Performance Analysis

Metrics, Analysis, and Examples
Performance Metrics and Analysis

- Metrics
 - Traditional and extensions
 - Sources of delay
 - Optimizing communication systems
 - Measuring systems

- Basic queueing theory
 - Distributions and processes
 - Single, memoryless queues
Performance Metrics

- Traditional metrics
 - End-to-end latency/RTT
 - Measures time delay
 - Across all layers of network
 - Often abbreviated to “latency” (even for RTT)
 - Bandwidth/throughput
 - Measures data sent per unit time
 - Across all layers of network
Performance Metrics

- **Sources of delay**
 - Latency: three main components
 - DMA from sending/to receiving host memory
 - Propagation delay in network
 - Queueing delay in routers
 - Overhead: also three main components
 - Data copy between buffers (e.g., into kernel memory)
 - Protocol (TCP, IP, etc.) processing
 - PIO to write description of frame
 - Note that overhead has fixed and per-byte costs
Performance Metrics

- Optimizing communication systems
 - Optimize the common case
 - Send/receive usually more important than connection setup/teardown
 - TCP header changes little between segments
 - Often only a few connections at end hosts
 - Minimize context switches
 - Minimize copying of data
Performance Metrics

- Optimizing communication systems
 - General rule of thumb
 - Most (80-90%) messages are short
 - Most data (80-90%) travel in long messages
 - Focus on bottlenecks
 - Reduce overhead to improve short message performance
 - Reduce number of copies to improve long message performance
 - Thus, CPU speed is often more important than network speed
Performance Metrics

- Optimizing communication systems
 - Maximize network utilization
 - Use large packets when possible
 - Fill delay-bandwidth pipe
 - Avoid timeouts
 - Set timers conservatively
 - Use “smarter” receiver (e.g., with selective ACK’s)
 - Avoid congestion rather than recovering from it
Performance Metrics

- Measuring communication systems
 - Latency
 - Measure RTT for 0-byte (or 1-byte) messages
 - Also report variability
 - Bandwidth
 - Measure RTT for range of long messages
 - Divide by number of bytes sent
 - Report as graph or as value in asymptotic limit
 - Overhead
 - Time multiple N-byte message send operations
 - Be careful of flow control and aggregation
Modeling and Analysis

- Problem
 - The inputs to a system (i.e., number of packets and their arrival times) and the exact resource requirements of these packets cannot be predetermined in advance exactly

- But, we can probabilistically characterize these quantities
 - On average, 100 packets arrive per second
 - On average, packets are 500KB

- So, given a probabilistic characterization of these quantities
 - Can we draw some intelligent conclusions about the performance of the system
Delay

- Link delay consists of four components
 - Processing delay
 - From when the packet is correctly received to when it is put on the queue
 - Queueing delay
 - From when the packet is put on the queue to when it is ready to transmit
 - Transmission delay
 - From when the first bit is transmitted to when the last bit is transmitted
 - Propagation delay
 - From when the last bit is transmitted to when the last bit is received
Consider a data link using stop-and-wait ARQ

- What is the throughput?
- Given
 - MSS = packet payload size
 - C = raw link data rate
 - RTT = round trip time (for one bit)
 - p = probability a packet is successful
Delay Models

- Calculate the maximum throughput for stop-and-wait
 - \[\text{Max throughput} = \frac{\text{packetlength}}{\text{RTT} + \left(\frac{\text{packetlength}}{C} \right)} \]
 - Could also multiply by \(\left(\frac{\text{payload}}{\text{packetlength}} \right) \) and \(p = \text{probability of correct reception} \)

- But what about the delay incurred?
 - There may be multiple bursty data sources
Basic Queueing Theory

- Elementary notions
 - Things arrive at a queue according to some probability distribution
 - Things leave a queue according to a second probability distribution
 - Averaged over time
 - Things arriving and things leaving must be equal
 - Or the queue length will grow without bound
 - Convenient to express probability distributions as average rates
Little’s Law

Goal

- Estimate relevant values
 - Average number of customers in the system
 - The number of customers either waiting in queue or receiving service
 - Average delay per customer
 - The time a customer spends waiting plus the service time
- In terms of known values
 - Customer arrival rate
 - The number of customers entering the system per unit time
 - Customer service rate
 - The number of customers the system serves per unit time
Little’s Law

For any box with something steady flowing through it

\[N = \lambda T \]

- Mean amount in box (average number of things in the box)
- Mean arrival to the system (rate at which things enter the box)
- Mean time spent in box (average time spent by a thing in the box)

Allows us to express the natural idea that crowded systems (large \(N \)) are associated with long customer delays.
Little’s Law

\[N = \lambda T \]

Mean amount in box \(N \) Mean time spent in box \(T \)

Mean arrival

Example
- Suppose you arrive at a busy restaurant in a major city
- Some people are waiting in line, while other are already seated (i.e., being served)
- You want to estimate how long you will have to wait to be seated if you join the end of the line

Do you apply Little’s Law? If so
- What is the box?
- What is \(N \)?
- What is \(\lambda \)?
- What is \(T \)?
Little’s Law

Mean amount in box \[N = \lambda \tau \] Mean time spent in box

Mean arrival

- Box
 - Include the people seated (i.e., being served)
 - Include the people waiting in line (i.e., in the queue)
- Let \(N \) = the number of people seated (say 150 seated + 50 in line)
- Let \(\tau \) = mean amount of time a person waits and then eats (say 90 min)
- Conclusion
 - Arrivals (and departures) = \(\frac{200}{90} = 2.22 \) persons per minute
Little’s Law

- Suppose data streams are multiplexed at an output link with speed 622 Mbps

- Question
 - If 200 50 B packets are queued on average, what is the average time in the system?

- Answer
 - $T = \frac{N}{\lambda}$
 - $T = 200 \times 50 \times 8 / 622M$
 - $T = 0.128 \text{ ms}$
Little’s Law

- Variables
 - $N(t) =$ number of customers in the system at time t
 - $A(t) =$ number of customers who arrived in the interval $[0,t]$
 - $T_i =$ time spent in the system by the i^{th} customer
 - $\lambda_t =$ average arrival rate over the interval $[0,t]$
Proof of Little’s Law

But this is \(N_t = \lambda_t t_t \)
- With time averaging over \([0,t]\)

Let \(t \) tend to infinity: \(N = \lambda t \)

- \(N(t) = \) number of customers
- \(A(t) = \) number of customers who arrived in the interval \([0,t]\)
- \(T_i = \) time spent in the system by the \(i^{th} \) customer
- \(\lambda_t = \) average arrival rate over the interval \([0,t]\)
Memoryless Distributions/ Poisson Arrivals

- Goal for easy analysis
 - Want processes (arrival, departure) to be independent of time
 - i.e., likelihood of arrival should depend neither on earlier nor on later arrivals

- In terms of probability distribution in time (defined for \(t > 0 \)),

\[
 f(t) = \frac{f(t+\Delta t)}{\int_{\Delta t}^{\infty} f(t') \, dt'} \quad \text{for all } \Delta t \geq 0
\]
Memoryless Distributions/ Poisson Arrivals

solution is:

\[f(t) = \lambda e^{-\lambda t} \]

what is \(\lambda \)?

• it’s the rate of events
• note that the average time until the next event is

\[
\int_0^\infty f(t) \, t \, dt = \left(te^{-\lambda t} \right)_0^\infty + \int_0^\infty e^{-\lambda t} \, dt
\]

\[
= \left(- \frac{1}{\lambda} e^{-\lambda t} \right)_0^\infty
\]

\[
= \frac{1}{\lambda}
\]
Plan

- Review exponential and Poisson probability distributions
- Discuss Poisson point processes and the M/M/1 queue model
A random variable X has an exponential distribution with parameter λ if it has a probability density function

$$f(x) = \lambda e^{-\lambda x}, \text{ for } x \geq 0$$

Note: $E[X] = 1/\lambda$
Exponential Distribution

- Suppose a waiting time X is exponentially distributed with parameter $\lambda = 2$/sec
 - Mean wait time is $\frac{1}{2}$ sec
- What is
 - $P[X>2]$?
 - $P[X>6]$?
 - $P[X>6 \mid X>4]$?
Exponential Distribution

- Remember: \(\lambda = 2 \)
- \(P[X>2] \)
 - \(= e^{-2\lambda} = 0.183 \)
- \(P[X>6] \)
 - \(= e^{-6\lambda} = 6.14 \times 10^{-6} \)
- \(P[X>6|X>4] \)
 - \(= \frac{P[X>6,X>4]}{P[X>4]} \)
 - \(= \frac{P[X>6]}{P[X>4]} \)
 - \(= \frac{e^{-6\lambda}}{e^{-4\lambda}} \)
 - \(= e^{-2\lambda} \)
 - \(= 0.183! \)
- Note: this demonstrates the memoryless property of exponential distributions
Poisson Distribution

- The random variable X has a Poisson distribution with mean λ, if for non-negative integers i:
 - $P[X = i] = (\lambda^i e^{-\lambda})/i!$

Facts

- $E[X] = \lambda$
- If there are many independent events,
 - The k^{th} of which has probability p_k (which is small) and
 - $\lambda = \text{the sum of the } p_k \text{ is moderate}$
- Then the number of events that occur has approximately the Poisson distribution with mean λ
Example

- Consider a CSMA/CD like scenario
- There are 20 stations, each of which transmits in a slot with probability 0.03. What is the probability that exactly one transmits?
Poisson Distribution

- Exact answer
 - $20 \times (0.03) \times (1 - 0.03)^{19} = 0.3364$

- Poisson approximation
 - Use $P[X = i] = (\lambda^i e^{-\lambda})/i!$
 - With $i = 1$ and $\lambda = 20 \times (0.03) = 0.6$
 - Approximate answer $= \lambda e^\lambda = 0.3393$

There are 20 stations, each of which transmits in a slot with probability 0.03. What is the probability that exactly one transmits?
Poisson Point Process

Definition

- A Poisson point process with parameter λ
 - A point process with interpoint times that are independent and exponentially distributed with parameter λ.

Mean interarrival time $= \frac{1}{\lambda}$, with exponential distribution
Poisson Point Process

Equivalently

- The number of points in disjoint intervals are independent, and the number of points in an interval of length t has a Poisson distribution with mean λt.

Shown are three disjoint intervals. For a Poisson point process, the number of points in each interval has a Poisson distribution.
Exercise

- Given a Poisson point process with rate $\lambda = 0.4$, what is the probability of NO arrivals in an interval of length 5?

Try to answer two ways, using two equivalent descriptions of a Poisson process.
Given a Poisson point process with rate $\lambda = 0.4$, what is the probability of NO arrivals in an interval of length 5?

Solution 1: $P[X > 5] = e^{-5\lambda} = 0.1353$

Solution 2: $P[N = 0] = e^{-5\lambda} = 0.1353$

(remember: $P[N = i] = (5\lambda)^i \times (e^{-5\lambda}) / i!$, for $i = 0$)
Simple Queueing Systems

- Classify by
 - "arrival pattern/service pattern/number of servers"
 - Interarrival time probability density function
 - The service time probability density function
 - The number of servers
 - The queueing system
 - The amount of buffer space in the queues
 - Assumptions
 - Infinite number of customers
Simple Queueing Systems

- **Terminology**
 - M = Markov (exponential probability density)
 - D = deterministic (all have same value)
 - G = general (arbitrary probability density)

- **Example**
 - M/D/4
 - Markov arrival process
 - Deterministic service times
 - 4 servers
M/M/1 System

- **Goal**
 - Describe how the queue evolves over time as customers arrive and depart

- **An M/M/1 system** with arrival rate λ and departure rate μ has
 - Poisson arrival process, rate λ
 - Exponentially distributed service times, parameter μ
 - One server

$N(t) = \text{number in system (system = queue + server)}$

Time
M/M/1 System

- If the arrival rate λ is greater than the departure rate μ
 - $N(t)$ drifts up at rate $\lambda - \mu$
M/M/1 System

- On the other hand,
 - if $\lambda < \mu$, expect an equilibrium distribution.
- The state of the queue is completely described by the number of customers in the queue
 - Due to the memoryless property of exponential distributions, N is described by a single state transition diagram
 - N is a Markov process, meaning past and future are independent given present

States of the queue

0 1 2 3 ...
M/M/1 System

- N is a discrete random variable
 - $p_k = \text{probability that there are } k \text{ customers in the queue}$
 - Equivalently,
 - $p_k = \text{probability that queue is in state } k$

States of the queue

0 1 2 3 ...
M/M/1 System

- **Goal**
 - Find the steady state (long run) probabilities of the queue being in state i, $i = 0, 1, 2, 3, \ldots$

- **Transitions occur only when**
 - A customer finishes service
 - A customer arrives

- **Birth-death process**
 - Transition from state i to state $i+1$ on arrival
 - Transition from state i to state $i-1$ on departure
M/M/1: Transition rates

- If the queue is in state i with probability p_i
 - Then equivalently, the queue is in state i a fraction of p_i of the time

- The number of transitions/second out of state i onto state $i+1$ is given by
 - (fraction of time queue is in state i) * (arrival rate)
 - $p_i * \lambda$

- The number of transitions/second out of state i onto state $i-1$ is given by
 - (fraction of time queue is in state i) * (departure rate)
 - $p_i * \mu$
M/M/1: Steady State

- **Claim**
 - For the steady state to exist, the number of transitions/sec from state i to state $i+1$ must equal the number of transitions/sec from state $i+1$ to state i.

- **Result**
 - Net flow across boundary between states must be zero.

- **Basic idea (not a real proof)**
 - Otherwise, in the long run, the net flow of the system would always drift to the higher state with probability 1.
M/M/1 System

- Given that we must balance flow across all boundaries,
 - \(\lambda p_i = \mu p_{i+1} \) for all \(i \geq 0 \)

- Balance Equations

\[
\begin{align*}
\lambda p_0 &= \mu p_1 \quad \Rightarrow \quad p_1 = \left(\frac{\lambda}{\mu} \right) p_0 \\
\lambda p_1 &= \mu p_2 \quad \Rightarrow \quad p_2 = \left(\frac{\lambda}{\mu} \right) p_1 \\
\lambda p_2 &= \mu p_3 \quad \Rightarrow \quad p_3 = \left(\frac{\lambda}{\mu} \right) p_2 \\
\vdots & \quad \vdots \\
\lambda p_i &= \mu p_{i+1} \quad \Rightarrow \quad p_{i+1} = \left(\frac{\lambda}{\mu} \right) p_i \\
\end{align*}
\]

\(\Rightarrow \quad p_2 = \left(\frac{\lambda}{\mu} \right)^2 p_0 \\
\Rightarrow \quad p_3 = \left(\frac{\lambda}{\mu} \right)^3 p_0 \\
\vdots & \quad \vdots \\
\Rightarrow \quad p_{i+1} = \left(\frac{\lambda}{\mu} \right)^{i+1} p_0

M/M/1 System

Problem
- To solve the balance equations, we need one more equation:
 \[\sum_{i=0}^{\infty} p_i = 1 \]

Thus
- \[p_k = (\lambda/\mu)^k p_0 \] (1)
- \[\sum_{i=0}^{\infty} p_i = 1 \] (2)

Plugging 1 into 2, we get
- \[\sum_{i=0}^{\infty} p_0 \cdot (\lambda/\mu)^i = 1 \]

Result (for \(\lambda < \mu \))
- \[p_0 = 1 / (\sum (\lambda/\mu)^i) = \ldots = 1 - \lambda/\mu \]
- \[p_k = (\lambda/\mu)^k \cdot (1 - \lambda/\mu) \]
M/M/1 System

- So What?
 - We now know the probability that there are 0, 1, 2, 3, … customers in the queue (p_i)

- Define N_{avg}
 - N_{avg} = average # of customers in queue
 - N_{avg} = expected value of the # of customers in the queue

- N_{avg}
 - $N_{avg} = \sum_{\text{all possible # of cust}} i \times P[i \text{ customers}]$
 - $N_{avg} = \sum_{i=0}^{\infty} i \times p_i = \sum_{i=0}^{\infty} (1 - \lambda/\mu) \times (\lambda/\mu)^i \times i$
 - $N_{avg} = (\lambda/\mu)/(1 - \lambda/\mu)$
M/M/1 System

Define Q_{avg}
- $Q_{avg} = \text{average } \# \text{ of customers in waiting area of the queue}$

Q_{avg}
- $Q_{avg} = \sum_{i=0}^{\infty} i \cdot P[i \text{ customers in waiting area}]$
- $Q_{avg} = \sum_{i=0}^{\infty} (1 - \frac{\lambda}{\mu}) \cdot (\frac{\lambda}{\mu})^{i+1} \cdot i$
- $Q_{avg} = \frac{\lambda}{\mu} / (1 - \frac{\lambda}{\mu}) - \frac{\lambda}{\mu}$
- $Q_{avg} = N_{avg} - \frac{\lambda}{\mu}$
M/M/1 System - Utilization

- **Utilization**
 - The fraction of time the server is busy
 - \(= P[\text{server is busy}] \)
 - \(= 1 - P[\text{server is NOT busy}] \)
 - \(= 1 - P[\text{zero customers in queue}] \)
 - \(= 1 - p_0 \)
 - \(= 1 - (1 - \lambda/\mu) \)
 - \(= \lambda/\mu \)

- Since utilization cannot be greater than 1,
 - Utilization = \(\min(1.0, \lambda/\mu) \)
M/M/1 System - Utilization

Utilization example

- Packets arrive for transmission at an average (Poisson) rate of 0.1 packets/sec
- Each packet requires 2 seconds to transmit on average (exponentially distributed)
- What are N_{avg}, Q_{avg} and ρ?
M/M/1 System - Utilization

- **Utilization example**
 - Packets arrive for transmission at an average (Poisson) rate of 0.1 packets/sec
 - Each packet requires 2 seconds to transmit on average (exponentially distributed)
 - \(N_{avg} = (\lambda/\mu)/(1 - \lambda/\mu) = 0.1*2 / (1 - 0.1*2) = 0.25 \)
 - \(Q_{avg} = N_{avg} - \lambda/\mu = 0.25 - 0.1*2 = 0.05 \)
 - \(\rho = \lambda/\mu = 0.2 \)
M/M/1 System - Utilization

Intuitively, as the number of packets arriving per second (λ) increases, the number of packets in the queue should increase.
M/M/1 System - Utilization

- Normalized Traffic Parameter (ρ)
 - Note that N_{avg} and Q_{avg} only depend on the ratio λ/μ.
 - Define ρ
 - $\rho = (\text{avg arrival rate} \times \text{avg service time})$
 - $\rho = \lambda \times 1/\mu = \lambda/\mu$
 - Intuitively, if we scale both arrival rate and service time by a constant factor, N_{avg} and Q_{avg} should remain the same.
 - Note
 - If $\lambda > \mu$ (i.e. $\lambda/\mu > 1$), then more packets are arriving per second than can be serviced.
 - Thus, N_{avg} and Q_{avg} are unbounded when $\rho \geq 1$!
M/M/1 System – Time Delays

- Given \(\{p_0, p_1, p_2, \ldots \} \), we can derive \(N_{avg} \) and \(Q_{avg} \)
- We may also want to know the following
 - \(T_{avg} \) = average time from when a packet arrives until it completes transmission
 - \(W_{avg} \) = average time from when a packet arrives until it starts transmission
M/M/1 System – Time Delays

- N_{avg}
- Q_{avg}
- W_{avg}
- T_{avg}
- $1/\mu$
M/M/1 System – Little’s Law

- Now we can use Little’s Law to relate N_{avg} and Q_{avg} to T_{avg} and W_{avg}
 - $N_{avg} = \lambda T_{avg}$ \hspace{1cm} \Rightarrow \hspace{1cm} $T_{avg} = N_{avg}/\lambda$
 - $Q_{avg} = \lambda W_{avg}$ \hspace{1cm} \Rightarrow \hspace{1cm} $W_{avg} = Q_{avg}/\lambda$

- Also note: $W_{avg} + 1/\mu = T_{avg}$
M/M/1 System

- Packets arrive with the following parameters
 - $\lambda = 2$ packets per second
 - $1/\mu = \frac{1}{4}$ sec per packets
 - $\rho = 0.5$
- Utilization = $\rho = \frac{\lambda}{\mu} = \frac{2}{4} = 0.5$
- $N_{avg} = \frac{\rho}{1 - \rho} = \frac{0.5}{1 - 0.5} = 1$ packet
 - $T_{avg} = \frac{N_{avg}}{\lambda} = \frac{1}{2} = 0.5$ sec
- $Q_{avg} = N_{avg} - \rho = 1 - 0.5 = 0.5$
 - $W_{avg} = \frac{Q_{avg}}{\lambda} = \frac{0.5}{2} = 0.25$ sec
M/M/1 System - Summary

1. Draw state diagram

2. Write down balance equations
 \[\text{flow "up"} = \text{flow "down"} \]

3. Solve balance equations using
 \[\sum_{i=0}^{\infty} p_i = 1 \text{ for } \{p_0, p_1, p_2, \ldots\} \]

4. Compute \(N_{\text{avg}} \) and \(Q_{\text{avg}} \) from \(\{p_i\} \)

5. Compute \(T_{\text{avg}} \) and \(W_{\text{avg}} \) using Little’s Theorem
M/M/1 System - Example

- Packets arrive at an output link according to a Poisson process
 - The mean total data rate is 80Kbps (including headers)
 - The mean packet length is 1500
 - The link speed is 100Kbps

Questions

- What assumptions can we make to fit this situation to the M/M/1 model?
- Under these assumptions, what is the mean time needed for queueing and transmission of a packet?
M/M/1 System - Example

Answer Part 1:
- “Customers”
 - Packets
- “Server”
 - The transmitter
- Service times
 - The transmission times
- Packets sizes
 - Variable lengths, with a exponential distribution
 - Packet lengths are independent of each other and independent of arrival time
M/M/1 System - Example

- **Remember**
 - The mean total data rate is 80Kbps
 - The mean packet length is 1500
 - The link speed is 100Kbps

- **Answer Part 2: Find \(\lambda, \mu \) and \(T \)**
 - Need to convert from bit rates to packet rates
 - \(\lambda = 80\text{Kbps}/12\text{Kb} = 6.66 \text{ packets/sec} \)
 - \(\mu = 100 \text{ Kbps}/12\text{Kb} = 8.33 \text{ packets/sec} \)
 - So, \(T = \) mean time for queueing and transmission
 - \(T = 1/(\mu - \lambda) = 1/1.67 = 0.6 \text{ sec} \)
M/M/1 System - Example

Also

- The mean transmission time is
 - \(1/\mu = 0.12\) sec,

- So the mean time spent in queue is
 - \(W = T - 1/\mu = 0.6 - 0.12 = 0.48\) sec

- The mean number of packets is
 - \(N = \rho/(1 - \rho) = 0.8/(1 - 0.8) = 4\) packets
M/M/1 System in Practice

- The assumptions we made are often not realistic
- We still get the correct qualitative behavior
- Simple formulas for predictive delay are useful for provisioning resources in a network and setting controls
- Real traffic seems to have bursty behavior on multiple time scales
 - This is not true for Poisson processes