5-2 \mathrm{Mbps}$
1.544 Mbps
44.736Mbps
51.840Mbps
155.250Mbps (ATM)
622.080Mbps (ATM)
2.5 Gbps

## Wireless

- Cellular

| $\circ$ | AMPS | 13Kbps |
| :--- | :--- | :--- |
| $\circ$ | PCS, GSM | 300 Kbps |

- Wireless Local Area Networks (WLAN)

| $\circ$ | Infrared | 4Mbps | 10 m |
| :--- | :--- | :--- | :--- |
| $\circ$ | 900 Mhz | 2 Mbps | 150 m |
| $\circ$ | 2.4 GHz | 2 Mbps | 150 m |
| 0 | 2.4 Ghz | 11 Mbps | 80 m |
| 0 | 2.4 Ghz | 54 Mbps | 75 m |
| $\circ$ | 5 Ghz | 54 Mbps | 30 m |
| $\circ$ | Bluetooth | 700 Kbps | 10 m |

- Satellites
- Geosynchronous satellite 600-1000 Mbps continent
- Low Earth orbit (LEO) ~400 Mbps world


## Encoding



- Problems with signal transmission
- Attenuation: Signal power absorbed by medium
- Dispersion: A discrete signal spreads in space
- Noise: Random background "signals"


## Encoding

- Goal
- Understand how to connect nodes in such a way that bits can be transmitted from one node to another
- Idea
- The physical medium is used to propagate signals
- Modulate electromagnetic waves
- Vary voltage, frequency, wavelength
- Data is encoded in the signal


## [Analog vs. Digital Transmission

- Analog and digital correspond roughly to continuous and discrete
- Data: entities that convey meaning
- Analog: continuously varying patterns of intensity (e.g., voice and video)
- Digital: discrete values (e.g., integers, ASCII text)
- Signals: electric or electromagnetic encoding of data
- Analog signal: continuously varying electromagnetic wave
- May be propagated over a variety of medium
- Digital signal: sequence of voltage pulses
- May be transmitted over a wire medium


## [Analog vs. Digital Transmission

- Advantages of digital transmission over analog
- Cheaper
- Suffers more attenuation
- But reasonably low-error rates over arbitrary distances
- Calculate/measure effects of transmission problems
- Periodically interpret and regenerate signal
- Simpler for multiplexing distinct data types (audio, video, e-mail, etc.)
- Easier to encrypt
- Two examples based on modulator-demodulators (modems)
- Electronic Industries Association (EIA) standard: RS-232
- International Telecommunications Union (ITU) V. 329600 bps modem standard


## Bauds and Bits

- Baud rate
- Number of symbols transmitted per second
- Bit rate
- Actual number of bits transmitted per second
- Relationship
- Depends on the number of bits encoded in each symbol


## RS-232

- Communication between computer and modem
- Uses two voltage levels (+15V, -15 V ), a binary voltage encoding
- Data rate limited to 19.2 kbps (RS-232-C); raised in later standards
- Characteristics
- Serial
- One signaling wire, one bit at a time
- Asynchronous
- Line can be idle, clock generated from data
- Character-based
- Send data in 7- or 8-bit characters


## RS-232 Timing Diagram

One bit per clock tick

-15 V is both "idle" and " 1 "

## Time

## RS-232

- Initiate send by
- Push to 15 V for one clock (start bit)
- Minimum delay between character transmissions
- Idle for one clock at -15 V (stop bit)
- One character
- 2+ voltage transitions
- Total Bits
- 9 bits for 7 bits of data (78\% efficient)
- Start and stop bits also provide framing


## RS-232 Timing Diagram



## Voltage Encoding

- Binary voltage encoding
- Done with RS-232 example
- Generalize before continuing with V. 32 (not a binary voltage encoding)
- Common binary voltage encodings
- Non-return to zero (NRZ)
- NRZ inverted (NRZI)
- Manchester (used by IEEE 802.3-10 Mbps Ethernet)
- 4B/5B


## Non-Return to Zero (NRZ)

- Signal to Data
- High

| $\Rightarrow$ | 1 |
| :--- | :--- |
| $\Rightarrow$ | 0 |

- Comments
- Transitions maintain clock synchronization
- Long strings of 0s confused with no signal
- Long strings of 1 s causes baseline wander
- Both inhibit clock recovery



## Non-Return to Zero Inverted (NRZI)

- Signal to Data

| - | Transition | $\Rightarrow$ |
| :--- | :--- | :--- |
| 0 | 1 |  |
| Maintain | $\Rightarrow$ | 0 |

- Comments
- Solves series of 1 s , but not 0 s



## Manchester Encoding

- Signal to Data
- XOR NRZ data with clock

| $\circ$ | High to low transition | $\Rightarrow$ |
| :--- | :--- | :--- |
| 0 | Low to high transition | $\Rightarrow$ |

- Comments
- (used by IEEE 802.3—10 Mbps Ethernet)
- Solves clock recovery problem
- Only $50 \%$ efficient ( $1 / 2$ bit per transition)



## 4B/5B

- Signal to Data
- Encode every 4 consecutive bits as a 5 bit symbol
- Symbols
- At most 1 leading 0
- At most 2 trailing 0s
- Never more than 3 consecutive 0s
- Transmit with NRZI
- Comments
- 16 of 32 possible codes used for data
- At least two transitions for each code
- $80 \%$ efficient


## 4B/5B - Data Symbols

At most 1 leading 0

| $0000 \Rightarrow$ | 11110 |
| :---: | :---: |
| $0001 \Rightarrow$ | 01001 |
| $0010 \Rightarrow$ | 10100 |
| 0011 $\Rightarrow$ | 10101 |
| $0100 \Rightarrow$ | 01010 |
| $0101 \Rightarrow$ | 01011 |
| $0110 \Rightarrow$ | 01110 |
| $0111 \Rightarrow$ | 01111 |

At most 2 trailing 0s

| -1000 | $\Rightarrow 10010$ |
| ---: | :--- |
| -1001 | $\Rightarrow 10011$ |
| -1010 | $\Rightarrow 10110$ |
| -1011 | $\Rightarrow 10111$ |
| -1100 | $\Rightarrow 11010$ |
| -1101 | $\Rightarrow 11011$ |
| -1110 | $\Rightarrow 11100$ |
| -1111 | $\Rightarrow 11101$ |

## 4B/5B - Control Symbols

- $11111 \Rightarrow$
- $11000 \Rightarrow$
- $10001 \Rightarrow$
- $01101 \Rightarrow$
- $00111 \Rightarrow$
- $00100 \Rightarrow$

Other $\Rightarrow$
idle
start of stream 1 start of stream 2 end of stream 1 end of stream 2 transmit error invalid

## Binary Voltage Encodings

- Problem with binary voltage (square wave) encodings
- Wide frequency range required, implying
- Significant dispersion
- Uneven attenuation
- Prefer to use narrow frequency band (carrier frequency)
- Types of modulation
- Amplitude (AM)
- Frequency (FM)
- Phase/phase shift
- Combinations of these


## Amplitude Modulation



## Frequency Modulation



## Phase Modulation



## Phase Modulation



## Phase Modulation Algorithm

- Send carrier frequency for one period


## 8-symbol <br> example

- Perform phase shift
- Shift value encodes symbol
- Value in range [0, 360ㅇ)
- Multiple values for multiple symbols
- Represent as circle



## V. 329600 bps

- Communication between modems
- Analog phone line
- Uses a combination of amplitude and phase modulation
- Known as Quadrature Amplitude Modulation (QAM)
- Sends one of 16 signals each clock cycle


## [Constellation Pattern for V. 32 QAM



For a given symbol:
Perform phase shift and change to new amplitude

## Quadrature Amplitude Modulation (QAM)

- Same algorithm as phase modulation
- Can also change signal amplitude
- 2-dimensional representation
- Angle is phase shift
- Radial distance is new amplitude


## Comments on V. 32

- V. 32 transmits at 2400 baud
- i.e., 2,400 symbols per second
- Each symbol contains $\log _{2} 16=4$ bits
- Data rate is thus $4 \times 2400=9600 \mathrm{bps}$
- Points in constellation diagram
- Chosen to maximize error detection
- Process called trellis coding


## Generalizing the Examples

- What limits baud rate?
- What data rate can a channel sustain?
- How is data rate related to bandwidth?
- How does noise affect these bounds?
- What else can limit maximum data rate?


## What Limits Baud Rate?

- Baud rate
- Typically limited by electrical signaling properties
- Changing voltages takes time
- No matter how small the voltage or how short the wire
- Electronics
- Slow compared to optics
- Note
- Baud rate can be as high as twice the frequency (bandwidth) of communication
- One cycle can contain two symbols


## Modulation Rate



## [What Data Rate can a Channel Sustain? How is Data Rate Related to Bandwidth?

- Transmitting N distinct signals over a noiseless channel with bandwidth B, we can achieve at most a data rate of

$$
2 \mathrm{~B} \log _{2} \mathrm{~N}
$$

- Nyquist's Sampling Theorem (H. Nyquist, 1920's)
- Sampling rate $=2 B$
- A higher sampling rate is pointless because higher frequency signals have been filtered out


## Noiseless Capacity

- Example 1: sampling rate of a phone line
- $B=4000 \mathrm{~Hz}$
- $2 \mathrm{~B}=8000$ samples/sec.
- sample every 125 microseconds!!
- Example 2: noiseless capacity
- $\mathrm{D}=2400$ baud \{note $\mathrm{D}=2 \mathrm{H}\}$
- $V=$ each pulse encodes 16 levels
- $\mathrm{C}=2 \mathrm{H} \log _{2}(\mathrm{~V})=\mathrm{D} \times \log _{2}(\mathrm{~V})$
$=2400 \times 4=9600 \mathrm{bps}$.


## [What else (Besides Noise) can Limit Maximum Data Rate?

- Transitions between symbols
- Introduce high-frequency components into the transmitted signal
- Such components cannot be recovered (by Nyquist's Theorem), and some information is lost
- Examples
- Phase modulation
- Single frequency (with different phases) for each symbol
- Transitions can require very high frequencies


## How does Noise affect these Bounds?

- In-band (thermal, not high-frequency) noise
- Blurs the symbols, reducing the number of symbols that can be reliably distinguished.
- Claude Shannon (1948)
- Extended Nyquist's work to channels with additive white Gaussian noise (a good model for thermal noise) channel capacity $C=B \log _{2}(1+S / N)$
$B$ is the channel bandwidth
$\mathrm{S} / \mathrm{N}$ is the ratio between
the average signal power and
the average in-band noise power


## Noisy Capacity

Telephone channel

- 3400 Hz at 40 dB SNR
- $C=B \log _{2}(1+S / N) b / s$
- $\mathrm{S} / \mathrm{N}=40 \mathrm{~dB}$
$\mathrm{S} / \mathrm{N}(\mathrm{dB})=10 \log _{10} \mathrm{~S} / \mathrm{R}$

$$
40=10 \log _{10}(\mathrm{~S} / \mathrm{N})
$$

- $4=\log _{10}(\mathrm{~S} / \mathrm{N})$ S/N =10,000
- $C=3400 \log _{2}(10001)=44.8 \mathrm{kbps}$


## Summary of Encoding

- Problems
- Attenuation, dispersion, noise
- Digital transmission allows periodic regeneration
- Variety of binary voltage encodings
- High frequency components limit to short range
- More voltage levels provide higher data rate
- Carrier frequency and modulation
- Amplitude, frequency, phase, and combinations
- Quadrature amplitude modulation: amplitude and phase, many signals
- Nyquist (noiseless) and Shannon (noisy) limits on data rates


## Framing



- Encoding translates symbols to signals
- Framing demarcates units of transfer
- Separates continuous stream of bits into frames
- Marks start and end of each frame


## Framing

- Demarcates units of transfer
- Goal
- Enable nodes to exchange blocks of data
- Challenge
- How can we determine exactly what set of bits constitute a frame?
- How do we determine the beginning and end of a frame?


## Framing

- Synchronization recovery
- Breaks up continuous streams of unframed bytes
- Recall RS-232 start and stop bits
- Link multiplexing
- Multiple hosts on shared medium
- Simplifies multiplexing of logical channels
- Efficient error detection
- Per-frame error checking and recovery


## Framing

- Approaches
- Sentinel
- Length-based
- Clock based
- Characteristics
- Bit- or byte-oriented
- Fixed or variable length
- Data-dependent or data-independent length


## Sentinel-Based Framing

- End of Frame
- Marked with a special byte or bit pattern
- Frame length is data-dependent
- Challenge
- Frame marker may exist in data
- Requires stuffing
- Examples
- BISYNC, HDLC, PPP, IEEE 802.4 (token bus)


## ARPANET IMP-IMP

- Interface Message processors (IMPs)
- Packet switching nodes in the original ARPANET
- Byte oriented, Variable length, Data dependent
- Frame marker bytes
- STX/ETX start of text/end of text
- DLE data link escape
- Byte Stuffing
- DLE byte in data sent as two DLE bytes back-to-back

| DLE | STX | HEADER | BODY |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |


| $0 \times 48$ | DLE | $0 \times 69$ |
| :---: | :---: | :---: |

## BISYNC

- BInary SYNchronous Communication
- Developed by IBM in late 1960's
- Byte oriented, Variable length, Data dependent
- Frame marker bytes:
- STX/ETX start of text/end of text
- DLE data link escape
- Byte Stuffing
- ETX/DLE bytes in data prefixed with DLE's

| STX | HEADER | BODY |  |  | ETX |
| :--- | :--- | :--- | :--- | :---: | :---: |


| $0 \times 48$ | ETX | $0 \times 69$ |
| :---: | :---: | :---: |

## High-Level Data Link Control Protocol (HDLC)

- Bit oriented, Variable length, Datadependent
- Frame Marker
- 01111110
- Bit Stuffing
- Insert 0 after pattern 011111 in data
- Example
- 01111110 end of frame
- 01111111 error! lose one or two frames


## IEEE 802.4 (token bus)

- Alternative to Ethernet (802.3) with fairer arbitration
- End of frame marked by encoding violation,
- i.e., physical signal not used by valid data symbol
- Recall Manchester encoding
- low-high means "0"
- high-low means "1"
- low-low and high-high are invalid
- IEEE 802.4
- byte-oriented, variable-length, data-independent
- Another example
- Fiber Distributed Data Interface (FDDI) uses 4B/5B
- Technique also applicable to bit-oriented framing


## Length-Based Framing

- End of frame
- Calculated from length sent at start of frame
- Challenge
- Corrupt length markers
- Examples
- DECNET's DDCMP
- Byte-oriented, variable-length
- RS-232 framing
- Bit-oriented, implicit fixed-length

| LENGTH | HEADER | BODY |
| :--- | :--- | :--- |

## Clock-Based Framing

- Continuous stream of fixed-length frames
- Clocks must remain synchronized
- STS-1 frames - $125 \mu$ s long
- No bit or byte stuffing
- Example
- Synchronous Optical Network (SONET)
- Problems
- Frame synchronization
- Clock synchronization


## SONET

- Frames (all STS formats) are $125 \mu \mathrm{sec}$ long - Ex: STS-1 - $51.84 \mathrm{Mbps}=90$ bytes
- Frame Synchronization
- 2-byte synchronization pattern at start of each frame



## SONET: Challenges

- How to recover frame synchronization
- Synchronization pattern unlikely to occur in data
- Wait until pattern appears in same place repeatedly
- How to maintain clock synchronization
- NRZ encoding
- Data scrambled (XOR'd) with

127-bit pattern

- Creates transitions
- Also reduces chance of finding false sync. pattern


## SONET

- A single SONET frame may contain multiple smaller SONET frames
Bytes from multiple SONET frames are interleaved to ensure pacing



## SONET

- STS-1 merged bytewise round-robin into STS-3
- Unmerged (single-source) format called STS-3c
- Problem: simultaneous synchronization of many distributed clocks

not too difficult to synchronize clocks such that first byte of all incoming flows arrives just before sending first 3 bytes of outgoing flow


## SONET



## SONET



## SONET

- Problem
- Clock synchronization across multiple machines
- Solution
- Allow payload to float across frame boundaries
- Part of overhead specifies first byte of payload



## Error Detection



- Encoding translates symbols to signals
- Framing demarcates units of transfer
- Error detection validates correctness of each frame


## Error Detection

- Idea
- Add redundant information that can be used to determine if errors have been introduced, and potentially fix them
- Errors checked at many levels
- Demodulation of signals into symbols (analog)
- Bit error detection/correction (digital)—our main focus
- Within network adapter (CRC check)
- Within IP layer (IP checksum)
- Possibly within application as well


## Error Detection

- Analog Errors
- Example of signal distortion
- Hamming distance
- Parity and voting
- Hamming codes
- Error bits or error bursts?
- Digital error detection
- Two-dimensional parity
- Checksums
- Cyclic Redundancy Check (CRC)


## Analog Errors

- Consider RS-232 encoding of character 'Q’
- Assume idle wire ( -15 V ) before and after signal
- Calculate frequency distribution of signal A(f) using a Fourier transform:

$$
\begin{aligned}
& A(f)=\int_{-\infty}^{\infty} x(t)[\cos (2 \pi f t)+i \sin (2 \pi f t)] d t \\
& x(t)=\int_{-\infty}^{\infty} A(f)[\cos (2 \pi f t)-i \sin (2 \pi f t)] d f
\end{aligned}
$$

- Apply low-pass filter (drop high frequency components)
- Calculate signal using inverse Fourier transform above


## RS-232 Encoding of 'Q'



## [Limited-Frequency Signal Response (bandwidth = baud rate)



## [Limited-Frequency Signal Response (bandwidth = baud rate/2)



## Symbols

## $\left.\begin{array}{c}+15 \\ 0 \\ \frac{0}{0} \\ \frac{0}{0} 0 \\ -15 \\ -15 \\ 1\end{array}\right]$ (erasure)

possible binary voltage encoding possible QAM symbol symbol neighborhoods and erasure neighborhoods in green; all region other space results in erasure

## Symbols

- Inputs to digital level
- valid symbols
- erasures
- Hamming distance
- Definition
- 1-bit error-detection with parity
- 1-bit error-correction with voting
- 2-bit erasure-correction with voting
- Hamming codes (1-bit error correction)


## Hamming Distance

The Hamming distance between two code words is the minimum number of bit flips to move from one to the other

- Example:
- 00101 and 00010
- Hamming distance of 3


## Parity

- 1-bit error detection with parity
- Add an extra bit to a code to ensure an even (odd) number of 1 s
- Every code word has an even (odd) number of 1 s



## Voting

- 1-bit error correction with voting
- Every codeword is transmitted n times



## 2-bit Erasure Correction with Voting

- Every code word is copied 3 times


2-erasure planes in green remaining bit not ambiguous
cannot correct 1-error and 1-erasure

## Minimum Hamming Distance

- The minimum Hamming distance of a code is the minimum distance over all pairs of codewords
- Minimum Hamming Distance for parity
- 2
- Minimum Hamming Distance for voting
- 3


## Coverage

- N-bit error detection
- No code word changed into another code word
- Requires Hamming distance of N+1
- N-bit error correction
- N -bit neighborhood: all codewords within N bit flips
- No overlap between N-bit neighborhoods
- Requires hamming distance of $2 \mathrm{~N}+1$


## Hamming Codes

- Construction for 1-bit error-correcting codes
- Minimal number of check bits required
- Construction
- number bits from 1 upward
- powers of 2 are check bits
- all others are data bits
- Check bit $j$ is XOR of all bits $k$ such that ( j AND k) $=\mathrm{j}$
- Example:
- 4 bits of data, 3 check bits


## Hamming Codes

\section*{$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$ | $\mathrm{C}_{1}$ | $\mathrm{C}_{2}$ | $\mathrm{D}_{3}$ | $\mathrm{C}_{4}$ | $\mathrm{D}_{5}$ | $\mathrm{D}_{6}$ | $\mathrm{D}_{7}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

$$
\begin{aligned}
& \mathrm{C} 1=\mathrm{D} 3 \text { XOR D5 XOR D7 } \\
& \mathrm{C} 2=\mathrm{D} 3 \text { XOR D6 XOR D7 } \\
& \mathrm{C} 4=\mathrm{D} 5 \text { XOR D6 XOR D7 }
\end{aligned}
$$

## [Hamming Codes



## Error Bits or Bursts?

- Common model of errors
- Probability of error per bit
- Error in each bit independent of others
- Value of incorrect bit independent of others
- Burst model
- Probability of back-to-back bit errors
- Error probability dependent on adjacent bits
- Value of errors may have structure
- Why assume bursts?
- Appropriate for some media (e.g., radio)
- Faster signaling rate enhances such phenomena


## Digital Error Detection Techniques

- Two-dimensional parity
- Detects up to 3-bit errors
- Good for burst errors
- IP checksum
- Simple addition
- Simple in software
- Used as backup to CRC
- Cyclic Redundancy Check (CRC)
- Powerful mathematics
- Tricky in software, simple in hardware
- Used in network adapter


## Two-Dimensional Parity

- Use 1-dimensional parity

|  | Parity Bits |  |
| :---: | :---: | :---: |
| Data | 0101001 | 1 |
|  | 1101001 | 0 |
|  | 1011110 | 1 |
|  | 0001110 | 1 |
|  | 0110100 | 1 |
|  | 1011111 | 0 |
| Parity 1110110Byte |  |  |
|  |  |  |

- Add one bit to a 7-bit code to ensure an even/odd number of 1 s
- Add 2nd dimension
- Add an extra byte to frame
- Bits are set to ensure even/odd number of 1 s in that position across all bytes in frame
- Comments
- Catches all 1-, 2- and 3-bit and most 4-bit errors


## Two-Dimensional Parity



## Internet Checksum

- Idea
- Add up all the words
- Transmit the sum
- Internet Checksum
- Use 1's complement addition on 16bit codewords
- Example
- Codewords: -5 -3
- 1's complement binary: 10101100
- 1's complement sum 1000
- Comments
- Small number of redundant bits
- Easy to implement
- Not very robust


## IP Checksum

```
u_short cksum(u_short *buf, int count) {
    register u_long sum = 0;
    while (count--) {
        sum += *buf++;
        if (sum & OxFFFFOOOO) {
        /* carry occurred, so wrap around */
            sum &= OxFFFF;
            sum++;
        }
    }
    return ~(sum & OxFFFF);
}
```


## Cyclic Redundancy Check (CRC)

- Goal
- Maximize protection, Minimize extra bits
- Idea
- Add k bits of redundant data to an n -bit message
- N -bit message is represented as a n-degree polynomial with each bit in the message being the corresponding coefficient in the polynomial
- Example
- Message = 10011010
- Polynomial

$$
\begin{aligned}
& =1 * x^{7}+0 * x^{6}+0 * x^{5}+1 * x^{4}+1 * x^{3}+0 * x^{2}+1 * x+0 \\
& =x^{7}+x^{4}+x^{3}+x
\end{aligned}
$$

## CRC

- Select a divisor polynomial $C(x)$ with degree $k$
- Example with $\mathrm{k}=3$ :
- $C(x)=x^{3}+x^{2}+1$
- Represented as 1101
- Transmit a polynomial $P(x)$ that is evenly divisible by $\mathrm{C}(\mathrm{x})$
- $P(x)=M(x)+k$ bits


## Properties of Polynomial Arithmetic

- Divisor
- Any polynomial $B(x)$ can be divided by a polynomial $C(x)$ if $B(x)$ is of the same or higher degree than $C(x)$
- Remainder
- The remainder obtained when $B(x)$ is divided by $C(x)$ is obtained by subtracting $\mathrm{C}(\mathrm{x})$ from $\mathrm{B}(\mathrm{x})$
- Subtraction
- To subtract $C(x)$ from $B(x)$, simply perform an XOR on each pair of matching coefficients


## CRC - Sender

- Given
- $M(x)=10011010$

$$
\text { - } \quad C(x)=1101
$$

$$
\begin{array}{ll}
= & x^{7}+x^{4}+x^{3}+x \\
= & x^{3}+x^{2}+1
\end{array}
$$

- Steps
- $T(x)=M(x)$ by $x^{k}$ (zero extending)
- Find remainder, $R(x)$, from $T(x) / C(x)$
- $P(x)=T(x)-R(x) \Rightarrow M(x)$ followed by $R(x)$
- Example
- $T(x)=10011010000$
- $R(x)=101$
- $P(x)=10011010101$


## CRC - Receiver

- Receive Polynomial P(x) + E(x)
- $E(x)$ represents errors
- $E(x)=0$, implies no errors
- Divide $(P(x)+E(x))$ by $C(x)$
- If result $=0$, either
- No errors $(E(x)=0$, and $P(x)$ is evenly divisible by $C(x)$ )
- $(P(x)+E(x))$ is exactly divisible by $C(x)$, error will not be detected


## CRC - Example Encoding



## CRC - Example Decoding No Errors

| $C(x)=$ | $x^{3}+x^{2}+1$ | $=1101$ | Generator |
| :--- | :--- | :--- | :--- |
| $P(x)=$ | $x^{10}+x^{7}+x^{6}+x^{4}+x^{2}+1$ | $=10011010101$ | Received Message |



## CRC - Example Decoding with Errors

| $C(x)=$ | $x^{3}+x^{2}+1$ | $=1101$ | Generator |
| :--- | :--- | :--- | :--- |
| $P(x)=$ | $x^{10}+x^{7}+x^{5}+x^{4}+x^{2}+1$ | $=10010110101$ | Received Message |


| 1101 | $\begin{aligned} & 10010110101 \\ & 1101 \end{aligned}$ |
| :---: | :---: |
| k + 1 bit check | $\begin{array}{r} 1000 \\ 1101 \\ \hline \end{array}$ |

## Result:

CRC test failed

## CRC Error Detection

## Properties

- Characterize error as $E(x)$
- Error detected unless $C(x)$ divides $E(x)$
- (i.e., $\mathrm{E}(\mathrm{x})$ is a multiple of $\mathrm{C}(\mathrm{x})$ )


## Example of Polynomial Multiplication

- Multiply
- 1101 by 10110
- $x^{3}+x^{2}+1$ by $x^{4}+x^{2}+x$



## On Polynomial Arithmetic

- Polynomial arithmetic
- A fancy way to think about addition with no carries.
- Helps in the determination of a good choice of $C(x)$
- A non-zero vector is not detected if and only if the error polynomial $E(x)$ is a multiple of $C(x)$
- Implication
- Suppose $C(x)$ has the property that $C(1)=0$ (i.e. $(x+1)$ is a factor of $\mathrm{C}(\mathrm{x})$ )
- If $E(x)$ corresponds to an undetected error pattern, then it must be that $E(1)=0$
- Therefore, any error pattern with an odd number of error bits is detected


## CRC Error Detection

- What errors can we detect?
- All single-bit errors, if $x^{k}$ and $x^{0}$ have non-zero coefficients
- All double-bit errors, if $C(x)$ has at least three terms
- All odd bit errors, if $C(x)$ contains the factor $(x+1)$
- Any bursts of length $<k$, if $C(x)$ includes a constant term
- Most bursts of length $\geq k$


## Common Polynomials for $\mathrm{C}(\mathrm{x})$

| CRC | $C(x)$ |
| :--- | :--- |
| CRC-8 | $x^{8}+x^{2}+x^{1}+1$ |
| CRC-10 | $x^{10}+x^{9}+x^{5}+x^{4}+x^{1}+1$ |
| CRC-12 | $x^{12}+x^{11}+x^{3}+x^{2}+x^{1}+1$ |
| CRC-16 | $x^{16}+x^{15}+x^{2}+1$ |
| CRC-CCITT | $x^{16}+x^{12}+x^{5}+1$ |
| CRC-32 | $x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^{8}+x^{7}+x^{5}+$ <br> $x^{4}+x^{2}+x^{1}+1$ |

## Error Detection vs. Error Correction

- Detection
- Pro: Overhead only on messages with errors
- Con: Cost in bandwidth and latency for retransmissions
- Correction
- Pro: Quick recovery
- Con: Overhead on all messages
- What should we use?
- Correction if retransmission is too expensive
- Correction if probability of errors is high

